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Abstract. Using exact diagonalization, we study double quantum dot system with one of the dots
attached to the ideal leads acting as source and drain in T-shaped geometry. The leads are incorporated
in zero-bandwidth limit by replacing their band structures with one level coinciding with Fermi levels
in the respective leads. For the half-filled case, the spin-spin correlation for the dots are calculated
numerically at zero as well as finite temperatures. At zero temperature, an antiferromagnetic
correlation between the dots is observed for finite values of interdot tunneling matrix-element. The
antiferromagnetic correlation between the dots changes remarkably for large values of ondot Coulomb
interaction both at zero as well as finite temperatures. The spin-spin correlation between the dots
is significantly reduced even for small values of the inderdot Coulomb interaction compared to the
ondot Coulomb interaction. At a small value of temperature, the spin-spin correlation between the
dots exhibits a (negative) maximum due to contributions coming from thermal excitations to low-lying
states.
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1. Introduction

Quantum dots are often referred to as artificial atoms to highlight their two important features
namely a small number of electrons present in the dots and the many-body effects. Analogously,
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a system of two or more quantum dots coupled together are referred to as artificial molecules [1].
An array of quantum dots may form a two-dimensional artificial crystal which paves the way
to create artificially engineered materials [2]. The two unique features of the quantum dot
mentioned above lead to properties of a dot change dramatically by adding just one more electron
to it. Similar to atomic systems, the electronic states of quantum dots are spatially localized with
the corresponding energies quantized. This makes these systems more stable against thermal
perturbation. Quantum dots have become the testing ground for many physical phenomena and
holds immense potential for device applications [3,4]. During the last few decades, the quantum
dot systems have been investigated extensively for their unique properties both theoretically as
well as experimentally [5,6].

We consider a double quantum dot (DQD) system in T-shaped geometry with one of the dots
attached to ideal leads incorporated in zero-bandwidth (ZBW) limit. The ZBW limit has the
unique advantage that all calculations can be carried out exactly with no approximation to the
dot parameters. Earlier studies using ZBW limit for transport through single quantum dot
has been found to be consistent with experiments [7,8]. The ZBW limit has also been utilized
in the study of two-impurity Anderson model to explain the magnetic correlation between
impurities in a metal [9]. The magnetic correlation between the quantum dots in a given
geometry can effectively be utilized in device application [10]. In the present work, using exact
diagonalization, we calculate spin-spin correlation between the quantum dots at zero as well as
finite temperatures to study the magnetic properties of the T-shaped DQD system as a function
of tunable parameters of the system like interdot tunneling, hybridization with the leads, etc.

2. The Model

The DQD system in T-shaped geometry is taken as shown in Figure 1 where only dot-1 is
coupled to the ideal (non-interacting) source and drain leads via the hybridization parameters
V s,d and the two dots are tunnel-coupled through the tunneling matrix-element t. Besides
ondot Coulomb interactions U1 , U2 on the two dots, there is an interdot Coulomb interaction g.
The system can be described by the two-impurity Anderson type Hamiltonian as [11]

H=Hdqd+Hleads+Hhyb (2.1)

where the quantum dots are described by Hdqd , the non-interacting leads by Hleads and
hybridization between the quantum dot-1 and the leads by Hhyb .

Hdqd = ∑
j=1,2

ε j
∑
σ

c†
jσc jσ+

∑
j=1,2

U jn j↑n j↓+ g
∑
σσ′

n1σn2σ′+ t
∑
σ

(
c†

1σc2σ+h.c.
)

Hleads =
∑

l=s,d

∑
k,σ

εl
kσc†

klσ
cklσ ; Hhyb = ∑

l=s,d

∑
k,σ

(
V l

kc†
klσ

c1σ+h.c.
)

The first two terms in Hdqd represent energies of electrons on spin degenerate levels ε j
on the dots and U j the ondot Coulomb interaction. The third and the fourth terms in Hdqd
represent the interdot Coulomb interaction g and the interdot tunneling matrix-element t,
respectively. The Hleads describes the non-interacting source and drain leads where εl

kσ (l = s,d)
represents the dispersion relation of their arbitrary continuous energy band structure labeled by
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wavevector k. Finally, Hhyb describes the hybridization of dot-1 to the leads with k-dependent
hybridization parameters V l

k (l = s,d).

The ZBW limit of the leads are taken by replacing the arbitrary band structure of the leads
εl

kσ (l = s,d) by the respective Fermi levels with finite degeneracy [7,9]. In the present work, we
consider only one level, the Fermi level, on both the source and the drain leads [8]. The model
Hamiltonian (2.1), in the ZBW limit, thus simplifies to

HZBW =Hdqd+ ∑
l=s,d

εl
F

∑
σ

c†
lσclσ+

∑
l=s,d

(
V l c†

lσc1σ+h.c.
)

(2.2)

where the hybridization parameters V l
↑ =V l

↓ =V l (l = s,d) have been assumed to be independent
of the wavevector k and the spin σ. The Hamiltonian in (2.2) now describes a four site
problem which can be further simplified by taking chemical potential in the two leads
equal as εs

F = εd
F = εF , the Fermi energy, corresponding to the equilibrium situation [7, 12].

This enables us to transform to the symmetric and antisymmetric combinations [9] of the
lead fermionic operators namely α

†
sσ |0〉 = 1p

2

(
C†

sσ +C†
dσ

) |0〉 and α
†
aσ |0〉 = 1p

2

(
C†

sσ −C†
dσ

) |0〉
respectively. The Hamiltonian in (2.2) then reduces to a three-plus-one site problem [13]:
HZBW =H3−site+H1−site . The problem now remains to solve the Hamiltonian H3−site =Hdqd+
εF

∑
σα

†
sσαsσ +

p
2V

∑
σ

[
α

†
sσC1σ + h.c.

]
. For different electron fillings in the non-interacting

case and the infinitely large U →∞ limit with g = 0, H3−site can be solved analytically. The
H1−site = εF

∑
σα

†
aσαaσ with antisymmetric combination of the leads, is the decoupled diagonal

term.

Spin-spin Correlation

The magnetic properties of the system can be studied by calculating spin-spin correlation
using grand canonical ensemble where the chemical potential is adjusted in such a way that
the system contains a fixed average number of electrons [13]. Alternatively, one can use
canonical ensemble as the two approaches are equivalent [9, 13]. At zero temperature, the
spin-spin correlation between the dots is calculated as

〈
λ

g
N,S,Sz

|S1 ·S2|λg
N,S,Sz

〉
where |λg

N,S,Sz
〉

is the N−electron ground state and S1 ·S2 = 1
2

(
S+

i S−
j +S−

i S+
j
)+Sz

i Sz
j with S+/−

i = C†
i↑/↓Ci↓/↑ and

Sz
i = 1

2

(
ni↑−ni↓

)
. The finite temperature spin-spin correlation between the dots is calculated

in canonical ensemble as 〈S1 ·S2〉 = Tr
(〈S1 ·S2〉 e−βHZBW

)
/Zc where Zc = Tr(e−βHZBW) is the

canonical partition function and β= 1/kBT .

3. Numerical Results

For the system described by the four-site Hamiltonian HZBW in (2.2) in ZBW limit, we
calculate spin-spin correlation between the quantum dots for the half-filled case using canonical
ensemble [14]. The four electron basis states in spin subspaces S = 0,1,2 are used for numerical
calculation. The dimensionality of the full Hilbert space is 70 and the Hamiltonian matrix
is block diagonalized into one 20 × 20 matrix corresponding to S = 0 and Sz = 0, three
15×15 matrices corresponding to S = 1 and Sz =+1,0,−1 respectively, and five 1×1 matrices
corresponding to S = 2 and Sz =+2,+1,0,−1,−2 respectively. Since there is no magnetic field,
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Figure 1. Schematic diagram of DQD system in T-shaped geometry. Only dot-1 is coupled to the source
and drain leads through hybridization parameters V s,d . In the ZBW limit, there is only one level−the
Fermi level− on each of the leads. Dots 1 and 2 are tunnel-coupled through the matrix-element t. The
dot energies are given by ε1 and ε2 whereas U1 and U2 are the respective ondot Coulomb interactions.
The parameter g denotes the interdot Coulomb interaction.

the Hamiltonian is spin conserving. This allows the eigenvectors of the three matrices to be spin-
rotated within the subspace S = 1 corresponding to Sz =−1,0,+1 using spin raising/lowering
operators, resulting in three-fold (2S+1) degenerate eigenvalues [13]. Similarly, the eigenstates
in S = 2 subspace are five-fold degenerate. In our calculations, we have fixed Fermi energies
of the source and the drain leads equal to zero, εs

F = εd
F = 0. The dot levels are kept at

ε1 = ε2 = −5 and equal ondot Coulomb interactions U1 = U2 = U are assumed on the two
dots, the hybridization parameter V is taken as the unit of energy. By varying the remaining
parameters i.e. the interdot tunneling-matrix element t, the ondot Coulomb interaction U and
the interdot Coulomb interaction g, the system is studied here both at zero as well as the finite
temperatures.

(a) (b)

Figure 2. Zero temperature spin-spin correlation 〈S1 ·S2〉 between the dots versus interdot tunneling
matrix-element t. (a) The plots with g = 2 correspond to six different values of ondot interaction:
U = 3−solid line; U = 5−dashed line; U = 10−dotted line; U = 20−dash-dotted line; U = 30−dash double
dotted line; U = 106−short-dashed line. (b) The plots with U = 20 correspond to six different values of
interdot Coulomb interaction: g = 0−Solid line; g = 1−dashed line; g = 2−dotted line; g = 3−dash-dotted
line; g = 4−dash double dotted line and g = 5−short-dashed line.
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We first examine the effects of ondot and interdot Coulomb interactions at zero temperature
on spin-spin correlation 〈S1 ·S2〉 between the spins associated with the two dots. The interdot
tunneling matrix-element t allows the transfer of electronic charge between the dots. Figure 2(a)
shows the variation of zero temperature spin-spin correlation 〈S1 ·S2〉 between the the dots
versus interdot tunneling matrix-element t at six different values of ondot Coulomb interaction
U . At t = 0, the two dots decouple and the spin-spin correlation between the dots vanishes. It is
seen that finite interdot tunneling matrix-element t causes antiferromagnetic (AF) correlation
between the dots and this can be understood through the following consideration. At zero
temperature, the ground state of the system is non-magnetic with total spin S = 0. In order
to avoid the additional cost of energy U due to ondot Coulomb repulsion, the two dots remain
singly occupied in the ground state. Moreover, to facilitate the hopping between the quantum
dots via the tunneling matrix-element t, the spins on the two dots will be required to be opposite
due to Pauli exclusion principle. The remaining two spins on the leads are appropriately aligned
to make the total spin zero (S = 0) for the four electron system. This forces the ground state to
have a structure where with increasing t, the statistical weights of those basis states increase in
which the dots are singly occupied and the electrons on the two dots have antiparallel spins. It
is to be noted from Figure 2(a) that the AF correlation (with negative values) increases steeply
for small values of interdot tunneling t (< U) and for moderate values (≤ 5) the correlation
saturates to a value depending the value of U . For U ≤ (|ε1| = |ε2|), the dots can possibly have
double occupancy with opposite spins and the interdot tunneling causes the transfer of one of
the spins to the other dot leading to AF correlation between the dots. For U > (|ε1| = |ε2|), the
AF correlation between the dots exhibits an abrupt increase (becomes more negative) when the(
4t2/U

)> 1, as is evident from plots for U /V = 10,20,30 in Figure 2(a). For very large values of
ondot Coulomb interaction U/V = 106 ∼∞, the ratio 4t2/U becomes vanishingly small for any
value of t and the probability amplitude of hopping between the dots is greatly suppressed.

We now examine how the interdot Coulomb interaction g affects the spin-spin correlation
between the dots. We observed in Figure 2(b) that the effect of interdot tunneling matrix-element
t becomes significant for large values of ondot Coulomb interaction U > (|ε1| = |ε2|), we therefore
choose one such value, U = 20V . Figure 2(b), shows the zero temperature spin-spin correlation
〈S1 ·S2〉 between the dots versus interdot tunneling matrix-element t, for six different values
of interdot Coulomb interaction g. It is observed that the interdot Coulomb interaction g
significantly reduces the AF correlation between the dots. This can plausibly be understood
as: since the interdot Coulomb interaction g suppresses the transfer of charge between the
dots resulting in reduction of the statistical weight of those basis states in the ground state
where the two dots are singly occupied with their spins opposite. Comparing Figure 2(b) with
Figure 2(a), it can clearly be seen that even small values of the interdot Coulomb interaction
g compared to the ondot Coulomb interaction U shows significantly large change in spin-spin
correlation between the dots.

We now examine the effect of temperature. In Figure 3(a), we have plotted the spin-spin
correlation 〈S1 ·S2〉 between the dots versus temperature for three different values of interdot
tunneling matrix-element t. At zero temperature, the magnetic correlation is finite and AF in
nature since the interdot tunneling matrix-element t is finite. Further, the magnetic correlation
increases with increasing values of interdot tunneling matrix-element t. At a small value of
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(a) (b)

Figure 3. Spin-spin correlation 〈S1 ·S2〉 between the quantum dots versus temperature T . (a) The
plots corresponds to three different values of interdot tunneling matrix-element: t = 1−solid line ;
t = 2−dashed line and t = 3−dotted line at U = 20 and g = 0. (b) At g = 0 and t = 1, the plots corresponds
to six different values of ondot interaction: U = 3−Solid line; U = 5−dashed line; U = 10−dotted line;
U = 20−dash-dotted line; U = 30−dash double dotted line and U = 106−short-dashed line.

temperature (T ¿ 1, in units of V ), the AF correlation exhibits a (negative) maximum; this is
due to the fact that the temperature causes excitations to available low-lying states giving
additional contribution [9,13]. As the temperature is increased further (T > 1), the spin-spin
correlation between the dots is destroyed due to thermal excitations.

Lastly we examine how the ondot Coulomb interaction affects the thermal excitations. In
Figure 3(b), we show the spin-spin correlation 〈S1 ·S2〉 between the dots versus temperature
for six different values of ondot Coulomb interaction U , at fixed interdot tunneling matrix-
element, t = 1. For small values of ondot Coulomb interaction U = 3,5≤ (|ε1| = |ε2|), a (negative)
maximum in the AF correlation does not appear as the low-lying states are not accessible
at small temperatures T ¿ 1. For U = 10,20,30 > (|ε1| = |ε2|), a maximum in the form of a
(negative) peak appears in the AF correlation. This is due to the fact that the ondot interaction
U > (|ε1| = |ε2|) causes the low-lying excited states to be accessible at small temperatures. The
AF correlation falls off exponentially with temperature.

4. Conclusion

The ZBW limit is applied to the ideal leads connected to DQD system in T-shaped geometry
to study the magnetic correlation between the dots. The effects of interdot tunneling matrix-
element, ondot Coulomb interaction, interdot Coulomb interaction on spin-spin correlation
between the dots are examined at zero as well as finite temperatures. It is observed that,
at zero temperature, the dots are coupled antiferromagnetically for finite values of interdot
tunneling matrix-element, regardless of the values of other dot parameters like interdot, ondot
Coulomb interactions. Further, for large values of ondot Coulomb interaction U > (|ε1| = |ε2|),
the AF correlation between the dots is significantly affected by the interdot tunneling matrix-
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element. It is also seen that for infinitely large values of ondot Coulomb interaction, the AF
correlation between the dots vanishes. The spin-spin correlation between the dots reduces
significantly even for small values of interdot Coulomb interaction compared to the ondot
Coulomb interaction, g ¿U . For finite temperatures it is observed that, for small values of
temperature, the spin-spin correlation shows a (negative) maximum due to thermal excitation
from the ground state to the low-lying excited states whereas for large values of temperature,
the spin-spin correlation falls off exponentially. The spin-spin correlation between the dots can
thus be tuned by manipulating system parameters also the geometry of the quantum dots and
may have applications in realizing qubits for quantum computation.
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