Experimental and Theoretical Study of the 5s\(^2\)5p\(^3\) and 5s\(^5\)p\(^4\) Configurations in Sb-like Cerium

Abdul Wajid, S. Jabeen


In this paper the ground and first excited configurations of Ce VIII have been studied, both experimentally and theoretically. The spectra of cerium have been photographed using a spark source on a normal incident spectrograph, equipped with a grating having the reciprocal dispersion of 1.38 Å/mm in the first order. The ground configuration has been established experimentally for the first time. The GRASP2018 package has been used to calculate energy levels, wavelengths and transition rates for the 5s\(^2\)5p\(^3\) and 5s\(^5\)p\(^4\) configurations. The electron correlation effects, Breit interaction and quantum electrodynamics effects have been considered in the calculation. The experimentally established energy levels have been compared with their theoretical values.


Energy levels; Transition rates; Lifetime; Cowan’s code; GRASP2018

Full Text:



E. Biémont, J. E. Hansen, P. Quinet and C. J. Zeippen, Astron. Astrophys., Suppl. Ser. 111, 333–346 (1995).

J. C. Berengut, V. A. Dzuba, V. V. Flambaum and A. Ong, Phys. Rev. A 86, 022517 (2012), DOI: 10.1103/PhysRevA.86.022517.

A. Tauheed and Y. N. Joshi, Can. J. Phys. 86, 714 (2008), DOI: 10.1139/p08-035.

L. Gaynor, N. Murphy, P. Dunne and G. O’Sullivan, J. Phys. B: At. Mol. Opt. Phys. 41, 245002 (2008), DOI: 10.1088/0953-4075/41/24/245002.

R. D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley, CA, (1981); Cowan code package for Windows by A.K. Kramida [ISBN 9780520038219].

C. F. Fischer, G. Gaigalas, P. Jönsson and J. Bieron, Computer Physics Communications 237, 184 (2019), DOI: 10.1016/j.cpc.2018.10.032.

R. L. Kelly and L. J. Palumo, J. Chem. Phys. Ref. Data 15, 1 (1987).

A. Redfors and J. Reader, Phys. Rev. A 43, 2367 (1991), DOI: 10.1103/PhysRevA.43.2367.

J. G. Van Het Hof (formerly from Zeeman Lab Amsterdam) A computer code for wavelength calibration using a polynomial fit.

P. Jönsson, G. Gaiglas, P. Rynkun, L. Radžiute, J. Ekman, S. Gustafsson, H. Hartman, K. Wang, M. Godefroid, C. F. Fischer, I. Grant, T. Brage and G. D. Zanna, Atoms 5, 16 (2017), DOI: 10.3390/atoms5020016.

I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules, part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, Volume 40), Springer, New York (2007), DOI: 10.1007/978-0-387-35069-1.

P. Jönsson, G. Gaigalas, J. Bieron, C. F. Fischer, I. P. Grant, Comput. Phys. Commun. 184, 2197 (2013), DOI: 10.1016/j.cpc.2013.02.016.

C. F. Fischer, Phys. Scr. T134, 014019 (2009), DOI: 10.1088/0031-8949/2009/T134/014019.

J. Ekman, M. R. Goderfoid and H. Hartman, Atoms 2, 215 (2014), DOI: 10.3390/atoms2020215.

J. G. Van Het Hof, A Computer Program — FIND3, for Searching the Levels, Zeeman Lab, Amsterdam, Netherland (1994).

A. Kramida, Comput. Phys. Commun. 182, 419 (2011), DOI: 10.1016/j.cpc.2010.09.019.

A. Tauheed, Y. N. Joshi and M. S. Steinitz, Can. J. Phys. 87, 1255 (2009), DOI: 10.1139/P09-087.

A. Tauheed and Y. N. Joshi, Phys. Rev. A 47, 3092 (1993), DOI: 10.1103/PhysRevA.47.3092.

A. Tauheed, Y. N. Joshi and A. Naz, Phys. Scr. 69, 289 (2003), DOI: 10.1238/Physica. Regular.069a00289.

A. Tauheed, Y. N. Joshi and E. H. Pinnington, Phys. Scr. 47, 555 (1993), DOI: 10.1088/0031-8949/47/4/014.

A. Tauheed and Y. N. Joshi, Phys. Scri. 47, 550 (1992), DOI: 10.1088/0031-8949/47/4/013.

M. K. Sharma, A. Tauheed and K. Rahimullah, J. Quant. Spectrosc. Radiat. Transf. 142, 37 (2014), DOI: 10.1016/j.jqsrt.2014.03.005.

R. R. Gayasov, Y. N. Joshi and A. Tauheed, Phys. Scr. 57, 565 (1998), DOI: 10.1088/0031-8949/57/5/004.

A. Kramida, Yu Ralchenko, J. Reader and NIST ASD team (2018), NIST Atomic Spectra Database, version 5.6.1 [online].

DOI: http://dx.doi.org/10.26713%2Fjamcnp.v6i2.1267


  • There are currently no refbacks.

RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)