Generation of Atomic-Squeezed States via Pondermotively Squeezed Light

Neha Aggarwal, Aranya B. Bhattacherjee, Man Mohan

Abstract


We study the generation of atomic-squeezed states for a Bose-Einstein Condensate confined within the lossless optomechanical cavity using pondermotively squeezed light. We show that the radiation pressure coupling between the optical cavity field and mechanical motion of the cavity end mirror generates squeezing of light. This radiation pressure induced light squeezing gets transferred to the condensate atoms via Tavis-Cummings type interaction and results in squeezed-spin states. We further discuss the effect of optomechanical coupling on squeezed atomic states.

Keywords


Bose-Eintsein condensates; Optomechanical cavity; Spin-squeezing; Pondermotive squeezing

Full Text:

PDF

References


M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).

D.J. Wineland et al., Phys. Rev. A 46, R6797 (1992).

D.J. Wineland et al., Phys. Rev. A 50, 67 (1994).

E.S. Polzik, Nature 453, 45 (2008).

A.D. Cronin, J. Schmiedmayer and D.E. Pritchard, Rev. Modern Phys. 81, 1051 (2009).

A. Sorensen et al., Nature 409, 63 (2001).

N. Bigelow, Nature 409, 27 (2001).

O. Guehne and G. Toth, Phys. Rep. 474, 1 (2009).

Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998).

V. Meyer et al., Phys. Rev. Lett. 86, 5870 (2001).

D. Leibfried et al., Science 304, 1476 (2004).

X. Wang, B.C. Sanders, Phys. Rev. A 68, 012101 (2003).

J.K. Korbicz, J.I. Cirac and M. Lewenstein, Phys. Rev. Lett. 95, 120502 (2005); J.K. Korbicz et al., Phys. Rev. A 74, 052319 (2006).

S. Yi and H. Pu, Phys. Rev. A 73, 023602 (2006).

H.J. Kimble and D.F. Walls (eds.), J. Opt. Soc. Am. B 4, 1450 (1987), special issue on Squeezed States of Electromagnetic Field.

R. Loudon and P.L. Knight (eds.), J. Mod. Opt. 34, 709 (1987), special issue on Squeezed Light.

H.J. Kimble, in Fundamental Systems in Quantum Optics, edited by J. Dalibard, J.M. Raimond and J. Zinn-Justin (Elsevier, New York, 1991).

C. Fabre et al., Phys. Rev. A 49, 1337 (1994).

S. Mancini and P. Tombesi, Phys. Rev. A 49, 4055 (1994).

T. Corbitt et al., Phys. Rev. A 73, 023801 (2006).

Daniel W.C. Brooks et al., Nature 488, 476 (2012).

T.P. Purdy et al., Phys. Rev. X 3, 031012 (2013).

A.H. Safavi-Naeini et al., Nature 500, 185 (2013).

B. Julsgaard, A. Kozhekin and E. Polzik, Nature 413, 400 (2001).

A. Banerjee, Phys. Rev. A 54, 5327 (1996).

L. Vernac, M. Pinard and E. Giacobino, Eur. Phys. J. D 17, 125 (2001).

C. Orzel et al., Science 291, 2386 (2001).

J. Esteve et al., Nature 455, 1216 (2008).

G.-B. Jo et al., Phys. Rev. Lett. 98, 030407 (2007).

W. Li et al., Phys. Rev. Lett. 98, 040402 (2007).

M. Pinard, Y. Hadjar and A. Heidmann, Eur. Phys. J. D 7, 107 (1999).

M.R. Matthews et al., Phys. Rev. Lett. 81, 243 (1998).

A. Bhattacherjee, Phys. Rev. A 80, 043607 (2009).

S.-C. Li, L.-B. Fu and J. Liu, Phys. Rev. A 84, 053610 (2011).

J.J. Sakurai, Modern Quantum Mechanics, New York : Addison-Wesley (1993).

F.T. Arecchi, E. Courtens and R. Gilmore, Phys. Rev. A 6, 2211 (1972).

M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press (1997).

S. Mahajan, N. Aggarwal, A.B. Bhattacherjee and M. Mohan, Chin. Phys. B 23, 020315 (2014).

M. Tavis and F.W. Cummings, Phys. Rev. 170, 379 (1968).

C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003).

V.B. Braginsky and A.B. Manukin, Soviet Physics JETP 25, 653 (1967).

D.J. Heinzen and D.J. Wineland, Phys. Rev. A 42, 2977 (1990).

G.D. Cole, Proc. SPIE 8458, 845807 (2012).

D. Hunger et al., Phys. Rev. Lett. 104, 143002 (2010).

A. Schliesser et al., Nature Phys. 4, 415 (2008).

S. Gigan et al., Nature 44, 67 (2006).

J. Chan et al., Opt. Express 17, 3802 (2009).

B. Nagorny et al., Phys. Rev. A 67, 031401 (2003).

F. Brennecke et al., Science 322, 235 (2008).




DOI: http://dx.doi.org/10.26713%2Fjamcnp.v3i1.345

Refbacks

  • There are currently no refbacks.




RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088