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Abstract. Although the term “Entropy S” has been introduced to thermodynamics by Clausius already
in the 19th century and Boltzmann’s genius relation S = kB lnW that relates thermodynamics and
statistics dates now back to more than a century, it is still controversially discussed up to present
days while it became of increasing interest for the study of atoms and ions in dense and complex
environments. The introduction of many different terms like, e.g. thermodynamic entropy, statistical
entropy, information entropy, Boltzmann entropy, and many other definitions make it very difficult
for students (and also for the non-specialized researcher) to understand, what are the common and
different properties. It is the purpose of the present paper, to present an entirely physical approach
to entropy and to show, that essentially all different terms and definitions have in fact common
basic physical foundations. Based on an approach of statistical mechanics and elementary quantum
mechanics we explore the phase space properties of N-particle systems and show, that Boltzmann’s
logarithmic entropy relation can be derived from physical constraints. Based on these considerations
we discover that information is not a separate supplementary quantity but impacts on the outer world
in the sense of entropy.
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I. Introduction

The word “Entropy” is an old Greek artificial word creation (entropia) and means “the possibility
to convert something”. The entropy S in units of (Joule/Kelvin) has been introduced by Rudolf
Clausius in 1865 [1] in connection with the thermodynamic cycle processes. These cycle processes
had been studied before by Sadi Carnot in 1824 [2], son of the French mathematician Lazard
Carnot who proposed in 1803 the dissipation of useful energy [3] when he investigated the
efficiency of heat engines.

In the framework of traditional thermodynamics that is operating with state functions,
entropy can be just considered as a convenient state function that permits to handle more easily
certain case studies [4]. According to the first law of thermodynamics, firstly formulated by
Robert Mayer in 1842 [5], the energy U of the system is increased by the quantity of heat δQ ,
absorbed by it and decreased by the external work, δW , performed, i.e. dU = δQ−δW . In an
isolated system, the total energy is conserved. The internal energy is a state function, because it
does not depend on the path. Mathematically, the internal energy is therefore a total differential
and any closed path gives

∮
dU = 0. On the other hand, the quantities δQ and δW cannot be

written as a total differential because in general
∮

dQ 6= 0 and
∮

dW 6= 0. We therefore use the
differential δQ instead dQ and δW instead dW to indicate that these quantities are not total
differentials.

In thermodynamics, entropy (sometimes also called “thermodynamic entropy”) is given by
dS = δQrev/T , where δQrev is the heat exchange for reversible processes [4]. The factor 1/T
can just be considered as an integrating factor that makes entropy a total differential. The
independence from the path can be assured, substituting δW = p · dV and the first law of
thermodynamics into the expression for the entropy:

dS = dU + pdV
T

. (I.1)

An important step forward in thermodynamics has been achieved by L. Boltzmann with his
genius entropy relation [6]:

S = kB · lnW . (I.2)

Here, kB is the Boltzmann constant and W is the number of microstates for given macroscopic
parameters like energy, volume and number of particles. Boltzmann himself never formulated
eq. (I.2) for the entropy in this manner, eq. (I.2) was in fact proposed by M. Planck [7]. However,
eq. (I.2) was implicitly contained in Boltzmann’s more complex studies. The important point
of eq. (I.2) is that it links thermodynamics with statistical physics and since then, entropy
became an active field of research up to present days [8–12].

The introduction of many different terms for entropy, like thermodynamic entropy, statistical
entropy, Boltzmann entropy, von Neumann entropy, Tsallis entropy, information entropy and
others combined with many different definitions and approaches makes it more and more
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difficult to understand what entropy really is. At the same time, the variational principle
applied to entropy and to the free energy in thermodynamic equilibrium has received particular
attention in the high-energy high-density community in order to study the impact of a dense
complex environments on atoms and ions [13–16]. Some of its related issues, like e.g. the
equation of state or fundamental studies of the ionization potential depression of atoms and
ions in dense plasmas are controversy discussed up to present days [16–28].

Entropy has received also a “public acceptance” as a measure for disorder while at present
many rather inconvenient descriptions of entropy have also appeared in textbooks and it has
already been explicitly pronounced [29,30] that entropy needs clarifications.

It is the purpose of the present paper, to provide a physical approach to the basic principles
of entropy and a statistical foundation to some related thermodynamical quantities. Using basic
elements of quantum mechanics we show, that Boltzmann’s entropy relation can be derived from
physical constraints. Moreover, this approach discovers, that information needs to impact on
the outer world in order to derive a consistent theory of entropy. It appears that this consistent
consideration has resemblance to quantum mechanics and to the impact of quantum mechanical
measurements on the system itself.

II. The Statistical Description of a System with External Forces and
the Γ-Phase Space Properties

II.1 Hamilton’s Equation of Motion and the Phase Space Volume

Let us consider a system, where all N particles are assumed to be identical and each possessing
f degrees of freedom. The total degree of freedom of the system is then given by

F = f ·N. (II.1.1)

The system evolution is described by the Hamilton’s canonical equations [31–33]:

ṗk =− ∂H
∂qk

, (II.1.2)

q̇k =
∂H
∂pk

, (II.1.3)

where H is the Hamilton function. The qk ’s and pk ’s denote the generalized space and
momentum coordinates of each particle in the system. The index “k” is a running index for
the particles and also for the degrees of freedom, i.e. k = 1 . . .F (e.g. q1 = x1 , q2 = y1 , q3 = z1 ,
p4 = x2, . . .). The system evolution is therefore described by the trajectory of one point in the
F-dimensional space, the so-called Γ-phase space. If we assume that the Hamilton function
represents the total energy of the system and that external forces are described by the parameter
ζ, i.e.

E = H(pk, qk,ζ, t) (II.1.4)
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the system evolution takes place in the Γ-phase space volume that is given by

ΩΓ =ΩΓ (E,ζ)=
∫

. . .
∫

H(p,q,ζ)≤E
. . .

∫
dp1 . . .dpF dq1 . . .dqF . (II.1.5)

The system evolution is therefore described by the trajectory of one point that moves exclusively
inside the volume ΩΓ given by eq. (II.1.5).

In order to illuminate the meaning of the multiple phase space integrals, let us obtain an
explicit expression for the phase space volume for an ideal monoatomic gas. As the particles are
not interacting, the Hamilton function is simply given by

H(p, q)=
N∑

k=1

1
2m

(
p2

k,x + p2
k,y + p2

k,z

)
. (II.1.6)

The integrals over the generalized coordinates q can easily be performed because the Hamilton
function depends only on the generalized momenta:

ΩΓ(E,V , N)=V N
∫

H(p,q)≤E
dp1 . . .dpF . (II.1.7)

V is the volume that confines the N particles. The remaining integrals over the generalized
impulses can be transformed to an integral over a sphere with radius R =p

2mE because
N∑

k=1

(
p2

k,x + p2
k,y + p2

k,z

)
≤

(p
2mE

)2
. (II.1.8)

With dp1 . . .dpF = d3 p1 . . .d3 pN = d3N p we obtain from eq. (II.1.7)

ΩΓ(E,V , N)=V N
∫

H(p,q)≤E
d3N p . (II.1.9)

The remaining integral of eq. (II.1.9) is therefore an integral over a sphere with 3N-dimensions
in momentum space. The volume V of a sphere with radius R in γ dimensions is given by

Vγ(R)= πγ/2

(γ/2)!
Rγ (II.1.10)

from which the differential volume element (the volume of the shell between R and R+dR)
follows simply by differentiation:

dVγ(R)= γ πγ/2

(γ/2)!
Rγ−1dR. (II.1.11)

Substituting eqs. (II.1.8) and (II.1.11) in (II.1.9) we obtain

d3N p = 3Nπ3N/2

(3N/2)!
p3N−1dp = 3Nπ3N/2

(3N/2)!

(p
2mE

)3N−1
(

mp
2mE

)
dE (II.1.12)

and therefore

dp1 . . .dpF = π3N/2

(3N/2−1)!
(2m)3N/2 E3N/2−1dE. (II.1.13)

Injecting eq. (II.1.12) and (II.1.13) into eq. (II.1.9) we obtain

ΩΓ(E,V , N)= V Nπ3N/2(2m)3N/2

(3N/2−1)!

∫ E

0
E3N/2−1dE

= V Nπ3N/2(2m)3N/2

(3N/2)!
E3N/2 (II.1.14)
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Let us now consider changes of the system evolution due to the external forces (e.g., forces that
move a prop inside a cylinder to compress a gas). If the external parameter changes from ζ to
ζ+dζ the temporal change of the Hamilton function (and therefore the temporal change of the
energy) is given by

dH
dt

= ∂H
∂t

+~vΓ ·grad(H). (II.1.15)

Because the generalized velocity in Γ-Phase space is given by

~vΓ = (q̇1, . . . q̇F , ṗ1, . . . ṗF ) (II.1.16)

and

grad(H)=
{
∂H
∂q1

, . . . ,
∂H
∂qF

,
∂H
∂p1

, . . . ,
∂H
∂pF

}
(II.1.17)

we obtain with the help of the eqs. (II.1.2)-(II.1.3)

~vΓ ·grad(H)= 0 . (II.1.18)

Substituting eq. (II.1.18) into eq. (II.1.15) we see, that the total temporal change of the Hamilton
function due to an external force is only given by the local temporal changes and not by flows
over gradients in Γ-phase space:

dH
dt

= ∂H
∂ζ

dζ
dt

. (II.1.19)

II.2 Quasi-Stationary Perturbations

If ζ changes during the time τ by the amount dζ, the change of energy is given by

∆E =
∫ t+τ

t

∂H
∂ζ

ζ̇ dt′ . (II.2.1)

Let us assume that changes in ζ within the time interval τ are small (means ζ̇ is small in
eq. (II.2.1)), the derivative can then be approximated by

ζ̇≈ ∆ζ
τ

(II.2.2)

and Eq. (II.2.1) can then be rewritten as
∆E
∆ζ

≈ 1
τ

∫ t+τ

t

∂H
∂ζ

dt′ . (II.2.3)

The right hand side of eq. (II.2.3) is identical to the time average of ∂H/∂ζ over τ:{
∂H
∂ζ

}
τ

:= 1
τ

∫ t+τ

t

∂H
∂ζ

dt′ . (II.2.4)

Combining eqs. (II.2.3) and (II.2.4), we have

∆E ≈
{
∂H
∂ζ

}
τ

∆ζ . (II.2.5)

We can now explore more precisely the condition that changes of the Hamiltonian due to ζ-
variations are very slowly, i.e., the case of small derivatives ζ̇ in eq. (II.2.1). Let τsystem be the
time needed for the system to turn to equilibrium after a perturbation. Let us consider

τsystem ¿ τperturb , (II.2.6)
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where τperturb is the time scale of the perturbation. Under condition (II.2.6) the system has
always enough time to return to equilibrium after each small change induced by the external
forces. Condition (II.2.6) is called the quasi-stationary condition. In this case the time average
over τ in eq. (II.2.5) is very close to the time average for infinite times (indicated with parenthesis
{. . .} sans index) because the system had enough time to turn to equilibrium. Therefore,{

∂H
∂ζ

}
τ

≈ lim
τ→∞

{
1
τ

∫ t+τ

t

∂H
∂ζ

dt′
}

:=
{
∂H
∂ζ

}
. (II.2.7)

The time average on the right hand side of eq. (II.2.7) can then be replaced by the ensemble
average(indicated by a bar over the variable X̄ ) according to the ergodic theorem:{

∂H
∂ζ

}
= ∂H
∂ζ

, (II.2.8)

where the ensemble average is given by (β= 1/kT )

∂H
∂ζ

=
∫

(∂H/∂ζ) ·exp
(−β ·H(p, q)

) ·dΩΓ∫
exp

(−β ·H(p, q)
) ·dΩΓ . (II.2.9)

We note, that except a normalization factor, the exponential weight factor in eq. (II.2.9) is equal
to the Gibb’s canonical distribution function. The ensemble average can likewise be expressed
as

∂H
∂ζ

=
∫ E+dE

E
∂H
∂ζ

dΩΓ∫ E+dE
E dΩΓ

(II.2.10)

because it can be shown (see Appendix I), that almost all volume of the Γ-phase space volume
ΩΓ is contained in a thin shell between E and E+dE and that the most probable distribution
function over the radius of this shell is a constant one (Appendix II). Eq. (II.2.10) is called the
microcanonical ensemble average. Combining eqs. (II.2.5) and (II.2.7), (II.2.8), we obtain for
quasi-static perturbations

dE = ∂H
∂ζ

dζ . (II.2.11)

II.3 Deformations of Phase Space Volume due to Quasi-Stationary Perturbations

The total change of the phase space volume is given by

dΩΓ(E,ζ)= ∂ΩΓ(E,ζ)
∂E

dE+ ∂ΩΓ(E,ζ)
∂ζ

dζ . (II.3.1)

The change of ΩΓ due to changes in the parameter ζ can be written as
∂ΩΓ

∂ζ
dζ=ΩΓ(E,ζ+dζ)−ΩΓ(E,ζ) , (II.3.2)

whereas the change of ΩΓ due to changes in the energy is given by
∂ΩΓ

∂E
dE =ΩΓ(E+dE,ζ)−ΩΓ(E,ζ) . (II.3.3)
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Figure 1. Visualization of the change of the phase space volume due to changes in the parameter ζ (a)
and due to changes in energy (b).

The change in the phase space due to the parameter changes in ζ corresponds to the volume
that is enclosed by the two hypersurfaces H(p, q,ζ)= E and H(p, q,ζ+δζ)= E :

∂ΩΓ

∂ζ
δζ=

∫ H(p,q,ζ+δζ)

H(p,q,ζ)
dp1 . . .dpF dq1 . . .dqF . (II.3.4)

If dA designates a surface element on the hyper-sphere and δsζ := ∣∣δ~sζ∣∣ the perpendicular
distance between these hypersurfaces (see Figure 1a) we have

∂ΩΓ

∂ζ
δζ=

∫
δsζdA . (II.3.5)

As grad(H) is a vector parallel to the vector δ~sζ (see Figure 1a), we can replace grad(H) ·δ~sζ
by = |grad(H)| ·δsζ . δsζ and grad(H) are therefore related via the total change of the Hamilton
function (note that ζ is a parameter in the Γ-phase space and not an additional generalized
coordinate):

dH =
{∑

k

∂H
∂pk

dpk +
∂H
∂qk

dqk

}
+ ∂H
∂ζ

δζ= |grad(H)| ·δsζ+ ∂H
∂ζ

δζ . (II.3.6)

The changes of dH due to changes in ζ are performed for constant energy (i.e. dH = 0):

δsζ =−
∂H
∂ζ
δζ

|grad(H)| . (II.3.7)

Substituting eq. (II.3.7) into (II.3.5) gives
∂ΩΓ

∂ζ
δζ=−δζ

∫
∂H
∂ζ

dA
|grad(H)| . (II.3.8)

We now consider the change of the phase space volume due to changes in energy:
∂ΩΓ

∂E
dE =

∫ H(p,q,ζ)=E+dE

H(p,q,ζ)=E
dp1 . . .dpF dq1 . . .dqF . (II.3.9)

As grad(H) is a vector parallel to the vector δ~sE (see Figure 1b), we can replace grad(H) ·δ~sE by
= |grad(H)| ·δsE where δsE := |δ~sE|. δsE and grad(H) are therefore related via the total change
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of the Hamilton function according:

dH =
{∑

k

∂H
∂pk

dpk +
∂H
∂qk

dqk

}
+ ∂H
∂ζ

δζ= |grad(H)| ·δsE + ∂H
∂ζ

δζ. (II.3.10)

The changes of dH due to changes in energy are performed for constant ζ (i.e. δζ= 0), therefore

δsE = dE
|grad(H)| . (II.3.11)

If dA designates a surface element on the hypersphere and δsE the perpendicular distance
between these hypersurfaces (see Figure 1b) we have

∂ΩΓ

∂E
dE =

∫
δsEdA. (II.3.12)

Substituting eq. (II.3.11) into eq. (II.3.12) provides
∂ΩΓ

∂E
dE = dE ·

∫
dA

|grad(H)| (II.3.13)

With eqs. (II.3.8) and (II.3.13) the total change of the phase space volume (eq. (II.3.1)) is given
by:

dΩΓ(E,ζ)=
{∫

dA
|grad(H)|

}
·dE−

{∫
∂H
∂ζ

dA
|grad(H)|

}
·δζ . (II.3.14)

Combining eqs. (II.2.5), (II.2.11) and (II.3.14), we find

dΩΓ(E,ζ)= 0 . (II.3.15)

Therefore, the phase space volume remains constant for quasi-stationary changes although the
geometrical form of the phase space volume changes in time due to the changes of the external
parameter ζ. This is the so-called adiabatic invariance of the Γ-phase space volume.

III. The Physical Meaning of the Γ-Phase Space Volume

III.1 Relation between Γ-Phase Space, Heat δQ and work δW

The above-described properties of the phase space volume ΩΓ now permit to explore its deep
physical meaning. Combining eqs. (II.3.1) and (II.3.8) and solving for the energy, we obtain

dE = dΩΓ(E,ζ)
∂ΩΓ(E,ζ)

∂E

+ δζ ·
∫
∂H
∂ζ

dA
|grad(H)|

∂ΩΓ(E,ζ)
∂E

. (III.1.1)

With the help of Figure 1b and eqs. (II.2.10) and(II.3.11) the last term can be transformed to an
expression for the ensemble average because the most probable distribution over the spherical
shell is constant (Appendix II):

∂H
∂ζ

=
∫ E+dE

E
∂H
∂ζ

dΩΓ∫ E+dE
E dΩΓ

=
∫

surface
∂H
∂ζ

· δsE ·dA∫
surfaceδsE ·dA

=
∫

surface
∂H
∂ζ

· dE·dA
|grad(H)|∫

surface
dE·dA

|grad(H)|
=

∫
∂H
∂ζ

· dA
|grad(H)|

∂ΩΓ(E,ζ)
∂E

. (III.1.2)

Substituting eq. (III.1.2) into eq. (III.1.1) provides

dE = dΩΓ(E,ζ)
∂ΩΓ(E,ζ)

∂E

+ δζ · ∂H
∂ζ

. (III.1.3)
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The last term on the right side of eq. (III.1.3) is the energy change of the system due to the
variation of the external parameter, i.e., the work δW done at the system due to the parameter
change:

δW = ∂H
∂ζ

·dζ. (III.1.4)

In order that eqs. (III.1.3) and (II.1.4) correspond to the 1st law of thermodynamics (dU =
δQ+δW ), the first term on the right hand side of eq. (III.1.3) must be the heat δQ transferred
to the system, i.e.

δQ = 1
∂ΩΓ(E,ζ)

∂E

dΩΓ(E,ζ) . (III.1.5)

III.2 Relation between Γ-Phase Space Volume, the 1st Law of Thermodynamics and
Entropy

The physical meaning of the phase space volume itself can now be obtained as follows. Let us
combine eq. (III.1.3), (III.1.4):

[dE−δW]
∂ΩΓ(E,ζ)

∂E
= dΩΓ(E,ζ). (III.2.1)

Comparing eq. (III.2.1) with the 1st law of thermodynamics, namely

[dE−δW] · 1
T

= dS (III.2.2)

we might attribute on a basis of a naive identification of terms that the phase space volume
ΩΓ(E,ζ) corresponds to entropy S because the partial derivative of entropy with respect to
energy is equal to the temperature, i.e. (∂S/∂U)V = 1/T . It can, however, be seen that this
identification of entropy with the phase space volume cannot be correct. In fact, if the number
of particles is doubled, the entropy should double too (and in fact also all other thermodynamic
potentials). For a large number of particles N we can obtain from eq. (II.1.14) with the help of
Stirling’s formula n!≈p

2πn nne−na closed expression for the Γ-phase space volume:

ΩΓ(E,V , N)=V N ·
(
4π · e ·m

3
· E

N

) 3N
2 · 1p

2π ·p3N/2
. (III.2.3)

It can immediately been seen from eq. (III.2.3) that if the number of particles are doubled,
the phase space volume grows exponentially with volume V and energy per particle (E/N).
Therefore, the phase space volume cannot be identified with the entropy.

In fact, from a mathematical point of view we can multiply eq. (III.2.1) with any function or
perform any other operational manipulation (e.g., integrals, derivatives,. . . ). As the phase
space volume depends on energy and external parameters ζ any function depending on
other variables would not allow to maintain the so-called extensitivity of the entropy (i.e.,
α ·S(U ,V , N)= S(α ·U ,α ·V ,α ·N) for an arbitrary positive constant α). We are therefore left
with functions that depend on ΩΓ(E,ζ) itself. As the phase space volume (III.2.3) depends
exponentially on the number of particles Nwith respect to volume V and the energy per particle
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E/N the only way to assure extensitivity is via a logarithmic functional dependence of the phase
space volume and some constants because in the thermodynamic limit E/N is a constant (note,
that multiplication with 1/

p
N — last factor in eq. (III.2.3) has a vanishing contribution, as

will be shown below). We therefore need to multiply eq. (III.2.1) with 1
ΩΓ

to obtain the requested
logarithmic derivative of ΩΓ(E,ζ). In order to be most general let us multiply eq. (III.2.1) also
with some constants, namely a constant k and 1

Ω0
· 1

(1/Ω0) . Ω0 is a constant phase space volume
that ensures a dimensionless quantity in the logarithm:

[dE−δW]
∂ΩΓ(E,ζ)/Ω0

∂E
k

ΩΓ(E,ζ)/Ω0
= k
ΩΓ(E,ζ)/Ω0

dΩΓ(E,ζ)/Ω0, (III.2.4)

[dE−δW]
∂ (k ln[ΩΓ(E,ζ)/Ω0])

∂E
= d (k ln[ΩΓ(E,ζ)/Ω0]) . (III.2.5)

Eq. (III.2.1) can now be identified with the first law of thermodynamics from eq. (III.2.2). We
then need to identify the phase space volume with entropy according (S0 is an integration
constant)

S−S0 = k ln[ΩΓ(E,ζ)/Ω0] (III.2.6)

and the term
∂ (k ln[ΩΓ(E,ζ)/Ω0])

∂E
= 1

T
(III.2.7)

to temperature. Eq. (III.2.7) indicates that k cannot be arbitrary as it defines the scale for the
temperature. In fact, eq. (III.2.7) must corresponds to the thermodynamic relation(

∂S
∂E

)
V
= 1

T
(III.2.8)

and therefore k has to be identified with the Boltzmann constant kB = 1.38 ·10−23J/K .

III.3 Elementary Phase Space Volume ΩE

At present, the volume Ω0 has been an arbitrary volume in phase space for eq. (III.2.5). In the
framework of classical mechanics, particle location can be performed with infinite precision
in geometrical space and simultaneously with infinite precision in velocity space. Therefore,
there exist no lower bound for Ω0 implying that Ω0 can be even of differential small size in a
mathematical sense. In quantum mechanics, however, the Heisenberg uncertainty relation sets
a lower limit to the precision for the simultaneous knowledge of the geometrical and momentum
coordinates.

The lower limit of the phase space volume can be directly obtained from the Bohr-Sommerfeld
quantization condition [34]

1
2π

∮
pdq =

(
n+ 1

2

)
~. (III.3.1)

Figure 2 illustrates the relevant phase space volume for one coordinate x and momentum
px . This implies that we have to attribute to each system point (the “quantum state”, i.e. the
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“particle” or the “configuration”) in the phase space a volume

ΩE = (2π~) f , (III.3.2)

where 2 f is the dimension of the phase space for one particle (i.e. the degrees of freedom). The
phase space volume ΩE = (2π~) f is therefore the size of the elementary phase space volume for
one particle. This result is independent from the coordinate system. From Hamilton’s equations
of motion q̇k = ∂H/∂pkwe derive immediately the dimension of the product of the generalized
coordinates: [qk pk]= Js because [H]= J . Therefore, even in the coordinate free formulation of
eq. (III.3.1) we see that the phase space volume has a lower limit that is given by eq. (III.3.2).

 

 
 

Figure 2. Illustration of the elementary phase space volume Ω= 2π~ by means of the Bohr-Sommerfeld
quantization condition. The outer phase space volume (black curve) is given by

∮
pxdx = 2π(n+1/2)~, the

inner curve (blue curve) by
∮

pxdx = 2π((n−1)+1/2)~ and the difference (green color) by
∮

pxdx−∮
pxdx =

2π~.

The finiteness of the phase space volume ΩE permits to reformulate the phase space volume
ΩΓ in eqs. (III.2.6)-(II.2.7) in terms of a number of elementary phase space volumes. Note, that
in an entirely classical description, this is impossible, because there exist no elementary phase
space volume.

We can likewise introduce to eq. (III.2.5) a normalization volume Ω0 =ΩE ·N!= (2π~) f ·N!
instead of Ω0 =ΩE = (2π~) f . In this case the entropy according (III.2.6) is expressed in terms of
the number of physically different configurations, i.e.

S−S0 = kB ln
[
ΩΓ(E,ζ)
ΩE ·N!

]
. (III.3.3)

The factor 1/N! is known as the Gibbs’s correction factor [35] that accounts for the
indiscernibility of particles. So far, the identification of the normalization volume as Ω0 =ΩE ·N!
is a possible option for eq. (III.2.6). When considering, however, the mixing entropy of gases
∆Smix = (NA +NB) ·R ·

{
ln

(
VA+VB

VA

)
+ ln

(
VA+VB

VB

)}
(where NA and NB are the number of particles

A and B, VA and VB are their respective volumes), the identification Ω0 =ΩE leads to a mixing
entropy ∆Smix > 0 even if the two gases are identical, i.e. A = B. This makes no sense and is
due to the fact, that in classical physics, the particles can be distinguished from each other:
therefore, an exchange of particles provides a different configuration. Really, an exchange of
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particles does not provide a physically different configuration (indistinguishable particles in
quantum physics) and therefore the number of different configurations is reduced by a factor of
N! which is just the number of possible exchanges between N particles.

The entropy according eq. (III.3.3) permits finally to determine the integration constant for
the entropy. At zero temperature, the system takes the lowest energy state. If the degeneracy or
the number of quantum states is g0 =ΩΓ(E)/(ΩE ·N!), the entropy is given by

S = kB ln[g0]+S0. (III.3.4)

For a pure substance, the presence of quantum states with the same energy is a rather
exceptional case. Small field interactions, which are usually neglected, will remove the
degeneracy and we have g0 = 1:

S = kB ln[1]+S0 (III.3.5)

i.e.

S = S0 . (III.3.6)

As the integration constant S = S0 is independent of energy, volume, pressure, temperature and
external parameters (see eqs. (III.2.5) and (II.2.6)) it is the same for all systems and can be set
to zero in agreement with the 3rd law of thermodynamics (Nernst theorem [35]):

S0 = 0 . (III.3.7)

Therefore, we arrive at the final expression that links Γ-phase space and entropy:

S(E,V , N,ζ)= kB ln
[
ΩΓ(E,ζ)
ΩE ·N!

]
= kB lnW(E,V , N,ζ) , (III.3.8)

where W is the number of possible different configurations for given energy, temperature,
number of particles and volume. The entropy according eq. (III.3.8) is the so-called statistical
entropy.

The entropy of eq. (III.3.8) is now accessible to a clear microscopic interpretation: For given
macroscopic parameters (E,V , N,ζ) we encounter many different microscopic configurations
W(E,V , N,ζ), or, in other words, there are many microscopic configurations (qk, pk)that are
compatible with E = H(pk, qk,ζ, t) (see eq. (II.1.4)).

Let us verify now explicitly for an ideal gas that entropy is an extensive quantity.
Substituting eqs. (III.2.3) and (III.3.2)) into eq. (III.3.8), we obtain

S = NkB

{
5
2
+ ln

[
1

(2π~) f · V
N

·
(
4π ·m

3
· E

N

) 3
2
]
− 1

N
ln

(p
6 ·πN

)}
. (III.3.9)

For a large number of particles (thermodynamic limit) the third term in parenthesis vanishes
and the ratios (E/N) and (V /N) are constant. Therefore, the entropy

S = NkB

{
5
2
+ ln

[
1

(2π~) f · V
N

·
(
4π ·m

3
· E

N

) 3
2
]}

(III.3.10)

is extensive as it is proportional to the number of particles in the thermodynamic limit. We
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note, that eq. (III.3.10) does not give rise to any variant of Gibbs’ paradox: ∆Smix = 0 if A = B.
Therefore, when dividing eq. (III.2.1) with different factors (like, e.g. done in eq. (III.2.4)) that
leave the differential form of eq. (III.2.1) unchanged, the additional physical conditions for the
thermodynamic temperature scale, the 3rd law of thermodynamics, the extensitivity of entropy,
the existence of an elementary phase space volume (due to the Heisenberg uncertainty relation)
and Gibbs’ paradox finally request multiplication with the factor kB

Ω0·N! · 1
1/(Ω0·N!) . Therefore, all

constants that are “arbitrary” from a mathematical point of view need definite identification
from a physical point of view. Likewise, for an ideal gas, Boltzmann’s genius entropy formula
appears to be a logical consequence rather than a pure definition. For a non-ideal gas, the
situation is different: due to the particle correlation, extensitivity and the simple combinatory
counting of the number of independent states via N! do not hold strictly any more. In this
respect, Boltzmann’s entropy formula can be considered as a definition.

IV. How Information Impacts on the Outer World

IV.1 Missing Information and the Logarithmic Dependence for Intelligent Questions

Let us consider an example where we have to find out the box where the money is, Figure 3.
Figure 3a depicts an example where only one box is available to put the money, i.e. W(a)= 1.
Figure 3b is an example, where two boxes are available, i.e. W(b)= 2, in Figure 3c W(c)= 4, in
Figure 3d W(d)= 8, in Figure 3e W(e)= 16. The missing information, namely where the money
is not (indicated with non-colored volumes), is different for each figure.

It is evident, that for the case of Figure 3a, no question is necessary to know where the money
is because only one box is available, W(a)= 1: the money must therefore be located in exactly
this box. Therefore, no information is missing. For Figure 3e the situation is quite different.
There are 16 boxes available (W(e) = 16) and in this situation we are missing considerable
information about the location of the money.

How to quantify which information is higher and which is lower ? This could be characterized
by the number of pertinent questions to find out in which box the money is. If the number
of such “intelligent” questions is high, the missing information was high. If the number of
questions is low, the missing information was low.

The number of intelligent questions to find out where the money is can be determined as
follows:

• for case (a), there is only one possibility to locate the money and the number of intelligent
questions is zero to find out where the money is, is given by: Nquestion = 0.

• for case (b), there are two possibilities to locate the money, therefore only one intelligent
questions is needed to find out where the money is: Nquestion = 1.

• for case (c), there are 4 possibilities to locate the money, therefore two intelligent questions
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are needed to find out where the money is (first question: left ?, second question: up ?):
Nquestion = 2.

• for case (d), there are 8 possibilities to locate the money, therefore 3 intelligent questions
are needed to find out where the money is (first question: left ?, second question: up ?,
third: behind? ): Nquestion = 3.

• for case (e), there are 16 possibilities to locate the money, therefore 4 intelligent questions
are needed to find out where the money is (first question: left half?, second question: outer
right ?, third: up?, fourth: behind? ): Nquestion = 4.

 

 
 
 
 
 

Figure 3. Examples of boxes and location of the money (blue box). (a) there exist only one box, i.e.
W(a)= 1, (b) W(b)= 2, (c) W(c)= 4, (d) W(d)= 8, (e) W(e)= 16.

These illustrations hint to the following relation between the number of boxes W and the
number of intelligent questions Nquestion to find out where the money is:

W = 2Nquestion . (IV.1.1)

Therefore, the number of questions is not directly related to the number of boxes, but rather to
its logarithm:

Nquestion = log2 W . (IV.1.2)

As the number of questions can be identified as a quantitative measure of missing information,
we observe that the missing information depends in a logarithmic manner on the number of
boxes:

Imissing = C ·Nquestion = C · log2 W . (IV.1.3)

The constant C defines only the measurement unit. If we say that one question corresponds to
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one “Bit” of information, C = 1 and

Imissing(1Bit)= 1= log2 2. (IV.1.4)

Because Nquestion = 1
ln2 lnW we also can say that one “Nat” of information corresponds to

Imissing(1Nat)= Imissing(1Bit)/ ln2.

IV.2 Information and Entropy

So far, the considerations about information appeared as an isolated topic. However, information
has a much deeper physical meaning and impact to the world. This point of view has historical
roots to J.C. Maxwell and discussions by L. Szillard [36] (and later application to non-equilibrium
systems [37]). Let us assume that we operate a shutter in a system of volume V , particle number
N and constant temperature T that separates two volumes V1 and V2 (i.e., V =V1+V2) in such
a manner, that it let only pass particles from left to right. After some time, all particles are
confined in the right volume V2 . For simplicity, let us assume that the shutter has negligible
mass, so that no mechanical work is needed for its operation and that the two volumes have
equal size, e.g. V1 =V2 . From the 1st law of thermodynamics (dU = 0= T ·dS− p ·dV ) and the
ideal gas equation (p·V = N ·kBT ) we see, that the entropy is independent from the temperature
and depends only on the relative volumes:

dS = N ·kB · dV
V

, (IV.2.1)

i.e.

S−S2 = N ·kB ·
∫ V

V2

dV
V

= N ·kB · ln
(

V
V2

)
= N ·kB · ln2 . (IV.2.2)

As all particles are now confined in the volume V2 we can initiate an isothermal expansion (just
removing the shutter) to get mechanical work done:

W = N ·kBT ·
∫ V

V2

dV
V

= N ·kBT · ln
(

V
V2

)
= N ·kBT · ln2 . (IV.2.3)

From eq. (IV.2.1) it follows, that this work can be expressed in terms of entropy differences:

W = T · (S−S2) . (IV.2.4)

After isothermal expansion, were starts the selection with the shutter and again, mechanical
work can be performed. Due to this activity, entropy is reduced providing the possibility to
perform mechanical work (eq. (IV.2.4)). This means, that would nothing else change in the outer
world heat would be entirely transformed to mechanical work via the periodic operating shutter
machine. However, the 2nd law of thermodynamics forbids the transformation of mechanical
work entirely at the expense of heat for a periodic process: the maximum efficiency is given by
the Carnot process [4,35], namely

ηCarnot =
Qin −Qout

Qin
. (IV.2.5)
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Eq. (IV.2.5) indicates, that the maximum efficiency is always smaller than one and a periodically
machine operation not only absorbs heat Qin but also needs to transfer heat Qout from the
system to the outer world.

We are therefore looking more carefully to the circumstance, whether really nothing has
changed in the outer world when the shutter is operated. What could this be ? In fact, when
we operate a shutter we are part of the outer world, and we obtain the knowledge that particle
1 is in the right half of the volume V (i.e. is confined in volume V2), that particle 2 is in
the right half, . . . that particle N is in the right half. And it is this information in the outer
world, that has changed: we can operate the shutter only, when we do have information about
the particle. In order to avoid contradiction with the 2nd law of thermodynamics, we need to
request, that the information for one particle is at least equivalent to an entropy of magnitude
∆Sinformation =+kB · ln2 in order to compensate the loss of entropy ∆SShutter =−kB · ln2 in the
system resulting from the sorting of the particles by means of the shutter operation [36,38]. In
this case, the total change of entropy would be zero and, according eq. (IV.2.4) no work could be
performed:

∆Wtotal = T ·∆Stotal = T · (∆Sinformation +∆SShutter)= 0 . (IV.2.6)

Therefore, we could not operate a magic periodically operating machine that only transforms
heat into work.

IV.3 Information Entropy and its Impact to the Outer World

So far, the introduction of the information entropy in eq. (IV.2.6) has been entirely motivated
by the conservation of the 2nd law of thermodynamics. But what could be the motivation that
entropy is directly aligned to information ? Let us consider Figure 4.

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Identification of missing information with entropy.

Figure 4 schematizes that the number of elementary phase space volumes correspond to
the number of boxes. Therefore, the number of physically different configurations W(E,V , N,ζ)
from eq. (III.3.8) corresponds (according eq. (IV.1.3)) to missing information Imissing = C ·
log2 W(E,V , N,ζ). In view of the above discussion of the shutter operation, it is therefore
useful, to define the constant C in a manner, that the missing information is measured in units
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of C = kB/ ln2. Entropy, as Figure 4 illustrates, corresponds therefore to missing information:

S(E,V , N,ζ)= kB lnW(E,V , N,ζ)= Imissing. (IV.3.1)

Evidently, the sum of the missing and available information is constant:

Imissing + Iavailable = const. (IV.3.2)

We therefore arrive to the conclusion, that entropy and information are strongly linked to each
other and are by no means two independent and different measures. Inserting (IV.3.1) in (IV.3.2)
we obtain:

S+ Iavailable = const. (IV.3.3)

The measurement (done by the shutter) reduces the entropy of the particles in the volume V, but
increases at least the entropy by the same amount for the detector (or us while operating the
shutter). The sum of the entropy of the system (that performs mechanical work) and information
(of the outer world)must therefore be constant. The information entropy of the measurement
device is therefore an important element for the consistency of thermodynamics.

Similar considerations can be performed in the velocity space. We operate the shutter now in
a manner, that it lets pass only the fast particles from the left to the right and the slow particles
from right to left. After some time, the right part of the volume is hotter than the left part and
mechanical work can be performed via the equilibration of the temperature differences.

IV.4 Entropy and Disorder

Let us finish with some remarks about the relation of entropy and disorder. Consider a system
characterized by a number of configurations W(E,V , N). The number of configurations might be
a certain combination of all objects in your office. It is evident, that the number of configurations
that merit an assignment of the word “order” is much less than the number of combinations
of objects, that merit the assignment “disorder”. Therefore, the probability that order changes
to disorder is larger than those that disorder turns to order. The office would therefore turn
in most of the cases from order to disorder unless not external action avoids it. This is in
coincidence with the experience. It is also in coincidence with the 2nd law of thermodynamics
because the action to create order is correlated to external work, that is in turn related to an
increase of entropy (e.g. eq. (IV.2.4)).

V. Conclusion

We have employed the differential form of the 1st law of thermodynamics to link entropy to Γ-
phase space. It is demonstrated, that extensitivity of thermodynamic functions, thermodynamic
temperature, the indistinguishable of particles, the elementary phase space volume due to
the Heisenberg-relation and the 3rd law of thermodynamics implies logarithmic dependence
from the Γ-phase space volume and suggests that integration constants are zero while
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free factors are Boltzmann’s constant kB , elementary phase space volume Ω0 = (2π~) f ( f
is the degree of freedom for one particle) and Gibbs’ correction factor1/N!. This physical
approach points naturally to Boltzmann’s genius entropy relation, the statistical foundation
of thermodynamics and the correlation of entropy to missing information. It likewise points
naturally to a quantification of information, so-called information entropy and the finding
that the available information is not an isolated quantity but linked to the “outer world” via
the relation S+ Iavailable = const. that states that the sum of the entropy and information is
constant.

The entirely physical point of view (accompanied by explicit derivations of equations) will be
also helpful for physics teachers, professors and students.
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Appendix 1. About the Properties of a High-Dimensional Phase Space

It is the purpose of this appendix to show, that a) for a high dimensional case the volume
of a spherical outer shell in phase space is almost identical to the total phase space volume,
and b) that the necessary mathematical conditions concern physically relevant cases. Let us
demonstrate explicitly these properties for an ideal gas and consider the difference of the phase
space volumes for the energies E−δE and E , i.e.

∆ΩΓ =ΩΓ(E, N,V )−ΩΓ(E−δE, N,V )=
∫

E−δE<H(p,q)<E
dΩΓ. (A1.1)

With the help of the phase space volume for an ideal monoatomic gas (see eq. (II.1.14)), i.e.

ΩΓ(E, N,V )= V Nπ3N/2(2m)3N/2

(3N/2)!
·E3N/2 (A1.2)

we can transform the integration variables to energy space and obtain

∆ΩΓ = V Nπ3N/2(2m)3N/2

(3N/2)!
·
{
E3N/2 − (E−δE)3N/2

}
= V Nπ3N/2(2m)3N/2

(3N/2)!
·E3N/2

{
1−

(
1− δE

E

)3N/2
}

(A1.3)

If

δE/E ¿ 1 (A1.4)
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the term in parenthesis can be well approximated by an exponential function that can be
obtained as follows. Setting x = δE/E and m = 3N/2 we first consider the identity

(1− x)m − e−mx = e−xm
{

em ln(1−x)+xm −1
}

. (A1.5)

A series development of

m · ln(1− x)+ x ·m = m ·{−x+O(x2)+ x
}= m ·O(x2) (A1.6)

provides

(1− x)m − e−mx = e−xm+NO(x2) − e−xm → 0 if x ¿ 1. (A1.7)

Therefore, eq. (A1.3) can be approximated by

∆ΩΓ ≈ V Nπ3N/2(2m)3N/2

(3N/2)!
·E3N/2

{
1−exp

(
−δE

E
· 3N

2

)}
. (A1.8)

Let us assume that
δE
E

· 3N
2

À 1. (A1.9)

(eq. (A1.9) will be physically motivated below). In this case, the exponential function in eq. (A1.8)
vanishes and we obtain

∆ΩΓ ≈ V Nπ3N/2(2m)3N/2

(3N/2)!
·E3N/2. (A1.10)

Comparing eq. (A1.2) with (A1.10) we obtain:

∆ΩΓ ≈ΩΓ. (A1.11)

This indicates, that in a high dimensional space the volume in the shell between the radii
E−δE and E is almost identical to the total volume from 0 until E if conditions (A1.4) and
(A1.9) hold true.

Does the combination of parameters according eqs. (A1.4) and (A1.9) describe physical
systems of practical interest in order to conclude from eq. (A1.11) that the shell contains almost
all volume? For this purpose we study the energy distribution function for N particles and
consider the probability p(E, N) to find N-particles within E−dE and E where E = E1+ . . .EN .
This probability is given by (assuming thermodynamic equilibrium where each particle
distribution function is given by a Maxwellian)

pN(E) ·dE =
∫

d3v1

∫
d3v2 . . .

∫ E+dE

E
. . .

∫
d3vN

( m
2πkT

) 3N
2 exp

(
−m(v2

1 +v2
2 + . . .+v2

N)
2kT

)
. (A1.12)

The integrations can easily be carried out with the help of the Gamma-function∫ ∞

0
xne−axdx = Γ(n+1)

an+1 . (A1.13)

We note that for integer and half integer arguments, the gamma function is simply given by
Γ(n)= (n−1)! and Γ (1/2+n)=p

π (2n)!
4nn! ). This provides a closed expression for p(E, N) := pN(E):

p(E, N)= 1
Γ(3N/2)

· E3N/2−1

(kT)3N/2 · e−E/kT . (A1.14)
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The width δE of eq. (A1.14) an be estimated with the help of the Full Width at Half Maximum
(FWHM). For these purposes we transform to the variables

x = E/kTq (A1.15)

and

q = 3N/2−1 (A1.16)

to obtain

p(E, N)dE = p(x, q)dx (A1.17)

with

p(x, q)= qq+1e−q

Γ(q+1)
·{x · e−x+1}q

. (A1.18)

The energy of the system is proportional to the number of particles, therefore, for a large number
of particles, the variable x from eq. (A1.15) is independent from the number of particles. The
Half Width at Half Maximum (HWHM) xHWHM of eq. (A1.18) is given by

p(xHWHM , q)= 1
2
· p(xmax, q) (A1.19)

where xmax = 1 is the argument for which the function p(x, q) has its maximum. From eq. (A1.19)
we obtain

(x− xmax)HWHM =
p

2ln2pq
. (A1.20)

Transforming back to energies with the help of eqs. (A1.15) and (A1.16) we obtain

∆EFWHM = 2
p

2ln2 ·
p

3N/2−1 ·kT. (A1.21)

For the relative width we obtain
∆EFWHM

E
= 2

p
2ln2 ·p3N/2−1 ·kT

3NkT/2
. (A1.22)

As the probability to find energy values E > Emax+∆EFWHM is very small we can estimate the
thickness δEof the shell in energy space via the FWHM:

δE
E

≈ 4

√
ln2
3

· 1p
N

≈ 2p
N

. (A1.23)

As the particle number is of the order of mol, the relation (A1.4) is therefore well validated.
Substituting eq. (A1.23) into eq. (A1.9) we obtain

δE
E

· 3N
2

= 4

√
ln2
3

· 1p
N

· 3N
2

= 2
p

3ln2 ·
p

N À 1. (A1.24)

Therefore, also the relation (A1.9) is well validated. The physical conclusion from the relations
(A1.23) and (A1.24) is, that for an overwhelming number of practical cases (when the number
of particles is large), almost the total Γ-phase space volume of the thermodynamic system is
contained in a very thin shell between E−δE and E . This result has an important physical
interpretation. If the system contains only a small number of particles, a given temperature does
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not define the energy of the system because the distribution function is very broad. Therefore
Gedanken-Experiments that involve only one particle have to be considered with care.

For a large number of particles, however, the width of the energy distribution function is
very small and a given temperature does well characterize the energy of the system because the
difference between the mean energy Ē and the maximum energy Emax is negligible. And it is
just this circumstance that permits to characterize the energy of a gas via the temperature and
the number of particles only: U = 3

2 NkT ≈ Ē ≈ Emax .

Appendix 2. About the most Probable Distribution Over the Thin Shell
δE in Γ-phase Space

For a given macroscopic state, the system can adopt many different microstates. If the system
is isolated, the possible microstates are located on the energy surface H(p, q)= E . Due to the
external forces (parameter ζ) the system is not isolated and we conveniently operate with the
phase space density ρ(p, q)= ρ(q1, . . . , qF , p1, . . . , pF , t): it determines the probability to find a
certain microscopic configuration (p, q) between (p, q) and (p+dp, q+dq) that is compatible
with H(p, q,ζ)= E . The phase space density is normalized according∫

ρ(p, q)dpdq = 1 (A2.1)

where (p, q) = (q1, . . . , qF , p1, . . . , pF , t) and dpdq := dq1 . . . qF dp1 . . . pF . If G(p, q) is an
observable quantity, we will observe for a given macroscopic state a mean value G(p, q) that is
composed from each microstate multiplied with its proper weight, i.e.

G(p, q)=
∫
ρ(p, q) ·G(p, q) ·dpdq. (A2.2)

Let us consider NΓ identical copies that form an ensemble. Each copy consists of N particles and
is characterized by the same macroscopic parameters like, e.g. (E,V , N). At a certain time t each
system has adopted the microstate ρk = (pk, qk, t) where the index k indicates the number of the
identical copy, i.e. k = 1 . . . NΓ . We divide the hypersurface into Nσ different surface elements
∆σi of equal size, see Figure A1. Each surface element contains Ni copies of a N-particle system,
i.e.

NΓ =
Nσ∑
i=1

Ni = const. (A2.3)

The number of systems Ni located on the surface element ∆σi corresponds to the statistical
weight of this surface element and we can interpret the ratio

g i = Ni

NΓ
(A2.4)

as the probability that a microstate is located in the surface element ∆σi . The probability (A2.4)
in the discrete model corresponds therefore to the probability ρ(p, q)dpdq in the continuous
representation.
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The number of possibilities to select a group of systems Ni out of NΓ systems is calculated
as follows. The number of possibilities to select N1 systems out of a total number NΓ is given by
NΓ · (NΓ−1) . . . (NΓ−N1 +1)= NΓ!/(NΓ−N1). As any permutation among the N1 systems does
not change anything for the surface element ∆σ1 the number of different configuration on this
surface element is given by NΓ!/(NΓ−N1)! ·N1!.

In a similar manner, we obtain for the next surface element ∆σ2 the number of different
configurations: (NΓ−N1) . . . (NΓ−N1 −N2 +1)/N2!= (NΓ−N1)!/(NΓ−N1 −N2)! ·N2! . Because
(NΓ−N1 −N2 . . .−Nσ)! = 0!= 1 we obtain for the total number of configurations (which is just
the product of the number of configurations for each surface element):

W = NΓ!
Nσ∏
i=1

gNi
i

Ni!
(A2.5)

because g i is the probability to find one system inside ∆σi : gNi
i is then the probability to find

Ni systems in ∆σi as the different copies of the system in Γ-phase space are statistically
independent from each other.

 

 

Figure A1. Microcanonical distribution of NΓ systems on the hypersurface H(p, q)= E . ∆σi is a surface
element on the hypersurface in Γ-phase space that is composed from Nσ surface elements. Each surface
element ∆σi contains Ni systems. The figure shows an example where the hypersurface is divided into
16 surface elements (Nσ = 16): e.g. in the surface element ∆σ5 we find N5 = 6 systems where each
system contains N particles.

We are now interested to find the most probable distribution of systems over the cells of the
hypersurface, i.e. we are looking to determine the extremum of eq. (A2.5). Due to the factorials,
the differentiation of eq. (A2.5) is not a simple task. However, the variation of eq. (A2.5) can
easily performed if we replace the factorials by Stirling’s formula (NΓ and Ni are large numbers,
in the limit NΓ→∞ and Ni →∞). Due to the Π-product it is more advantageous to look for
the maximum of ln(W(Ni)) instead of W(Ni) itself. Using Stirling’s simplest approximation,
namely ln N!≈ N ln N −N we obtain:

ln(W)= ln NΓ!+
Nσ∑
i=1

Ni ln g i − ln Ni!
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≈ NΓ ln NΓ−NΓ+
Nσ∑
i=1

Ni ln g i − (Ni ln Ni −Ni). (A2.6)

At maximum, the total differential of eq. (A2.6) must vanish. Because the total number of
systems is conserved, i.e.

dNΓ =
Nσ∑
i=1

dNi = 0 (A2.7)

we have

d {lnW}=
Nσ∑
i=1

dNi ln g i − (dNi ln Ni +dNi −dNi)

=−
Nσ∑
i=1

dNi {ln Ni − ln g i}= 0. (A2.8)

The variation of all Ni is not simple, because they are not independent from each other due to
relation (A2.7). Therefore we cannot conclude that the parenthesis on the right hand side of
eq. (A2.8) vanishes. However, eqs. (A2.7)–(A2.8) can be combined with the help of a Lagrange
parameter (i.e. we add 0=λ ·∑Nσ

i=1 dNi = 0 to eq. (A2.8)):

d {lnW}=−
Nσ∑
i=1

dNi {ln Ni − ln g i −λ}= 0. (A2.9)

Now, we are authorized to perform an independent variation for each dNi , which indicates that
the parenthesis in eq. (A2.9) must vanish:

{ln Ni − ln g i −λ}= 0. (A2.10)

From eq. (A2.10) it follows

Ni = g i eλ. (A2.11)

Eq. (A2.11) shows that the number of systems in the hypersurface element ∆σi is proportional
to the probability g i . A principle hypothesis in statistical physics is that all points in phase
space are of equal importance, i.e. the probability g i to find the system in the hypersurface
element ∆σi is proportional to the size of this hypersurface element:

g i ∝∆σi . (A2.12)

Therefore

Ni ∝∆σi . (A2.13)

If the surface elements ∆σi are chosen to be small and of equal size, the number of systems Ni

in each ∆σi must be equal too, i.e.

Ni = const . (A2.14)

It follows therefore from eq. (A2.14) that the most probable distribution of systems on the
hypersurface is a population of each surface element ∆σithat is a constant (independence from
the index “i”). Therefore, a Γ-phase space density that is constant on the hypersurface is the
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most probable distribution, i.e.

g i = Ni

NΓ
=

{
const. if H(p, q)= E
0 otherwise

. (A2.15)

As has been shown above (eq. (A1.23)) the thickness of the shell in the high-dimensional energy
space is very small and vanishes in the thermodynamic limit. Therefore, eq. (A2.15) can be
applied to a small energy shell too:

ρ(p, q)=
{

const. if E− δE
2 < H(p, q)< E+ δE

2
0 otherwise

(A2.16)

E defines a hypersurface H(p, q) = E in Γ-phase space whereas the shell thickness δE
characterizes an energy variation around this energy. The physical reason for the possibility of
this energy variation is the finite width (although extremely small, see eq. (A1.23)) of the energy
distribution function in systems with a finite number of particles.

We note, that every constant of motion reduces the dimension of the phase space and
the dimension of the Γ-phase space is not 2F = 2 f · N but 2F − 1. Therefore, the integral
over the phase space density that has the form (A2.16) would vanish. One therefore needs to
invoke the δ-function to avoid vanishing integrals. The δ-function, however, is not compatible
with the ergodic theorem but it can be shown that the function of eq. (A1.18) is an analytical
representation of the δ-function, i.e.

ρ(p, q)=



γ · lim
N→∞

√
3
2 N −1

2π
·
(

E
Ē

) 3N
2 −1

·exp
[
−

(
3
2

N −1
)(

E
Ē

−1
)]

= γ ·δ(
E− Ē

)
for Ē− δE

2
< H(p, q)< Ē+ δE

2
0 otherwise

(A2.17)

where the mean energy Ē is given by

Ē = 3
2

NkT . (A2.18)

The normalization constant γ can be determined from the normalization condition of the
Γ-phase space density:∫

ρ(p, q)dpdq = 1 , (A2.19)

i.e.

γ= 1∫
Ē− δE

2 <H<Ē+ δE
2
δ(E− Ē) ·dpdq

, . (A2.20)

Due to the δ-function the integral (A2.20) over the hypersurface can be transformed into an
integral over the surface of the sphere, i.e.

σ(E)=
∫

E=H(p,q)
dσ . (A2.21)

It is important to understand the different physical meaning of the generalized coordinates: a
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given volume V confines the particles and therefore limits the coordinates qk while the given
system energy is responsible for the fact that the system point moves only on the hypersurface
in the Γ-phase space. Because all volume is almost identical to the volume of the outer spherical
shell (see eq. (A1.11)), volume and hypersurface are related by

σ(E)= ∂Ω

∂E
(A2.22)

from which it follows

γ= 1
σ(E)

. (A2.23)

ρ(p, q) from eq. (A2.17) is the so-called micro-canonical distribution function and mean values
according eq. (A2.2) are the so-called micro-canonical ensemble average.

In almost all practical applications the number of particles is finite (although large) and we
therefore encounter a finite width (eq. (A1.23)) for the analytical representation of the δ-function
(eq. (A2.17)). The micro-canonical distribution function according eq. (A2.17) is therefore
consistent with the quasi-ergodic theorem.

With the help of the micro-canonical ensemble average and relation (III.3.8) it can readily
bebe shown (expressing entropy in terms of partition function and internal energy, i.e.
S = kB · ln(Z+β ·U)), that the ensemble averaged entropy is given by

S =−kB lnρ(p, q) . (A2.24)

For the discrete case, eq. (A2.24) takes the form

S =−kB

Nmico∑
i=1

pi · ln(pi) . (A2.25)

Nmicro is the number of micro-configurations and pi is the probability for each configuration. It is
interesting to note, that eq. (A2.25) is formally identical to “Shannon’s information entropy” [39]
and that exactly this information entropy is needed to have our shutter operation discussed in
the main part of the paper respecting the 2nd law of thermodynamics (see § IV.2).
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