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Abstract. We investigate the effect of cavity losses on squeezed-spin states generated via two-photon
character of the field for a Bose-Einstein Condensate embedded within the Fabry-Perot optical cavity
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1. Introduction
Spin squeezing [27,53,54] grabbed much attention both theoretically and experimentally for
over a decade. The spin-squeezed states are important quantum resources in improving the
precision of measurements in experiments [8,43,53,54] and in studying the particle correlations
and entanglement [3,15,49]. Also, there has been a great surge of interest in the phenomenon
of spin squeezing in collective spin system not only because of fundamental physical interests
[16, 27, 32, 35, 38, 45, 48, 50, 53, 54], but also for its application in atomic clocks for reducing
quantum noise [35,38,50,53,54] and quantum information [29,30,49,52,55]. The definition of
atomic-squeezing is not unique and the most widely studied spin-squeezing parameters were
proposed by Kitagawa and Ueda in [27] and by Wineland et al. in [53,54]. Squeezed states of
electromagnetic field have also grabbed considerable attention [4, 26, 28]. The generation of
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squeezed states of the cavity field via two-photon process has also been discussed [11,20,46].
Moore was the first one to discuss the quantization of electromagnetic field in an optical
cavity with perfectly reflecting movable cavityboundaries [39]. Dodonov and co-workers [9,10]
further generalized histheory by including the effects of a time-varying refractive index of the
medium inside the optical cavity. The major interest in this kind of system is the creation of
photons [6] from the vacuum state via two-photon character of the field. The spin squeezing in
atomic ensembles can be producedusing light-atom interactions. It involves the transferring
of squeezing from light to atoms [2, 16, 23, 32, 51, 53]. The production of atomic-squeezed
states in a two-component Bose-Einstein Condensates (BECs) vianonlinear interaction between
them has been investigated [42, 44, 49]. It has been theoretically proposed thatthe atomic-
squeezed states in BEC can be used in the detection of weak forces [19] and in performing
sub-shot-noise measurements [13, 34]. Experimental realizations of spin-squeezed states in
BECs [5,7,14,17,21,22,31,36,42] were also reported.

Motivated by these interesting developments in this field, we propose a non-stationary
cavity quantum electrodynamical (QED) system composed of an elongated cigar-shaped gas of
two-level BEC atoms interacting with asingle mode of an optical cavity, with a moving mirror,
whose frequency is rapidly modulated in time. The generation of correlated-particle states or
atomic-squeezed states for initial vacuum cavity field has already been investigated [1]. Here,
we mainly discuss how the cavity dissipation into the system plays a vital role in controlling the
spin-squeezingfor initial vacuum cavity field.

2. The System Model
In this section, we introduce the basic model and Hamiltonian for our system. The system
involves a Fabry-Perot optical cavity with one mirror fixed and another mirror movable, with an
additional elongated cigar-shaped gas of N BEC atoms of 87Rb having two different hyperfine
levels |F = 2, m f = −1〉 and |F = 2, m f = 1〉 with transition frequency ωa and mass M [37].
Each atomic mode is associated with an annihilation operator c j ( j = 1,2) in the two-mode
approximation. The cloud of BEC is strongly coupled to a single quantized cavity mode of the
optical cavity. The single-mode quantized optical cavity field has sinusoidally time-modulated
frequency ωc(t) =ωc(1+εsin(Ωt)) with unperturbed frequency ωc. Here, ε is the modulation
amplitude and Ω represents the modulation frequency. The harmonic motion of the movable
mirror is responsible for such a form of time-dependent cavity frequency. The simplest modelof
such system is provided by the following Hamiltonian [12]:

H=~ωc(1+εsin(Ωt))a†a+~ωaJz+~ g0p
N

(a+a†)Jx+i~ξ(t)(a†2−a2)−i~
κ

2
a†a−i~

γ

2
J+J−. (2.1)

Here, the ensemble of N atoms is described using the picture of a collective spin operators as:
Jx = (c†

1c2 + c†
2c1)/2, Jy = (c†

1c2 − c†
2c1)/2i and Jz = (c†

1c1 − c†
2c2)/2. The spin operators satisfy the

commutation relations [J+, J−]= 2Jz and [J±, Jz]=∓J±. The optical cavityphoton annihilation
and creation operators are denoted by a and a†respectively satisfying the commutationrelation
[a,a†]= 1. The parameter g0 is the atom-field coupling. Moreover, the two-photon character of
the field is responsible for the fourth term in the Hamiltonian that arises due to the time-varying
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cavity frequency and is responsiblefor generating the squeezed states of the cavity field [47].
ξ(t) is the effective frequencywhich is related to ωc(t) as [33]:

ξ(t)= 1
4ωc(t)

dωc(t)
dt

.

Considering the realistic case of a small-amplitude time modulation |ε|¿ 1, we shall use the
approximation ξ(t) ≈ (εΩ/4)cos(Ωt) ≈ 2ξ0 cos(Ωt), with ξ0 = (εΩ/8) ¿ 1. The cavity and atomic
decay rates are denoted by κ and Υ, respectively. The above Hamiltonian in the small atom-field
coupling regime can be rewritten as [37] (we are now considering ~= 1 for simplicity):

H =ωaJz +ωc(t)a†a+ g0

2
p

N
(aJ++a†J−)+φ

(
a†a+ 1

2

)
Jz + iξ(t)(a†2 −a2)− i

κ

2
a†a− i

γ

2
J+J−,

(2.2)

where φ = g2
0

4N(ωc+2ωa) . In the next section, we study the effect of decay of the cavity mode on
the atomic-squeezed states when an ensemble of BEC atoms interacts with the single-mode
quantized cavity field whose frequency is rapidly modulated in time.

3. Effect of Cavity Dissipation on Atomic-Squeezed States
In this section, we investigate the effect of cavity dissipation on squeezed-spin statesby
numerically solving the Schrodinger’s equation for the Hamiltonian given by eqn. (2.2). Using
the definition of Kitagawa and Ueda, squeezing parameter can be defined as [27]:

ζS =
√

min(∆J~n⊥)2

J/2
=

√
4min(∆J~n⊥)2

N
. (3.1)

Here, ~n⊥ denotes the axis perpendicular to the mean-spin direction (MSD)~n0 = 〈~J〉/|〈~J〉| with the
minimization over all directions ~n⊥. The atomic-squeezing condition in terms of this parameter
is given as ζS < 1 where the fluctuation in one direction is reduced. The total wave function for
the complete system can be written as:

Ψs(t)=
∑
n,m

Cn,m(t)|n〉 |J,m〉, (3.2)

where |n〉 represent the cavity field eigen states such that a|n〉 =p
n|n−1〉, a†|n〉 =p

n+1 |n+1〉.
We also assume that the cavity field and BEC atoms are uncorrelated for the initial wave
function such that the wavefunction canbe written as a direct product:

Ψs(0)=
(∑

n
Cn(0)|n〉

)
ψ(0),

where ψ(0) = |J = N/2, M = −N/2〉 and Cn(0) are the initial harmonic oscillator wave
function coefficients [18]. The equation of motion for the Hamiltonian can be evaluated using
Schrodinger’s equation and is given as:

iĊn,m(t)= [
ωc(1+εsin(Ωt))+ωam+φm(n+1/2)−iκn/2−iγ(J(J+1)−m(m−1))/2

]
Cn,m(t)

+ g0

2
p

N
[
p

n
√

J(J+1)−m(m+1)]Cn−1,m+1(t)

+ g0

2
p

N
[
p

n+1
√

J(J+1)−m(m−1)]Cn+1,m−1(t)
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+2iξ0 cos(Ωt)[
p

n+1
p

n+2]Cn+2,m(t)−2iξ0 cos(Ωt)[
p

n
p

n−1]Cn−2,m(t). (3.3)

The time-dependent wave function for the complete system can be written as a sum over all
the possible eigen states. In order toobtain the time evolution of the wave function, the time
dependent wave-function coefficients are evaluated using MATHEMATICA 9.0. Using this wave
function, the time-evolution of spin-squeezing parameter can be evaluated, which has already
been investigated [1]. This production of squeezed-spin state can be realized practically with
the help of schemesproposed in [24,25].

Figure 1. Plot of ζS(t) as a function of time for ε= 0.12 in the absence of cavity decay (dashed line) and
in the presence of cavity decay (solid line) with κ= 0.2ωc . The other parameters used are g0 = 0.6ωc ,
Ω= 2, ωa =ωc and γ= 10−4. We assume ψ(0)= |J,−J〉 (J = 1) and the optical field is initially prepared
in the vacuum state

Figure 1 shows the time evolution of ζS(t) in the absence (dashed line) and presence (solid
line) of cavity damping for modulation amplitude with ε = 0.12 for ψ(0) = |J,−J〉 and the
harmonic oscillator initially in the vacuum state. It shows that the decay of cavity mode in
any realistic quantum cavity system deteriorates the squeezing of the harmonic oscillator and
consequently the atomic spin-squeezing. However, substantial amount of atomic-squeezing can
still be achieved by using a high-finesse optical cavity. Therefore, we can say that cavity losses act
as an additional factor in controlling the squeezing of spins.For example, the threshold condition
for the production of squeezed photons can be possibly achieved by using a semiconductor plasma
mirror [40] having quality factor of 103 [24]. Hence, we can expect that a significant amount
of spin-squeezing can be achieved for a beam of condensate atoms interacting with the cavity
field mode. Such atomic-squeezed states have applications in entanglement detection which
plays an important role in both the foundations of quantum physics and quantum-information
processing [41].

4. Conclusion
In conclusion, we have observed that the cavity dissipation into the system deteriorates the
atomic-squeezing produced via periodic time modulation of cavity frequency for a BEC confined

Journal of Atomic, Molecular, Condensed Matter & Nano Physics, Vol. 8, No. 2, pp. 249–256, 2021



Effect of Cavity Losses on Atomic-squeezed States Produced via Time-varying. . . : N. Aggarwal and Shweta 253

in an optomechanical cavity for the initial cavity field in the vacuum state but an appreciable
amount of spin-squeezing can still be obtained by using a large enough cavity finesse. Hence,
cavity decay mode acts as an additional factor in controlling the squeezing of spins.
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