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Abstract. The material LiCaAlF6:Eu (0.1 mol%) in microcrystalline form was prepared through water
solution coprecipitation method followed by melting it at around 900 ◦C in a graphite crucible. The
ingot was crushed and sieved through standard sieves to obtain powder approximate in the range
100-125 µm. The material was annealed at around 200-800 ◦C. The material was characterized by
XRD. The materials were irradiated to different doses of γ-rays using 60Co radioactive source and
thermoluminescence (TL) glow curves were recorded. The powder material was found to be at least 10
times more sensitive than CaSO4:Dy commercially available TLD pellets. However, as the dosimetry
peak is at around 180 ◦C, there is fading around 20%. Considering these facts, the material could be
considered as a highly sensitive and suitable TLD phosphor.
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1. Introduction
Mixed fluorides, such as, Li(AE)AlF6 (where, AE = Mg, Ca, Sr or Ba, alkaline earth elements)
have very large band gaps and therefore their optical and luminescence properties could be
tailored by doping with suitable impurities. Single crystals of such materials were also preferred
as active media for solid state lasers due to their as the trivalent impurities could replace Al3+

easily, e.g., Cr3+ doped lithium-calcium-aluminum-hexafluoride (LCAF) over ruby red region
and Ce3+ in UV region [2–5,7–9,13–17,19,25]. They are also found to be non-hygroscopic good
scintillators [6, 20, 22, 24]. Fluorides are also found to exhibit good luminescence properties
and sensitive to high energy radiations [1, 10, 21, 23]. For example, LiF:Mg,Ti, LiF:Mg,Cu,P
and CaF2:Mn are commercially available TLD phosphors. But there are some drawbacks of
these materials. For example, LiF:Mg,Ti is not very sensitive and the later ones though highly
sensitive lose their sensitivities if heated above 250 ◦C while recording TL. Therefore, there is
always search for new phosphor materials. Mixed fluorides could be good choice due to reasons
mentioned earlier. However, in case of lithium-based fluorides, both Li and F ions being highly
reactive, they are not easy to prepare and there is a possibility of contamination. Also, there
is also possibility of phase separation and formation of different phases if the materials are
directly prepared by mixing and melting the constituent fluorides.

Recently, such materials have been prepared by wet-chemical coprecipitation method
followed by melting the product in a graphite crucible at around 850 ◦C by Moharil et al.
[11]. In the present study, this method has been used here to prepare europium (Eu) doped
LiCaAlF6. The material was characterized by XRD to confirm the formation of the material in a
single phase. The TL properties were studied after irradiating the material to high-energy γ-
radiation. The material was found to be highly sensitive for dosimetry of high-energy radiations
using thermoluminescence (TL) and thus could be a good candidate for TL dosimetry.

Highlights
• Microcrystalline material was synthesized successfully by coprecipitation/melt method.

• The novelty of the method of preparation is phase separation in the mixed fluoride
materials could be avoided.

• The material was characterized by XRD and found to be in a single phase.

• The material (100-125 µm particle size) found to be 5 times more sensitive than CaSO4:Dy
commercially available TLD pellets.

• The material is found to be highly sensitive TLD material useful for dosimetry of high-
energy radiations.

2. Experimental
Samples of LiCaAlF6:Eu (0.05-2.0 mol%) in microcrystalline form were prepared by dissolving
the analytical reagent grades of the chloride compounds of constituent metals (i.e., LiCl, CaCl2

and AlCl3 in triply distilled water in their stoichiometric ratios in a Polytetrafluoroethylene
(PTFE, Teflon) beaker and stoichiometric amount of HF was added dropwise through a burette
while stirring rigorously. Appropriate amount of EuCl3 was added to the chloride solution of
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the ingredients before starting the coprecipitation reaction for preparing the Eu-doped samples,
i.e., LiCaAlF6:Eu (0.05-2.0 mol%). The maximum intensity for the doped material was found to
be at 0.1 mol%. The precipitate was washed several times with distilled water/ethanol and dried
in a vacuum oven at around 70 ◦C overnight. The details could be found in our earlier papers
[12]. It was then rapidly heated in a graphite crucible in air till the powders completely melted
(at around 900 ◦C). The melt was then quenched by pouring into another graphite crucible. The
ingot thus obtained was crushed and sieved to obtain powders of different particle size ranges in
the range of 100-120 µm. This material, i.e., LiCaAlF6:Eu was further annealed and quenched
at 400 ◦C for optimization of its dosimetry properties and used for further studies.

The Powder X-Ray Diffraction (PXRD) patterns were recorded at room temperature using
a high-resolution D8 Discover X-ray diffractometer (Bruker, Germany) equipped with a point
detector (scintillation counter). Cu-Kα1 radiation line (λ= 1.54056 Å) was used to obtain the
XRD patterns. Thermoluminescence (TL) glow curves were on Harshaw TLD Reader (Model
3500) by taking approximate 5.0 mg every time and with heating rate 5 ◦C/s. Photoluminescence
spectra were recorded on fluorescence spectrophotometer with spectral slit width of 1.5 nm.
Approximately ∼100 mg of the material was taken every time for these measurements.

3. Results and Discussion
3.1 X-Ray Diffraction (XRD)
Figure 1 shows the XRD patterns for the LiCaALF6:Eu TLD phosphor material samples
annealed at different temperatures to see that whether there is any phase/structural change(s)
in the material on annealing. It could be seen in the figure that the XRD pattern of the pristine
(as prepared by the coprecipitation method and melted in a carbon crucible) material matched
well with the data available in the literature (PCPDS file no. ICDD 73-2441).

Figure 1. XRD patterns of LiCaAlF6:Eu (0.1 mol%). Sticks graph using from the corresponding JCPDS
file #73-2441 is also shown for ready reference
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3.2 Glow Curves and Dose Response
Figure 2 shows the dose response of the material prepared by coprecipitation and melt-quenched
method (without annealing). As mentioned earlier, it consists of three peaks at 180, 240 and
340 ◦C. The peak appearing at around 180 ◦C is of highest intensity called dosimetry peak and is
of more interest for dosimetry as the peak height or area under the curve is used for estimation
of the radiation doses. It could be seen in the figure that there is not much change in the peak
temperatures. The glow curve of a standard phosphor CaSO4:Dy (TLD 900) is also shown for
comparison and the sensitivity of this phosphor is found to be at least 5 times more than that of
the standard one. The Plot of TL intensity with that of doses given (dose response) is also shown
in the figure and it could also be seen that it is very much linear in the dose range of (10-50 Gy).

Figure 2. Dose response of LiCaAlF6:Eu TLD phosphor material. The particle size of the material was
in the range of 100-120 µm

3.3 Effect of Particle Size and Annealing
As mentioned earlier, the final material (LiCaAlF6:Eu, obtained after melting in a graphite
crucible) was crushed and sieved to obtain powders of different particle size ranges in the range
of 45-210 µm. This material, i.e., LiCaAlF6:Eu was further annealed and quenched at 400 ◦C
for optimization of its dosimetry properties and used for further studies. It was irradiated to
around 10 Gy of γ-rays from 60Co source and TL glow curves were recorded. It was found that
there is no change in the glow curve structure and the maximum TL intensity was found to be
for the material having 100-120 µm particle size and annealed at 400 ◦C for 2 h.

3.4 Fading
The material (irradiated for 10 Gy) was stored in dark at room temperature and its TL was
recorded at different intervals of time to study fading. Approximately, 16% fading was observed
in one month, which is considered to be low for dosimetry purposes.
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Figure 3. Fading of LiCaAlF6:Eu.The material was irradiated for nominal dose of 10 Gy, stored in dark
at room temperature and TL was recorded at different time intervals

3.5 Reusability
The material (in the pellet form) was irradiated to approximate 10 Gy doses of γ-rays from
60Co source and TL was taken several times. No appreciable change either in the glow curve
structure or in the intensity was observed. Thus, the material was found to be reusable and
economic for the dosimetry purposes.

3.6 PL Emission Spectrum of LiCaAlF6:Eu
For studying the ionic state of the impurity in the material PL emission spectra were recorded
on excitation with 350 nm wavelength. A typical PL emission spectrum is as shown in Figure 4.

Figure 4. Photoluminescence (PL) of LiCaAlF6:Eu. The material was excitation by 350 nm wavelength
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An emission peak could be observed at around 420 nm in the spectrum and could be attributed
to Eu2+. The emission Eu2+ emission arises from the lowest band of 4f65d1 configuration to
8S7/2 state of 4f7 configuration. The ground-state electronic configuration of Eu2+ is 4f7. This
results in an 8S7/2 level for the ground state. The next f7 manifold (6PJ ) lies approximately
28,000 cm−1 higher. The lowest lying 4f65d levels begin near 34,000 cm−1 and are labeled 8HJ

for the free ion. The 4f65d levels experience much more crystal field splitting than the 4f7 levels
due to the increased spatial extent of the 5d orbitals and often are the metastable states or the
lowest excited states, when the Eu2+ ions are incorporated in a crystalline host [18].

4. Conclusion
The TLD phosphor material LiCaAlF6:Eu was successfully prepared in a single phase by a
two-stage method, firstly, through coprecipitation and by quickly melting in a carbon crucible.
Thus, formation of different possible phases like Li3AlF6 (further existing in orthorhombic,
monoclinic and cubic phases), CaAlF5 could be avoided.

An isolated single dosimetry peak at around 180 ◦C, high sensitivity (approximately 5 times
more than that of commercially available CaSO4:Dy TLD phosphor, low fading and excellent
reusability makes this phosphor a good candidate for dosimetry of high energy radiations.
High sensitivity may be attributed the incorporation of the Eu impurity in the 2+ ionic state
having emission in the 420 nm wavelength range, where most of the common PMTs (used as
photodetectors) are also sensitive.
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