Appearance of Conducting Behavior in a One Dimensional Nano Resistor Identical to a Semiconductor Diode

Authors

  • M. Taazeem Ansari Physics Section, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi 110025
  • M. Rafat Physics Section, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi 110025
  • A. Almohammedi Physics Department, Faculty of Science, Islamic University Madinah, Madinah
  • Mudassir M. Husain Physics Section, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi 110025, India; Physics Department, Faculty of Science, Islamic University Madinah, Madinah, Saudi Arabia

DOI:

https://doi.org/10.26713/jamcnp.v7i1.1392

Keywords:

Armchair Graphene Nano Ribbons (AGNR), Monoatomic carbon chain, Non Equilibrium Greens Function (NEGF), Ballistic transport, Negative Differential Resistance (NDR), Density Functional Theory (DFT)

Abstract

The present work deals with the simulation of electronic transport through a single dimensional carbon atoms chain device coupled to Graphene nanoribbons (GNR) electrodes. In order to observe electron transport in a more specific manner, applied voltage is regulated across an eight atoms long carbon chain resistor sandwiched between two identical semi-infinite semiconducting Armchair Graphene nanoribbon (AGNR) electrodes. The entire device is 2.06nm in length consisting of a 0.93nm long monoatomic carbon chain with eight carbon atoms coupled with two 1.13nm wide 7-AGNR electrodes. Nonequilibrium green's function (NEGF) technique coupled with density functional theory (DFT) generally used to simulate electronic transport in such systems is employed. The experimental realization of stable carbon chain and 7-AGNR observed in past studies motivated us to link these two experimentally obtained carbon based materials and construct a device in order to investigate electron transport properties theoretically. Meanwhile, the continuous advancement in nanotechnology realization of such devices experimentally may be anticipated in near future, with which the authenticity of the present and other similar reported simulated results may be validated. In this device the current is calculated as a function of potential difference within the 0.0-2.5V range. The I-V curve exhibits a nonconducting region upto 0.81V, followed by steep rise in current magnitude to a maximum value 13.0 ¹A as in semiconductor diodes, involving non-linear characteristic curve displaying a sharp negative differential resistance (NDR) pattern, which is the main focus of our study. Nano devices displaying such unusual I/V characteristics have been considered for developing application oriented futuristic miniaturized devices.

Downloads

Download data is not yet available.

References

M. T. Ansari, M. M. Husain and M. Rafat, Modeling of carbon chain device employing quantum mechanical method: a hybrid diode, in 2018 IEEE Electron Devices Kolkata Conference (EDKCON) 2018, November 24 (pp. 1 – 7), DOI: 10.1109/EDKCON.2018.8770516.

M. Büttiker, Four-terminal phase-coherent conductance, Physical Review Letters 57 (1986), 1761, DOI: 10.1103/PhysRevLett.57.1761.

D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B 42 (1990), 9458 – 9471, DOI: 10.1103/PhysRevB.42.9458.

A. D. Carlo, M. Gheorghe, P. Lugi, M. Sternberg, G. Seifert and T. Frauenheim, Theoretical tools for transport in molecular nanostructures, Physica B: Condensed Matter 314 (2002), 86 – 90, DOI: 10.1016/S0921-4526(01)01445-4.

L. Chen, L. He, H. S. Wang, H. Wang, S. Tang, C. Cong, H. Xie, L. Li, H. Xia, T. Li, T. Wu, D. Zhang, L. Deng, T. Yu, X. Xie and M. Jiang, Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches, Nature Communications 8 (2017), 14703, DOI: 10.1038/ncomms14703.

Ž. Crljen and G. Baranovi´c, Unusual conductance of polyyne-nased molecular wires, Physical Review Letters 98 (2007), 116801, DOI: 10.1103/PhysRevLett.98.116801.

S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press (2005), DOI: 10.1017/CBO9781139164313.

S. Datta, Nanoscale device modeling: the Green's function method, Superlattices and Microstructures 28 (2000), 253 – 278, DOI: 10.1006/spmi.2000.0920.

R. Denk, M. Hohage, P. Zeppenfeld, J. Cai, C. A. Pignedoli, H. Sode, R. Fasel, X. Feng, K. Müllen, S. Wang, D. Prezzi, A. Ferretti, A. Ruini, E. Molinari and P. Ruffieux, Exciton-dominated optical response of ultra-narrow graphene nanoribbons, Nature Communications 5 (2014) 4253, DOI: 10.1038/ncomms5253.

V. Derycke, P. Soukiassian, A. Mayne, G. Dujardin and J. Gautie, Carbon atomic chain formation on the (alpha)-SiC(100) surface by controlled sp!sp3 transformation, Physical Review Letters 81 (1998), 5868 – 5871, DOI: 10.1103/physrevlett.81.5868.

Y. J. Dong, X. F. Wang, M. X. Zhai, J. C. Wu, L. Zhou, Q. Han, X. M. Wu, Effects of geometry and symmetry on electron transport through graphene-carbon-chain junctions, The Journal of Physical Chemistry C 117 (2013), 18845 – 18850, DOI: 10.1021/jp405318b.

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai and G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Physical Review B 58 (1998), 7260 – 7268, DOI: 10.1103/PhysRevB.58.7260.

L. Esaki, New phenomenon in narrow germanium p-n junctions, Physical Review 109 (1958), 603, DOI: 10.1103/PhysRev.109.603.

J. J. He, X. H. Yan, Y. D. Guo, C. S. Liu, Y. Xiao, L. Meng, The electron transport properties of zigzag grapheme nanoribbon with upright standing linear carbon chains, Solid State Communications 227 (2016), 28 – 32, DOI: 10.1016/j.ssc.2015.11.013.

J. R. Heath, Q. Zhang, S. C. O'Brien, R. F. Curl, H. W. Kroto and R. E. Smalley, The formation of long carbon chain molecules during laser vaporization of graphite, Journal of the American Chemical Society 109 (1987), 359 – 363, DOI: 10.1021/ja00236a012.

H. Huag and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Verlag (2008), DOI: 10.1007/978-3-540-73564-9.

M. M. Husain and M. Kumar, Negative differential resistance, rectifying performance and switching behaviour in carbon chain based molecular devices, Organic Electronics 27 (2015), 92 – 100, DOI: 10.1016/j.orgel.2015.09.014.

C. Jin, L. Haiping, P. Lianmao, S. Kazu, S. Iijima, Deriving carbon atomic chains from graphene, Physical Review Letters 102 (2009), 205501, DOI: 10.1103/PhysRevLett.102.205501.

A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio and P. Liljeroth, Ultra-narrow metallic armchair graphene nanoribbons, Nature Communications 6 (2015), 10177, DOI: 10.1038/ncomms10177.

S. Kotrechko, A. Timoshevskii, E. Kolyvoshko, Y. Matviychuk and N. Stetsenko, Thermomechanical stability of carbyne based nanodevices, Nanoscale Research Letters 12 (2017), 327, DOI: 10.1186/s11671-017-2099-4.

R. Landauer, Philos, Electrical resistance of disordered one-dimensional lattices, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 21 (1970), 863 – 867, DOI: 10.1080/14786437008238472.

N. D. Lang and Ph. Avouris, Oscillatory conductance of carbon-atom wires, Physical Review Letters 81 (1998), 3515 – 3518, DOI: 10.1103/PhysRevLett.81.3515.

J. P. Llinas, A. Fairbrother, G. B. Barin, W. Shi, K. Lee, S. Wu, B. Y. Choi, R. Braganza, J. Lear, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. Müllen, F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel and J. Bokor, Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons, Nature Communications 8 (2017), 633, DOI: 10.1038/s41467-017-00734-x.

H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunneling Diodes, Cambridge University Press (2010), DOI: 10.1017/CBO9780511629013.

S. Okano and D. Tománek, Effect of electron and hole doping on the structure of C, Si, and S nanowires, Physical Review B 75 (2007), 195409, DOI: 10.1103/PhysRevB.75.195409.

D. Porezag, T. Frauenheim, T. Kohler, G. Seifert, R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Physical Review B 51 (1995), 12947 – 12957, DOI: 10.1103/PhysRevB.51.12947.

Quantumwise a/s, Atomistix Toolkit Version 12.2.2, http://www.quantumwise.com.

H. Ren, Q. X. Li, Y. Luo and J. L. Yang, Graphene nanoribbon as a negative differential resistance device, Applied Physics Letters 94 (2009), 173110, DOI: 10.1063/1.3126451.

L. Talirz, P. Ruffieux and R. Fasel, On-surface synthesis of atomically precise graphene nanoribbons, Advanced Materials 28 (2016), 6222 – 6231, DOI: 10.1002/adma.201505738.

S. Tongay, R. T. Senger, S. Dag and S. Ciraci, Ab-initio electron transport calculations of carbon based string structures, Physical Review Letters 93 (2004), 136404, DOI: 10.1103/Phys-RevLett.93.136404.

H. E. Troiani, M. M. Yoshida, G. A. C. Bragado, M. A. L. Marques, A. Rubio, J. A. Ascencio and M. J. Yacaman, Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level, Nano Letters 3 (2003), 751 – 755, DOI: 10.1021/nl0341640.

N. Troullier and J. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B 43 (1993), 1993 – 2006, DOI: 10.1103/PhysRevB.43.1993.

T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders and A. Sinitskii, Large-scale solution synthesis of narrow graphene nanoribbons, Nature Communications 5 (2014), 3189, DOI: 10.1038/ncomms4189.

Y. Xu, B. Wang, S. Ke, W. Yang, A. Z. Alzahrani, Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons, The Journal of Chemical Physics 137 (2012), 104107, DOI: 10.1063/1.4752197.

X. F. Yang, Z. G. Shao, H. L. Yu, Y. J. Dong, Y. W. Kuang and Y. S. Liu, Carbon chain-based spintronics devices: Tunable single-spin Seeback effect, negative differential resistance and giant rectification effects, Organic Electronics 55 (2018), 170 – 176, DOI: 10.1016/j.orgel.2018.01.023.

Z. Zanolli, G. Onida and J. C. Charlier, Quantum spin transport in carbon chains, ACS Nano 4 (2010), 5174 – 5180, DOI: 10.1021/nn100712q.

X. J. Zhang, M. Q. Long, K. Q. Chen, Electronic transport properties in doped C(_{60}) molecular devices, Applied Physics Letters 94 (2009), 073503, DOI: 10.1063/1.3082085.

G. P. Zhang, X. W. Fang, Y. X. Yao, C. Z. Wang, Z. J. Ding and K. M. Ho, Electronic structure and transport of a carbon chain between graphene nanoribbon leads, Journal of Physics: Condensed Matter 23 (2011), 025302, DOI: 10.1088/0953-8984/23/2/025302.

J. J. Zhang, Z. H. Zhang, J. Li, D. Wang, Z. Zhu, G. P. Tang, X. Q. Deng and Z. Q. Fan, Enhanced half-metallicity in carbon-chain-linked trigonal graphene, Organic Electronics 15 (2014), 65 – 70, DOI: 10.1016/j.orgel.2013.10.022.

X. Zhao, Y. Ando, Y. Liu, M. Jinno and T. Suzuki, Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube, Physical Review Letters 90 (2003), 187401, DOI: 10.1103/physrevlett.90.187401.

Downloads

Published

2020-04-30
CITATION

How to Cite

Ansari, M. T., Rafat, M., Almohammedi, A., & Husain, M. M. (2020). Appearance of Conducting Behavior in a One Dimensional Nano Resistor Identical to a Semiconductor Diode. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(1), 61–72. https://doi.org/10.26713/jamcnp.v7i1.1392

Issue

Section

Research Article