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Abstract. We study the generation of atomic-squeezed states for a Bose-Einstein Condensate confined
within the lossless optomechanical cavity using pondermotively squeezed light. We show that the
radiation pressure coupling between the optical cavity field and mechanical motion of the cavity end
mirror generates squeezing of light. This radiation pressure induced light squeezing gets transferred
to the condensate atoms via Tavis-Cummings type interaction and results in squeezed-spin states. We
further discuss the effect of optomechanical coupling on squeezed atomic states.
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1. Introduction

Both theoretically and experimentally, squeezing in spins has always attracted lots of attention
for over a decade [1–3] due to its numerous applications. Such squeezed spin states have
been proved to be a useful quantum resources in improving the measurements precision in
experiments [2–5], in studying the correlations and entanglement among the particles [6–8]. The
spin squeezing phenomenon in collective atomic system has also attracted considerable interest
for its application in atomic clocks which is useful in both the quantum noise reduction [2,3,9–11]
and quantum information [6,12–14]. Several definitions of spin squeezing have been proposed
but the most widely used spin squeezing parameters were given by Kitagawa and Ueda in [1]
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and by Wineland et al. in [2, 3]. The spin squeezing parameter ζS [1] was inspired by the
well-known squeezing in photons, whereas, the squeezing parameter ζR [2,3] was introduced in
experiments on standard Ramsey spectroscopy.

Squeezing of electromagnetic field has also attracted very much attention for decades [15–17].
Squeezed states of light can be produced by exploiting the radiation pressure coupling between
the light field and the movable mirror. This radiation pressure induced light squeezing is
basically termed as ponderomotive squeezing [18–20]. The generation of pondermotively
squeezed light has not only been proposed [20] but has also been demonstrated [21–23]
experimentally.

Further note that the generation of spin squeezing in atomic ensembles via light-atom
interaction has also been demonstrated in several papers which basically involves the
transferring of squeezing from light to atoms [3,24–26]. The experimental realizations of atomic-
squeezed states in BEC have also been reported [27–30]. Thus, motivated by these interesting
developments in this field, we propose a hybrid optomechanical system consisting of an elongated
cigar-shaped gas of two-level BEC atoms coupled to a single mode of a lossless optical cavity
with a movable cavity boundary. We study this model to generate the correlated-particle states
or atomic-squeezed states in both the x- and y-directions in the small-angle approximation by
considering the cavity field to be initially prepared in the squeezed vacuum state. We further
discuss how the pondermotive force acting on movable mirror helps in generating atomic-
squeezed states and also how the variation in mirror-photon coupling controls this squeezing in
spins.

2. Model Hamiltonian

The basic model that we are considering here involves a lossless Fabry-Perot optical cavity
of length L and frequency ωc with one of the mirrors movable. The movable mirror can be
considered as a single oscillator with mechanical frequency ωm and mass m′ , which can be
experimentally realized by using a bandpass filter in the detection loop [31]. This optomechanical
cavity also involves an elongated cigar-shaped gas of N BEC atoms of 87Rb having two different
hyperfine levels |F = 1,m f =−1〉 and |F = 2,m f = 1〉 [32]. Here, the atomic transition frequency
is denoted by ωa and mass by m. The schematic representation of our system is shown in
Figure 2. Note that each of the atomic modes is characterized by an annihilation operator c j

( j = 1,2) in the two-mode approximation. Also, the atomic ensemble interacts strongly with
a single quantized cavity mode that is equivalent to a single quantum-mechanical harmonic
oscillator having unit mass.

The simplest model of this hybrid optomechanical system can be described by the following
Hamiltonian within the dipole approximation (~= 1 throughout the paper) [33,34]:

H =ωaJz +ωca†a+ωmb†b+ g0p
N

(a+a†)Jx +εa†a(b+b†) . (1)

Here, the ensemble of N BEC atoms can be described using the picture of dimensionless

collective spin operators as [35]: Jx = (c†
1c2+c†

2c1)
2 , Jy = (c†

1c2−c†
2c1)

2i and Jz = (c†
1c1−c†

2c2)
2 , where c†

j
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Figure 1. (color online) Schematic representation of the hybrid optomechanical system involving Bose-
Einstein Condensate embedded within a lossless optical cavity that is driven by an external field. Here,
one of the mirrors of the cavity is movable.

and c j ( j = 1,2) are the creation and annihilation operators for the two modes such that
J+ = c†

1c2 and J− = c†
2c1 . These atomic o perators obey the commutation relations given

as [J+, J−] = 2Jz and [J±, Jz] = ∓J± . Further note that the Hilbert space of this algebra is
spanned by symmetric Dicke states [36] |J, M〉 with M = −J,−J + 1 . . . J − 1, J and J = N

2 .
The Dicke states are the eigenstates of J2 and Jz in such a way that Jz|J, M〉 = M|J, M〉
and J2|J, M〉 = J(J +1)|J, M〉. The lowering and raising operators act on the Dicke states as
J±|J, M〉 =p

J(J+1)−M(M±1)|J, M±1〉.
The annihilation and creation operators for the cavity photons are represented by a and

a† respectively which follow the commutation relation given as [a,a†]= 1. For the mechanical
mode of the movable cavity boundary, the annihilation and creation operators are denoted by
b and b† respectively with [b,b†] = 1. Furthermore, parameters g0 and ε denote the atom-
photon coupling strength via dipole interaction and nonlinear dispersive mirror-photon coupling
respectively.

Now, in order to study this system for the generation of atomic-squeezed states, we first
rewrite the above Hamiltonian given by eqn. (1) in the interaction picture as [37]

Hint = g0

2
p

N
[aJ+ei(ωa−ωc)t +aJ−e−i(ωa+ωc)t]

+ g0

2
p

N
[a†J+ei(ωa+ωc)t +a†J−e−i(ωa−ωc)t]+εa†a(be−iωm t +b†eiωm t). (2)

Now, by treating the mechanical mode operator for the movable mirror b semiclassically, we
can replace b by its scalar quantity β that is real such that |β|À 1. Thus, the above Hamiltonian
given by eqn. (2) can now be rewritten as:

H1 = g0

2
p

N
[aJ++a†J−]+ g(t)a†a, (3)

for ωa =ωc . The high-frequency terms are neglected in deriving the above Hamiltonian (rotating
wave approximation). Also, parameter g(t)= 2εβcos(ωmt) is the modified mirror-photon coupling,
which is sinusoidally modulated at frequency ωm . Here, 2εβ denotes the modulation amplitude.
This modified optomechanical coupling is related to the time modulated frequency of the
optical cavity that arising due to the motion of the mirror [38]. Furthermore, last term in
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this Hamiltonian is the well-known Tavis-Cummings interaction [39] which is valid for small
atom-photon coupling values [40].

It is well known that the pondermotive interaction between the incident light field and the
movable mirror in optomechanical systems can be exploited for producing the squeezed states of
the light field. This radiation-pressure induced light squeezing is termed as pondermotive [41]
squeezing. It has been demonstrated very recently by using a mechanical mode of an ultracold
gas of atoms within an optical cavity [21] and through optomechanical interaction between
light and membrane mechanical oscillator enclosed within an optical cavity [22]. Thus, we are
now interested in studying the effect of optomechanical coupling on the atomic-squeezed states
generated using pondermotively squeezed light. The squeezed-spin states prepared this way
could then be used in Ramsey spectroscopy.

3. Atomic-Squeezing Generation

In this section, we study how the squeezing can be transferred to the spins from the harmonic
oscillator (single-mode quantized cavity field) through the interaction H1 . Without making
the problem mathematically complicated, we consider the following special case. The spin is
considered to be initially prepared in the Dicke state |J, M = −J〉 with J = N

2 and M = 〈Jz〉
in such a way that 〈Jx(0)〉 = 〈Jy(0)〉 = 0, ∆Jx(0) = ∆Jy(0) =

√
J
2 and ∆Jz(0) = 0, where ∆A

(=
√
〈A2〉−〈A〉2) is the square root of the variance of any operator A . Also, the harmonic

oscillator is assumed to be initially prepared in a squeezed vacuum state. The squeezing of
harmonic oscillator can be characterized by the parameters χx(t) = ∆x(t)

x0
or χp(t) = ∆p(t)

x0
. The

harmonic oscillator initially prepared in an amplitude squeezed vacuum state is characterized
by 〈x(0〉 = 〈p(0)〉 = 0 and ∆x(0) < ∆x(coherent state) = x0 such that χx(0) < 1, where x0 is
its zero-point amplitude. However, harmonic oscillator initially prepared in a momentum (or
velocity) squeezed vacuum state is characterized by 〈x(0)〉 = 〈p(0)〉 = 0 and ∆p(0)<∆p(coherent
state)= x0 such that χp(0) < 1. The Heisenberg equations of motion obtained by using the
Hamiltonian H1 are given as follows:

ȧ(t)=− ig0

2
p

N
J−(t)− ig(t)a(t), (4)

J̇−(t)=− iγ
N

Jz(t)J−(t)− iγ
N

J−(t)Jz(t)+ ig0p
N

a(t)Jz(t). (5)

Similarly, we can find their adjoint expressions. Now, we make the small-angle approximation
that Jz(t) = −JI , where I is an identity operator. This approximation is valid under the
assumption that the number of atoms N is large enough such that the value of 〈Jz(t)〉 does not
change appreciably during the time H1 is applied. With this approximation and by rewriting
the cavity field operators and the angular momentum operators in terms of their quadratures
as x(t) = (a(t)+a†(t))p

2
, p(t) = (a(t)−a†(t))

(i
p

2)
, Jx(t) = (J+(t)+J−(t))

2 and Jy(t) = (J+(t)−J−(t))
(2i) , the Heisenberg

equations of motion becomes:

ẋ(t)=− g0p
2N

Jy(t)+ g(t)p(t), (6)
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ṗ(t)=− g0p
2N

Jx(t)− g(t)x(t), (7)

J̇x(t)= 2γJ
N

Jy(t)+ g0Jp
2N

p(t), (8)

J̇y(t)=−2γJ
N

Jx(t)+ g0Jp
2N

x(t). (9)

Note that different definitions of spin-squeezing parameters can be used in various contexts.
The squeezing parameter given by Kitagawa and Ueda [1] is denoted by ζS such that
ζS =

√
2
J∆J⊥ . The subscript ⊥ denotes an axis that is perpendicular to the mean angular

momentum 〈J〉 where the minimum value of ∆J is attained. It is used to indicate the degree of
quantum correlations among the elementary spins such that ζS < 1 signifies atomic-squeezing
condition. Another squeezing parameter has been given by Wineland [2, 3] and is defined as
ζR = p

2J∆J⊥
/|〈J〉| which is intimately connected to the improvement of the sensitivity of

angular-momentum states to rotations such that ζR < 1 signifies atomic-squeezing. In the
context of these definitions, the squeezing parameters that we are considering here are defined
as follows:

ζS,x =
√

2
J
∆Jx, (10)

ζS,y =
√

2
J
∆Jy, (11)

ζR,x =
p

2J∆Jx
/|〈Jz〉|, (12)

ζR,y =
p

2J∆Jy
/|〈Jz〉|. (13)

Further note that ζR,x = ζS,x = ζx and ζR,y = ζS,y = ζy under the small-angle approximation
Jz(t)=−JI . The averages 〈Jx〉, 〈Jy〉, 〈x〉 and 〈p〉 are assumed to be zero at all times. Now using
the eqns. (6)-(9) and the definitions of squeezing parameter for spins and harmonic oscillator
with Jx → Jx

p
N and Jy → Jy

p
N , we obtain the following equations of motion:

ζ̇2
x(t)= 2

p
2g0〈Jx(t)p(t)〉, (14)

ζ̇2
y(t)= 2

p
2g0〈Jy(t)x(t)〉, (15)

χ̇2
x(t)=−2

p
2g0〈Jy(t)x(t)〉+4g(t)〈x(t)p(t)〉, (16)

χ̇2
p(t)=−2

p
2g0〈Jx(t)p(t)〉−4g(t)〈x(t)p(t)〉, (17)

〈 ˙Jx(t)Jy(t)〉 = g0

2
p

2
(〈Jx(t)x(t)〉+〈Jy(t)p(t)〉), (18)

〈 ˙Jx(t)p(t)〉 = g0

4
p

2
χ2

p −
g0

4
p

2
ζ2

x − g(t)〈Jx(t)x(t)〉, (19)

〈 ˙Jy(t)x(t)〉 = g0

4
p

2
χ2

x(t)− g0

4
p

2
ζ2

y(t)+ g(t)〈Jy(t)p(t)〉, (20)
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Figure 2. (color online) plots of squeezing parameters for harmonic oscillator χx(t) and χp(t) as a
function of scaled time (ωmt) for ε= 0.2ωm (solid line) and the spin squeezing parameters ζx(t), ζy(t)
versus scaled time (ωmt) for two different values of mirror-photon coupling with ε= 0.2ωm (dashed line)
and ε = 0.4ωm (dot dashed line). (a): Plots of χx(t) and ζx(t) versus time. (b): Plots of χx(t) and ζy(t)
versus time. Here, the harmonic oscillator is initially prepared in the amplitude squeezed vacuum state
with χx(0)= 0.632. (c): Plots of χp(t) and ζx(t) versus time. (d): Plots of χp(t) and ζy(t) versus time. Here,
the harmonic oscillator is initially prepared in the momentum squeezed vacuum state with χp(0)= 0.632.
The other parameters used are γ= 0, g0 =ωm and β= 10.

〈 ˙Jx(t)x(t)〉 = g0

2
p

2
〈x(t)p(t)〉− g0p

2
〈Jx(t)Jy(t)〉+ g(t)〈Jx(t)p(t)〉, (21)

〈 ˙Jy(t)p(t)〉 = g0

2
p

2
〈x(t)p(t)〉− g0p

2
〈Jx(t)Jy(t)〉− g(t)〈Jy(t)x(t)〉, (22)

〈 ˙x(t)p(t)〉 =− g0p
2

(〈Jy(t)p(t)〉+〈Jx(t)x(t)〉)+ g(t)
2

χ2
p −

g(t)
2

χ2
x. (23)

We now solve the coupled equtions of motion (14)-(23) numerically using MATHEMATICA 9.0.
Figure 2 shows the plots of squeezing parameters for harmonic oscillator χx(t) and χp(t)
versus scaled time (ωmt) for ε = 0.2ωm (solid line) and the spin squeezing parameters ζx(t),
ζy(t) as a function of scaled time (ωmt) for two different values of mirror-photon coupling
with ε= 0.2ωm (dashed line) and ε= 0.4ωm (dot dashed line). Figures 2(a) and 2(b) show the
squeezing parameters plots for the harmonic oscillator to be initially prepared in an amplitude
squeezed vacuum state with χx(0)= 0.632. However, Figures 2(c) and 2(d) depict the squeezing
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parameters plots for the harmonic oscillator to be initially prepared in a momentum squeezed
vacuum state with χp(0) = 0.632. Squeezed-spin states can be created by transferring the
squeezing from the harmonic oscillator (χx(0)< 1 or χp(0)< 1) to the spins through H1 , which
is clearly depicted in Figures 2(b) and 2(c). The figures show back a nd forth transferring of
squeezing between the spins and the harmonic oscillator as the modified mirror-photon coupling
g(t) changes with time. The transfer of squeezing to the spins in this small-angle approximation
is like wave-function exchange between coupled harmonic oscillators [42]. Moreover, Figures 2(a)
and 2(b) depict that when ζx increases with time, then the corresponding ζy decreases and
vice-versa. Figures 2(c) and 2(d) also illustrate the similar kind of observations. This is due to
the following uncertainty relation ∆Jx∆Jy ≥|< Jz > /2 | satisfied by Jx and Jy .

Further notice one important observation from the figure that, for the initially amplitude
squeezed vacuum cavity field, the increase in mirror-photon coupling ε enhances the spin
squeezing along x-direction (see Figure 2(a)). However, the squeezing parameter ζy reaches a
minimum value for ε= 0.2ωm (see Figure 2(b)). Exactly opposite behaviors of spin-squeezing
parameters are observed for the initially momentum squeezed vacuum cavity field (see
Figures 2(c) and 2(d)). This is because of the fact that the radiation pressure force acting
on the end mirror as a result of coupling between the light field and the movable mirror
also helps in generating further squeezing in harmonic oscillator, known as pondermotive
squeezing [18–20], which is then transferred to the spins via Tavis-Cummings type interaction.
Hence, the optomechanical coupling acts as a new additional handle in coherently controlling
the squeezing of spins along both the x- and y-directions.

We now discuss the experimental prospects of the various parameters used here in order to
demonstrate the experimental feasibility of our system. The mechanical oscillator frequency
may take the values from 2π× 100Hz [43], 2π× 10kHz [44] to 2π× 73.5MHz [45]. Also,
the optomechanical coupling can have the values as low as 2π× 2.7Hz [46] to as high as
2π×4×105Hz [47]. The coherent coupling strength for the intracavity field interacting with
the cloud of condensate atoms embedded within the optomechanical cavity may take the value
2π×5.86kHz [48] (2π×10.9MHz [49]). Note that the loss of photons through the mirrors of the
cavity can be reduced by using a high quality factor cavity.

4. Conclusion

In conclusion, we have shown the generation of correlated-particle states or squeezed-spin
states for the condensate atoms confined in a lossless optomechanical cavity via pondermotively
generated squeezed light. We have observed that the spin-squeezing along both the x- and
y-directions can be coherently controlled by choosing the appropriate value of mirror-photon
coupling. The radiation pressure or pondermotive force acting on the movable cavity boundary
induces further squeezing in the light field with the increase in optomechanical coupling. This
squeezing gets transferred to the BEC atoms via Tavis-Cummings type interaction and results
in further squeezing of the atomic states. Such atomic-squeezed states have applications in
spectroscopy, high precision metrology and entanglement detection.
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