Exploring the Structure, Electron Density and HOMO-LUMO Studies of Tetrathiafulvalene (TTF) as Organic Superconductors: A DFT and AIM Analysis

Authors

  • P. Gnanamozhi Department of Physics, Nehru Memorial College, Puthanampatti 621007
  • V. Pandiyan Department of Physics, Nehru Memorial College, Puthanampatti 621007
  • P. Srinivasan PG & Research Department of Physics, Chikkaiah Naicker College, Erode 638004
  • A. David Stephen Department of Physics, Sri Shakthi institute of Engineering Technology, Coimbatore 641062

DOI:

https://doi.org/10.26713/jamcnp.v6i1.1196

Keywords:

TTF, DFT, Electron density, Energy gap and ESP

Abstract

The Structure, Electron density and HOMO-LUMO analysis of TTF molecule was carefully evaluated by ab initio (HF) and density functional theory (B3LYP) calculations. The optimized (HF/6-311G** and B3LYP/6-311G**, B3LYP/auf-cc-PVDZ) geometric parameters are in excellent agreement with the similar type experimental data.\ For both levels of calculation, the low charge accumulation have C\(-\)S and C\(\equiv\)N bonds, at the bond critical point, which gives that the bond charges are highly depleted compared with all other bonds in the molecule. Further, AIM theory shows the difference of charge distribution in all bonds. The molecular conductivity (HOMO-LUMO gap) properties are solely related to the ESP of the entire system. The ionization potential gives the very good information of conductivity. These observations give an insight on this kind of super conducting material, which are useful to design navel electronic devices.

Downloads

Download data is not yet available.

References

R. F. W. Bader and T. T. Nguyen-Dang, Quantum theory of atoms in Molecules-Dalton revisited, Adv. Quantum Chem. 14 (1981), 63 – 124, DOI: 10.1016/S0065-3276(08)60326-3.

R. F. W. Bader, Atoms in Molecule: A Quantum Theory, Clarendon Press, Oxford, UK (1990).

R. F. W. Bader, Atoms in molecules, Acc. Chem. Res. 18 (1985), 9 – 15, DOI: 10.1021/ar00109a003.

M. R. Bryce, Recent progress on conducting organic charge-transfer salts, Chem. Soc. Rev. 20 (1991), 355, https://pubs.rsc.org/en/content/articlelanding/1991/cs/cs9912000355/unauth#!divAbstract

Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil and J. L. Brédas, Threedimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation, J. Chem. Phys. 118 (2003), 3764 – 3774. DOI: 10.1063/1.1539090.

C. D. Dimitrakopoulos and D. J. Mascaro, Organic thin-film transistors: A review of recent advances, IBM J. Res. Dev. 45 (2001), 11 – 27, https://ieeexplore.ieee.org/document/5389079.

E. Demiralp and A.W. Goddard, Structures and energetics study of tetrathiafulvalene-based donors of organic superconductors, J. Phys. Chem. A 101 (1997), 8128 – 8131, DOI: 10.1021/jp9716546.

E. Demiralp, W. A. Goddard, Ab Initio and semiempirical electronic structural studies on Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET), Journal of Physical Chemistry 98 (1994), 9781 – 9785, https://pubs.acs.org/doi/abs/10.1021/j100090a011?journalCode=jpchax.

W.-Q. Deng and W. A. Goddard, Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations, Journal of Physical Chemistry B 108 (2004), 8614 – 8621, DOI: 10.1021/jp0495848.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. J. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian03, Gaussian, Inc., Pittsburgh, PA (2003).

D. Jerome, Superconductivity in a synthetic organic conductor (TMTSF)2PF6, Journal of Physical Letters 41 (1980), L95 – L98, DOI: 10.1051/jphyslet:0198000410409500.

T. A. Keith, AIMAll (Version 10.03.25), aim.tkgristmill.com (2010).

H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik and W. Weber, High-mobility polymer gate dielectric pentacene thin film transistors, J. Appl. Phys. 92 (2002), 5259, DOI: 10.1063/1.1511826.

H. Kobayashi, A. Kobayashi, S. Yukiyoshi, G. Saito and H. Inkuchi, Transverse conduction and metal-insulator transition in s-(BEDT-TTF)2PF6, Bull. Chem. Soc. Jpn. 59 (1986), 301.

W.A. Little, Superconductivity at room temperature, Scientific American 212 (1965), 21 – 27, DOI: 10.1038/scientificamerican0265-21.

R. J. Magyar, S. Tretiak, Y. Gao, H. L. Wang and A. P. Shreve, A joint theoretical and experimental study of phenylene–acetylene molecular wires, Chemical Physical Letters 401 (2005), 149 – 156, DOI: 10.1016/j.cplett.2004.10.155.

H. Mori, Overview of organic superconductors, International Journal of Modern Physics B 8(1-2) (1994), 1 – 45, https://inis.iaea.org/search/search.aspx?orig_q=RN:25057837.

R. S. Mulliken, Electronic population analysis on LCAO–MO molecular wave functions. I, Journal of Chemical Physics 23 (1955), 1833, DOI: 10.1063/1.1740588.

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33 (1986), 8822 – 8824, DOI: 10.1103/PhysRevB.33.8822.

D. F. Perepichka and M. R. Bryce, Molecules with exceptionally small HOMO-LUMO gaps, Angew. Chem. Int. Ed. 44 (2005), 5370 – 5373, DOI: 10.1002/anie.200500413.

A. E. Reed, L. A. Curtiss and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews 88 (1988), 899, DOI: 10.1021/cr00088a005.

G. Sato and Y. Yoshida, Development of conductive organic molecular assemblies: organic metals, superconductors, and exotic functional materials, Bulltin Chemical Society of Japan 80 (2007), 1, DOI: 10.1246/bcsj.80.1.

J. H. Schön, Ch. Kloc, R. C. Haddon and B. Batlogg, A superconducting field-effect switch, Science 288 (2000), 656 – 658, http://science.sciencemag.org/content/288/5466/656.

J. M. Seminario and Y. Liuming, Ab initio analysis of electron currents in thioalkanes, International Journal of Quantum Chemistry 102 (2005), 711 – 723, DOI: 10.1002/qua.20384.

P. Srinivasan, S. N. Asthana, R. B. Pawar and P. Kumaradhas, A theoretical charge density study on nitrogen-rich 4,40,5,50-tetranitro-2,20-bi-1H-imidazole (TNBI) energetic molecule, Structural Chemistry 22 (2011), 1213 – 1220, https://www.researchgate.net/publication/251220939_A_theoretical_charge_density_study_on_nitrogen-rich_44'55'-tetranitro-22'-bi-1H-imidazole_TNBI_energetic_molecule.

A. D. Stephen, P. Srinivasan, S. N. Asthana, R. B. Pawar and P. Kumaradhas, Crystal structure prediction and charge density distribution of highly energetic dimethylnitraminotetrazole: a first step for the design of high energy density materials, Central European Journal of Energetic Materials 9(3) (2012), 201 – 217, http://www.wydawnictwa.ipo.waw.pl/cejem/vol-9-3-2012/Stephen.pdf.

S. V. Tsirelson, WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density, J. Appl. Cryst. 35 (2002), 371 – 373.

A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. Mallinson, T. Richter and T. Koritsanszky, XD2006 – a computer program for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental or theoretical structure factors, version 5.33, State University of New York at Buffalo, NY; Universitá di Milano, Italy; University of Glasgow, UK; CNR-ISTM Milano, Italy; Free University of Berlin, Germany (2007), http://xd.chem.buffalo.edu/docs/xd2006manual.pdf.

Y. Yang, M. N. Weaver and K. M. Merz Jr., Assessment of the "6-31+G** + LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes, J. Phys. Chem. A 113 (2009), 9843 – 9851, https://www.ncbi.nlm.nih.gov/pubmed/19691271.

Y. Ye, M. Zhang and J. Zhao, Ab initio investigations on three isomers of polyacetylene under the interaction of the external electric field, Journal of Molecular Struture (THEOCHEM) 822 (2007), 12 – 20, DOI: 10.1016/j.theochem.2007.07.007.

Downloads

Published

2019-05-25
CITATION

How to Cite

Gnanamozhi, P., Pandiyan, V., Srinivasan, P., & Stephen, A. D. (2019). Exploring the Structure, Electron Density and HOMO-LUMO Studies of Tetrathiafulvalene (TTF) as Organic Superconductors: A DFT and AIM Analysis. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 6(1), 33–43. https://doi.org/10.26713/jamcnp.v6i1.1196

Issue

Section

Research Article