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Abstract. We present and compare the results of permanent electric dipole moments (EDMs) of
various closed-shell atoms due to the nuclear Schiff moment (NSM) and the tensor-pseudotensor
(T-PT) interactions between the atomic nuclei and electrons. In order to highlight the role of electron-
correlation effects in obtaining accurate EDM results, we employ a number of relativistic many-body
methods including coupled-cluster theory at different degrees of approximation. On combining our
results obtained from the relativistic coupled-cluster (RCC) at the levels of singles and doubles
excitations (CCSD method) with the available EDM measurements we obtain accurate bounds on
the couplings S and CT associated with the respective NSM and T-PT interactions. The most precise
EDM measurement on 199Hg in combination with our CC results yield limits on the above couplings
as S < 1.45×10−12|e|fm3 and CT < 2.09×10−9 respectively. Further combining these bounds with
the latest nuclear structure and quantum chromodynamics calculations we infer limits on the strong
CP-violating parameter and for the combined up- and down- quark chromo-EDMs as |θ̄| < 1.1×10−9

and |d̃u − d̃d| < 2.8×10−26|e|cm, respectively.
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1. Introduction
Explaining matter-antimatter asymmetry in our Universe is one of the most challenging
problems for the physicists. However to address this problem, one of the essential requirements
is sufficient amount of CP violation in the elementary particle (interaction) level. The most
celebrated standard model (SM) of particle physics inherit CP-violation in the form of complex
phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix that mixes different flavors of quarks.
The observed CP-violation in the decays of neutral K [1] and B [2–4] mesons are well within
the physics described by the SM. However CKM mechanism is insufficient to account for the
observed baryon asymmetry of the Universe, therefore search for new sources of CP-violation
are of profound interest. In the low-energy sector, quest for the permanent electric dipole
moment (EDM) of atoms and molecules have now the utmost importance. This is because
existence of finite EDM in any non-degenerate system would be an unambiguous signatures
of parity (P) and time-reversal (T) symmetries [5, 6]. Nonetheless, T violation means CP
violation as per the famous CPT theorem [7]. The major contributor to the EDMs in the atomic
systems are the P- and T-odd interactions among the constituent particles. Thus, studying
atomic EDMs would provide powerful probe to the CP-violations emanating from the leptonic,
semileptonic, and hadronic sources. In the present work we focus on the EDMs of the closed-
shell (diamagnetic) atoms, which predominantly arise from the P- and T-odd electron-nucleus
(e-N) tensor-pseudotensor (T-PT) and nuclear Schiff moment (NSM) interactions [8]. In order to
estimate the strengths of the couplings associated with these interactions, we not only require
precise measurements but also reliable many-body calculations. Till date, the measurement
by Griffith et al. yields the best upper limit to the 199Hg EDM as dA(199Hg)< 3.1×10−29|e|cm
with 95% confidence level [9]. Advanced experimental techniques have been proposed for other
diamagnetic atoms, specifically 129Xe, with the expectation to improve the current sensitivity of
the measurement by few orders of magnitude [10–15]. At the fundamental level, NSM can be
linked with the θ̄ value and (chromo)-EDMs of quarks [18,43,44].

The rest of the paper is organized as follows. In the next section, we briefly present theory
on the sources of EDMs to the closed-shell atoms. In Section 3, we give the framework of the
relativistic coupled-cluster (RCC) theory to calculate EDMs of the atoms. Finally, we discuss our
results in Section IV before concluding the work in the last section. Unless stated otherwise
atomic units (au) are used throughout this paper.

2. Sources to EDMs of closed-shell atoms
Atoms can have permanent EDMs induced due to the P and T-odd moments of their nuclei. The
general nuclear potential seen by an electron in an atomic system subjected to the screenings
due to the other electrons is given by [19]

φ(R)=
∫

eρ(r)
|R−r|d

3r+ 1
Z

(d ·∇)
∫

ρ(r)
|R−r|d

3r, (2.1)

where ρ(r) is the nuclear charge density normalized to atomic number (Z), and d is the nuclear
EDM. In a closed-shell system with nuclear spin (I) equal to half, the dominant contribution
to EDM comes from the NSM which is the lowest order P and T-odd term in the expansion of
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the above potential. The corresponding Hamiltonian describing the interaction of an electron
with the NSM for a finite size nucleus is given by [20],

HNSM
e−N =−3S ·r

B4
ρN(r), (2.2)

where B4 = ∫ ∞
0 drr4ρ(r) and S = e

10

[〈r2r〉− 5
3Z 〈r2〉〈r〉] I

I is the NSM. Origin of NSM owe to
primary reasons at the nucleon level; the first possible reason is due to the distorted charge
distribution inside the nucleus caused by the P and T violating interactions among nucleons
mediated by neutral pi-mesons. The second possible source is due to the EDMs of individual
nucleons generated through the self interactions in a pion loop.

The other important contribution to EDMs of closed-shell atoms comes from the T-PT
interactions between the electrons and nucleons for which the interaction Hamiltonian is given
as [21]

HT−PT
e−N = i

p
2GFCT

∑
e
σN ·γρ(r), (2.3)

where GF is the Fermi constant, CT is the electron-nucleus T-PT coupling constant, σN =
〈σN〉I/I is the Pauli spinor of the nucleus with spin I and ρ(r) is the nuclear density. Since
the strengths of these interactions are extremely weak, EDMs of the atomic systems can be
estimated considering the electron-nucleus interactions only up to the first order effect with
respect to the Coulomb interactions. In order to find out S and CT values for an atomic system,
it is imperative to combine measured EDMs with the corresponding calculations that depend
on the atomic wave functions. For reliable calculations, a suitable many-body method capable
of including the relativistic and electron correlation effects accurately is necessary to employ.
For this purpose, we employ here the relativistic coupled-cluster (RCC) method, which is an all
order many-body perturbation theory, with the Dirac-Coulomb (DC) Hamiltonian to carry out
the required atomic calculations.

3. Method of Calculations
The DC Hamiltonian considered for the atomic calculations is given by

HDC =∑
i

[
cαD ·pi + (βD −1)c2 +Vn(r i)+

∑
j>i

1
r i j

]
, (3.1)

where c is the velocity of light in vacuum, αD and βD are the Dirac matrices, Vn denotes
the nuclear potential obtained using the Fermi-charge distribution, 1

r i j
is the inter-electronic

Coulombic repulsion and the energies are scaled with the rest mass energies of the electrons.
The solutions of HDC (atomic wave functions) is obtained approximately first using the mean-
field approximation in the Dirac-Fock (DF) method. The corresponding ground state solution,
denoted as |Φ0〉, is then taken as the reference state to obtain the exact state wave function
(|Ψ(0)〉) for the ground state. In the RCC theory formalism, |Ψ(0)〉 is given as

|Ψ(0)〉 = eT(0) |Φ0〉, (3.2)
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where the RCC operator T(0) generates all possible excitations to form the configuration state
functions from the reference state |Φ0〉. In the presence of EDM sources, the modified ground
state wave function |Ψ〉 is expressed analogously as

|Ψ〉 = eT |Φ0〉 = eT(0)+λT(1) |Φ0〉, (3.3)

where λ is a suitable parameter representing strength of the EDM interaction Hamiltonians
and T(1) generating the odd-parity excitations from Φ0〉 due to P and T odd interactions. In the
first order approximation, we have

|Ψ〉 ≈ |Ψ(0)〉+λ|Ψ(1)〉

= [eT(0) +λeT(0)
T(1)] |Φ0〉, (3.4)

with the first order wave function |Ψ(1)〉 = eT(0)
λT(1)|Φ0〉. In our work, we restrict, only to the

singles and doubles excitations through the T operators (CCSD method) by defining T = T1+T2

which in the second quantization notations given as

T1 =
∑
a,p

a†
paatp

a and T2 = 1
4

∑
a,b,p,q

a†
pa†

qabaatpq
ab , (3.5)

where tp
a and tpq

ab are the excitation amplitudes from the occupied orbitals denoted by a,b to
the unoccupied orbitals denoted by p, q which embody all order correlation effects among the
electrons.

The excitations amplitudes for the RCC operators are obtained by solving the following
equations

|Ψ〉 '
(
eT(0) + eT(0)

T(1)
)
|Φ0〉

= eT(0) |Φ0〉+ eT(0)
T(1)|Φ0〉

= |Ψ(0)〉+ |Ψ(1)〉, (3.6)

where |Ψ(0)〉 and |Ψ(1)〉 are the unperturbed and the first order perturbed wave functions due to
the additional interaction. The T(0) and T(1) amplitudes are obtained by solving

〈Φτ
0|H̄DC|Φ0〉 = 0 (3.7)

and

〈Φτ
0|H̄DCT(1)|Φ0〉 =−〈Φτ

0|H̄add|Φ0〉 (3.8)

respectively. Here |Φτ
0〉 corresponds to the excited configurations with τ referring to level of

excitations from |Φ0〉 and Hadd stands for either HNSM
e−N or HT−PT

e−N interaction. The line over
any operator represents Ō = e−T(0)

OeT(0) = (OeT(0)
)c with subscript c means terms are connected.

We also estimate the dominant contributions from the triple excitations by considering an
excitation operator given by

T(0),pert
3 = 1

3!

∑
abc,pqr

(H̄DCT(0)
2 )pqr

abc

εa +εb +εc −εp −εq −εr
, (3.9)

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 2, No. 2, pp. 115–125, 2015



Relativistic Many-body Calculations for Electric Dipole Moments . . . : Y. Singh and B. K. Sahoo 119

where ε’s are the single particle energies of the occupied (denoted by a,b, c) and unoccupied
(denoted by p, q, r) orbitals. We considered this operator through Eqs. (3.7) and (3.8) to
ameliorate the T(0) (referred as CCSD(T) method) and T(1) (referred as CCSDpT method)
amplitudes respectively.

The EDM of an atom (dA ), which is the expectation value of the electric dipole operator D ,
in the first order approximation is, thus, given by [20–25]

dA = 2
〈Ψ(0)

0 |D|Ψ(1)
0 〉

〈Ψ(0)
0 |Ψ(0)

0 〉
= 〈Φ0|eT†(0)

DeT(0)
T(1)|Φ0〉

〈Φ0|eT†(0) eT(0) |Φ0〉
. (3.10)

Since all the operators in the above expression are in normal order form the above equation
can be further simplified and expressed as [27–29]

dA = 2〈Φ0|(D̄(0)T(1))cc|Φ0〉, (3.11)

where the subscript cc stands for closed and connected terms and D̄(0) = eT†(0)
DeT(0)

, which is a
non-truncative series. To account contributions from D̄(0) maximally in the CCSD method, we
follow many intermediate computing tricks as have been explained in detail elsewhere [30].

In addition, we consider only the linear terms of the CCSD method (refer to LCCSD method)
to realize the importance of the non-linear terms that are usually correspond to higher triples,
quadrupole etc excitations. Similarly, we have also investigated results using other lesser
sophisticated techniques like random phase approximation (RPA), second (MBPT(2) method)
and third (MBPT(3) method) order many-body perturbation theory [24, 25, 29] to gain into
insights of the behavior of the propagation of the electron correlation effects and to compare our
calculations with the earlier results reported using these methods.

4. Result and Discussions
In Tables 1 and 2, we present EDM results for many experimentally interesting closed-shell
atoms such as 129Xe, 199Hg, 223Rn, 225Ra and 171Yb from the NSM (dNSM

A ) and T-PT (dT−PT
A )

interactions respectively. We also present the trends of the electron correlation effects by
employing the many-body methods at different levels of approximation that are mentioned
earlier. All these systems have nuclear spin I = 1/2 and therefore contribution to the EDMs
from octupole moment vanishes. Though the matrix elements of EDM interaction Hamiltonians
usually increase faster than Z2 , however 129Xe has an experimental edge over other heavier
systems. It has a larger spin coherence time, of about 1000s which is approximately 5 times
larger than 199Hg, and hence its measurement can improve the statistical sensitivity by at-least
an order of magnitude. As a matter of fact, three research groups across the globe are involved
in measuring EDM of the Xe atom [12,32, 33]. As shown in Tables 1 and 2, results for 129Xe
increase gradually with the inclusion of the correlation effects from the DF to LCCSD methods,
and after that there is a fall in the magnitude when the non-linear contributions are included
in the CCSD method. The results from our RPA method are in excellent agreements with the
others [20, 21, 31] implying validation of our methods. These results are found to be larger
than the CCSD results. The differences between the CCSD and RPA results can signify the
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Table 1. The values of atomic EDM due to T-PT interaction (dT−PT
A )) in the units of 10−20CT〈σN〉|e|cm

are presented using different many-body methods and compared them against the other calculation. The
uncertainties in the results are given as ∆

Method 129Xe 199Hg 223Rn 225Ra 171Yb

(This work) [24] [29] [25] [26]

DF 0.447 −2.39 4.48 −3.46 −0.70

MBPT(2) 0.405 −4.48 3.93 −11.00

MBPT(3) 0.515 −3.33 4.14 −10.59

RPA 0.562 −5.89 5.40 −16.66 −3.39

LCCSD 0.608 −4.52 5.07 −13.84

CCSD 0.501 −3.82 4.85 −10.04

CCSD(T) −4.20 −10.01

CCSDpT 0.501 −4.30

QED+Breit −4.44 −10.11

∆ ±0.002 ±0.09 ±0.06 ±0.19

(Others)

DF [20] 0.45 −2.0 [21], −2.4 4.6 −3.5 −0.70

RPA [20] 0.57, 0.564 [31] −6.0 [21], −5.9 5.6 −17 −3.4

CI+MBPT [20] −5.1 −18 −3.7

PRCC [23] −4.3

Hadd

D

Hadd

D
DHadd

Hadd

D

Figure 1. Significantly contributing non-RPA type MBPT(3) diagrams.

importance of the non-RPA contributions. Few large contributing non-RPA diagrams coming
through the MBPT(3) method are shown in Figure 1. These non-RPA contributions cancel out
strongly with the DF and RPA results, hence the CCSD results turn out to be smaller than
the RPA and LCCSD results. We also estimate uncertainties to the calculated quantities by
taking the difference between the CCSD and CCSDpT methods and from the incompleteness
in the basis functions which are given as ∆ in Tables 1 and 2. To obtain limits on S and
CT , we combine our CCSDpT results for dT−PT

A and dNSM
A with the available experimental

EDM result for 129Xe EDM, dA(129X e)< 4.1×10−27|e|cm, and obtain limits as CT < 1.6×10−6

and S < 1.2×10−9 |e| fm3 . However, these limits can be improved further after combining the
anticipated results from the ongoing experiments on 129Xe [12,32,33].

The electron correlation effects in 199Hg for the EDM calculations shows more or less similar
trends as of 129Xe. Our DF and RPA results for dT−PT

A and dNSM
A match perfectly with [20,22]

and also with another old calculation [21]. However, there are also an another sets of calculations
reported using the perturbed RCC (PRCC) method, analogous to our CCSD method, which differ
from our way of calculating RCC operator amplitudes and evaluating procedure of property
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Table 2. The values of atomic EDM due to T-PT interaction (dSM
A )) in the units of 10−17[S/(|e|fm3)]|e| cm

are presented using different many-body methods and compared them against the other calculation. The
uncertainties in the results are given as ∆

Method 129Xe 199Hg 223Rn 225Ra 171Yb

(This work) [24] [29] [25] [26]

DF 0.288 −1.20 2.46 −1.85 −0.42

MBPT(2) 0.266 −2.30 2.36 −5.48

MBPT(3) 0.339 −1.72 2.40 −5.30

RPA 0.375 −2.94 3.31 −8.12 −1.91

LCCSD 0.417 −2.24 3.06 −8.40

CCSD 0.336 −2.00 2.89 −6.79

CCSD(T) −2.08 −6.79

CCSDpT 0.337 −2.12

QED+Breit −2.16 −6.80

∆ ±0.004 ±0.03 ±0.04 ±0.10

(Others)

DF [20] 0.29 −1.19, −1.20 2.47, 2.5 −1.8 −0.42

RPA [20] 0.38 −2.8, −3.0 3.33, 3.3 −8.3, −8.5 −1.9, −1.9

CI+MBPT [20] −2.6 −8.8 −2.1

PRCC [23] −5.07

using Eq. (3.11) [23]. Calculations for 199Hg are further improved to obtain better limits to CT

and S by adding corrections due to the frequency independent Breit interaction given by

VB(r i j)=− 1
2r i j

{
αi ·α j + (αi · r̂ij)(αj · r̂ij)

}
(4.1)

and from the lower order vacuum polarization effects from the quantum electrodynamics (QED)
corrections through the Uehling (VU (r)) and Wichmann-Kroll (VWK (r)) potentials given by

VU (r)=− 4
9cπ

VN(r)
∫ ∞

1
dt

√
t2 −1

(
1
t2 + 1

2t4

)
e−2ctr (4.2)

and

VWK (r)=−2
3

1
cπ

VN(r)
0.092c2Z2

1+ (1.62cr)4 . (4.3)

In this case, the net uncertainties to the calculations are estimated by evaluating contributions
from the neglected higher excitations using the T(0),pert

3 operator in Eq. (3.11) and from the
higher orbitals including from h- and i-symmetries that were not considered in the RCC
calculations. Further from the above tables, we can observe that the previous calculations using
the PRCC method [23] and CI+MBPT method [20] differ significantly with each other. The
CI+MBPT method is the hybrid method composed of configuration interaction (CI) method with
finite-order many-body perturbation theory where the initial wave functions are determined
using the V N−2 potential for N number of electrons. The electron correlation effects are
accounted in this method by dividing the electrons into valence and core types. In contrast,
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the electron correlation effects in our and in the PRCC method are considered by carrying out
calculations using the V N potential by treating correlating effects due to all the electrons on
equal footing. Hence, we believe that our results are the most accurate and valid compared to
the previous calculations. Our results differ by about 15-20% from the calculations given in [20].
Combining our final results with the measurement [9], we get limits as S < 1.45×10−12|e| fm3

and CT < 2.09×10−9 . These are the most accurate bounds to S and CT at present. Moreover,
CT is further related to the scalar-pseudoscalar coupling constant CP associated with the P
and T-odd electron-nucleus interaction by the relation CP ≈ 3.8×103× A1/3

Z CT [20], where A is
the atomic mass. Using this relation the limit CP is extracted as CP < 5.8×10−7 and from the
relation S = (1.9dn +0.2dp fm2 [34], we get the limits on neutron (dn) and proton (dp ) EDMs
as dn < 7.6×10−26|e| cm and dp < 7.3×10−25|e| cm respectively. Although our extracted limit
on dn is not better than the limit obtained directly from the measurement [35], the limit on dp ,
however, is better than the previous value [9].

As has been pointed out in a recent review [43], all the nuclear calculations available till
date for 199Hg are in discordance with one another both in signs and magnitudes. However,
Ref. [43] also provides the best value for S in terms of ḡ i as

S = 13.5
[
0.01 ḡ0 + (±0.02) ḡ1 +0.02 ḡ2

] |e| fm3 (4.4)

where the couplings ḡ i with the subscript i = 0, 1, 2 represent the isospin components of the
CP-odd pion-nucleon coupling constants. Combining this with our limit on S , we infer bounds as
| ḡ0| < 1.2×10−11 and | ḡ1| < 5.6×10−12 . Furthermore, using the relations ḡ0 =−0.018(7)θ̄ [44]
and ḡ1 = 2×10−12(d̃u−d̃d) [45], we extract the upper limit on the combined up- and down- quarks
chromo-EDMs as |d̃u − d̃d| < 2.8×10−26|e| cm and the limit on the strong CP-odd parameter as
|θ̄| < 1.1×10−9 . In fact, it is also possible to infer more stringent limits on the above quantities
from our given limit on S provided the uncertainties in the nuclear calculations are reduced
further.

The octupole deformed nuclei in 223Rn, 225Ra and 171Yb are responsible for collectively large
Schiff moments in these systems and hence, they are very interesting candidates for the EDM
studies. Our EDM results due to the T-PT and NSM interactions in 223Rn agrees well with that
of Dzuba et al. [20, 22] at the DF and RPA level. Again like 129Xe and 199Hg, the correlation
trends in the 223Rn EDM results follow similar pattern. We also present our rigorous CCSD
results where we observe significant cancellations between the RPA and the all-order non-RPA
contributions. The inclusion of the non-RPA terms which starts appearing through the MBPT(3)
method onwards in a perturbative theory framework is, therefore, very crucial. Moreover, we
also find large cancellations among the contributions from the linear and non-linear CCSD
terms in the EDM calculations. It is, therefore, imperative to use an all order approach like our
CCSD method to get more reliable results for EDMs in these systems. The differences in the
LCCSD and CCSD results given in Tables 1 and 2 highlight the importance of the non-linear
correlation terms such as T(0)

1 T(0)
2 , 1

2 T(0)
2 T(0)

2 , · · · , which correspond to the contributions from
higher level excitations such as triples, quadruples, etc. The errors in the calculations were
again determined in the similar manner as explained above.

We also present our EDM results for 225Ra atom [26] whose first measurement has
been reported recently by the Argonne National Laboratory [38]. Their obtained limit is not
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competitive at present with the current best limit set by the 199Hg experiment [9]. However,
the larger Z and the octupole deformation in the nucleus of 225Ra can enhance EDM by two to
three orders of magnitude compared to 199Hg [39,40]. In addition to that cold-atom techniques
with very little sensitivity to systematics [41] have been developed to measure the Larmor
spin-resonance frequency for 225Ra. Moreover, ANL hopes to improve the enhance the statistical
sensitivity of the measurement by increasing the number of atoms that can be observed to 106 ,
using the Facility for Rare Isotope Beams (FRIB) for a measurement time of 100 days [38]. On
combining our CCSD(T) result for dSM

A with the measured EDM value [38], we get an upper
bound on NSM as S < 7.4×10−6|e| fm3 [26]. Similarly with the knowledge of 〈σn〉 in 225Ra
from nuclear calculation, an upper bound on CT can be predicted. Two sophisticated nuclear
calculations have been carried out using the octupole deformed Wood-Saxon potential [40] and
odd-A Skyrme mean field theory [42] to describe the P,T-odd interactions in 225Ra in terms of
the pion-nucleon-nucleon couplings. In a recent review, Engel et al. give the best value for S
from these two calculations as [43]

S = 13.5[−1.5 ḡ0 +6.0 ḡ1 −4.0 ḡ2]|e|fm3. (4.5)

We infer bounds as | ḡ0| < 3.6×10−7 and | ḡ1| < 9.1×10−8 using the above result with our extracted
limit on S [26]. Again from the relations | ḡ0| = 0.018(7)θQCD [44] and | ḡ1| = 2×10−12(d̃u − d̃d)
[45], we put the upper limits as |θQCD | < 2.0×10−5 and |d̃u − d̃d| < 4.6×10−22|e| cm. Though
these bounds are not competitive at present with the corresponding limits acquired from the
199Hg EDM study [29], the limits can become more stringent when our results will be combined
with the anticipated improved 225Ra EDM measurement.

The EDM results for the 171Yb are presented only at the level of RPA which are in excellent
agreement with the values reported by Dzuba et al. [20, 22]. However, in analogy with our
EDM studies on other atoms we expect a considerable non-RPA contributions which must be
incorporated in order to get accurate EDM results in 171Yb.

5. Conclusion
In summary, we present trends in the electron correlation effects in the calculations of
EDMs of 129Xe, 199Hg and 223Rn. On combing our results with the most EDM precise
measurement for 199Hg atom, we are able to put bounds on NSM and T-PT coupling constant
as S < 1.45×10−12|e| fm3 and CT < 2.09×10−9 respectively. Moreover, combining the NSM
obtained from our study with the latest nuclear calculation yield, the upper limits on the
combined up- and down- quarks chromo-EDMs as |d̃u− d̃d| < 2.8×10−26|e| cm and on the strong
CP-odd parameter as |θ̄| < 1.1×10−9 . We have also obtained preliminary EDM results for 171Yb
at the RPA level which are in excellent agreements with the previous calculations. Our reported
atomic calculations in the considered closed-shell atoms in combination with the upcoming
EDM measurements involving more advanced experimental techniques would further constrain
to the values of the above obtained coupling constants. Our obtained limits on various P,T-odd
couplings from 199Hg would definitely constraint various extensions of the standard model (SM)
of particle physics which can be further useful for probing new physics beyond-SM.
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[34] V. F. Dmitriev and R. A. Seńkov, Phys. Rev. Lett. 91 (2003), 21.
[35] C. A. Baker et al., Phys. Rev. Lett. 97 (2006), 131801.
[36] W. Dekens et al., JHEP 1407 (2014), 069.
[37] M. Pospelov, Phys. Lett. B 530 (2002), 123.
[38] R. H. Parker et al., Phys. Rev. Lett. 114 (2015), 233002.
[39] N. Auerbach, V. V. Flambaum and V. Spevak, Phys. Rev. Lett. 76 (1996), 4316.
[40] V. Spevak, N. Auerbach and V. V. Flambaum, Phys. Rev. C 56 (1997), 1357.
[41] M. V. Romalis and E. N. Fortson, Phys. Rev. A 59 (1999), 4547.
[42] J. Dobaczewski and J. Engel, Phys. Rev. Lett. 94 (2005), 232502.
[43] J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71 (2013), 21.
[44] W. Dekens et al., JHEP 1407 (2014), 069.
[45] M. Pospelov, Phys. Lett. B 530 (2002), 123.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 2, No. 2, pp. 115–125, 2015


	Introduction
	Sources to EDMs of closed-shell atoms
	Method of Calculations
	Result and Discussions
	Conclusion
	References

