Journal of Atomic, Molecular, Condensed Matter & Nano Physics

Vol. 8, No. 2, pp. 175–236, 2021 ISSN 2582-8215 Published by RGN Publications

DOI: 10.26713/jamcnp.v8i2.1609

Research Article

PCM-DFT Investigation on the Linear and Nonlinear Optical Properties of Two Triazole Derivatives in Different Solvents

Ítalo N. Ribeiro¹, Fernando C. G. Murga¹, Marcos V. C. S. Rezende¹, Andreia R. dos Santos¹, Juliana G. de Morais¹, Jeziel R. dos Santos¹, Ricardo Ternavisk¹, Basilio Baseia^{2,3}, Francisco A. P. Osório^{3,4}, and Clodoaldo Valverde^{*1,5}

¹Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Universidade Estadual de Goiás, 75001-970, Anápolis, GO, Brazil

²Departamento de Física, Universidade Federal da Paraíba, 58.051-970, Jo ao Pessoa, PB, Brazil.

³ Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, GO, Brazil

⁴Pontifícia Universidade Católica de Goiás, 74605-010, Goiânia, GO, Brazil

⁵ Universidade Paulista (UNIP), 74845-090, Goiânia, GO, Brazil

*Corresponding author: valverde@ueg.br

Received: June 25, 2021 Accepted: August 30, 2021

Communicated by: Savitha N.V.

Abstract. This effort was performed to investigate the linear and nonlinear optical (NLO) properties of two 1,2,3-triazole derivatives in several solvent media and in gas-phase at PCM/DFT/CAM-B3LYP/6-311+G(d) level of theory. The static and dynamic NLO parameters as the total dipole moment, the average linear polarizability, the *Hyper-Rayleigh Scattering* (HRS) first hyperpolarizability, and the average second hyperpolarizabilityare calculated as function of static dielectric constant of the solvents. The computational linear and nonlinear optical studies revealed that both the triazoles derivatives are promising materials for NLO applications.

Keywords. Polarizable continuum model, Dipole moment, Linear polarizability, Hyper-Rayleigh Scattering (HRS), Second hyperpolarizability

PACS. 73.22.-f, 78.67.Bf, 42.70.Mp, 42.70.Nq

Copyright © 2021 Ítalo N. Ribeiro, Fernando C. G. Murga, Marcos V. C. S. Rezende, Andreia R. dos Santos, Juliana G. de Morais, Jeziel R. dos Santos, Ricardo Ternavisk, Basilio Baseia, Francisco A. P. Osório and Clodoaldo Valverde. *This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

1. Introduction

The study of organic materials exhibiting nonlinear optical properties has been of great interest in the recent years, partly due to the ease handlingof these compounds as compared with inorganic materials.Organic materials with large third-order nonlinear optical (NLO) properties are promising for several applications in photonic technologies [1,6,7,14,17,30,31]. Triazole and its derivatives, as the 1,2,3-triazole, have a simple structure exhibiting interesting nonlinear optical properties [1,5,28] and in addition present a number of functionalities in the fight against pathologies, such as antimycotic [12], antiviral [15], anticonvulsant [8], antidepressant [26], anti-inflammatory [16], antifungal [9] and analgesic [22].

In this work a study of the solvent media effects on the geometrical and nonlinear optical (NLO) properties of two 1,2,3triazole derivatives, namely: 1-(3,4-dimethylphenyl)-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (DMTT) with molecular formula $C_{18}H_{16}F_3N_3O$ and 3-[4-(3),4-dimethoxyphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl] phenol (DTTP) with molecular formula $C_{17}H_{14}F_3N_3O_3$ [10] is reported. The solvent media are modelled using the Polarizable Continuum Model (PCM) and the NLO parameters were calculated at DFT/CAM-B3LYP/6-311+G(d) level in gas-phase and in nineteen solvent media. The total dipole moment, the average linear polarizability and the first and second hyperpolarizabilities were studied as function of the static dielectric constant of the solvent media. Also, complementary studies of the bond-anglesand torsion-angles, of the frontier molecular orbitals (HOMO and LUMO) and the global reactivity descriptorswerecalculated as function of the static dielectric constant for DMTT and DTTP (see Figure 1).

Figure 1. Ortep diagram of 1,2,3-triazole derivatives, DMTT and DTTP

2. Material and Methods

Solvent Media

In our theoretical calculation the solvent media are modelled through the *Polarizable Continuum Model* (PCM) [4,20,24] and the NLO parameters were calculated using the Density Functional Theory (DFT) with the functional CAM-B3LYP, that combines the hybrid qualities of B3LYP and the long-range correction, being more convenient for the calculation of the static and dynamic NLO parameters, as discussed in reference [27] for several basis set. Here the large 6-311+G(d) Pople split-valence basis set is used combined with the CAM-B3LYP. In favor of using the PCM model, recent theoretical studies of NLO properties of molecules immersed in solvent media have shown a good agreement with the experimental data for the Hyper-Rayleigh Scattering first hyperpolarizability [5, 13, 21, 25]. Organic solvents are divided into polar (protic and aprotic) and nonpolar; in this work solvents having values of the static dielectric constant (ε) below 5 will be considered as nonpolar solvents. The solvent media used in the present calculation were: Argon ($\varepsilon = 1.43$); Heptane ($\varepsilon = 1.91$); Toluene ($\varepsilon = 2.37$); Chloroform ($\varepsilon = 4.71$); ChloroBezene ($\varepsilon = 5.70$); Tetrahydrofuran ($\varepsilon = 7.43$); DichloroMethane ($\varepsilon = 8.93$); DiChloroEthane ($\varepsilon = 10.13$); 2-Methyl_2_Propanol ($\varepsilon = 12.47$); 1-Butanol ($\varepsilon = 17.33$); Acetone ($\varepsilon = 20.49$); Ethanol ($\varepsilon = 24.85$); Methanol ($\varepsilon = 32.61$); Acetonitrile ($\varepsilon = 35.69$); DMSO ($\varepsilon = 46.83$); FormicAcid ($\varepsilon = 51.10$); Water ($\varepsilon = 78.36$); Formamide ($\varepsilon = 108.94$); *n*-MethylFormamide-mixture ($\varepsilon = 181.56$). Also, results for the Gas-phase ($\varepsilon = 1.00$) were computed.

Geometric Optimization

The molecular geometry optimization of the title compounds was performed in a diverse set of solvents and in gas phase. The similarities between the X-ray diffraction result obtained by Farrán *et al.* [10] and the optimized molecular structures were analysed calculating the root mean square deviation (RMSD) using the Mercury software [18].

HOMO and LUMO

From the values of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) the gap energies as function of the static dielectric constants of several solvent media were calculated. Also, the reactivity descriptors were calculated in three chosen solvent media.

NLO Parameters

The total dipole moment (μ), the average linear polarizability ($\langle \alpha \rangle$) the first hyperpolarizability parallel to the moment dipole (taken as z-direction) ($\beta_{\parallel z}$) and the average second hyperpolarizability are given by the following expressions,

$$\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{\frac{1}{2}}, \qquad (2.1)$$

$$\langle \alpha \rangle = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3},\tag{2.2}$$

$$\beta_{\parallel z} = \frac{1}{5} \sum_{i=1}^{3} (\beta_{zii} + \beta_{izi} + \beta_{iiz}), \qquad (2.3)$$

$$\langle \gamma \rangle = \frac{1}{5} [\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2(\gamma_{xxyy} + \gamma_{xxzz} + \gamma_{yyzz})]. \tag{2.4}$$

The Hyper-Rayleigh Scattering (HRS) first hyperpolarizability ($\langle \beta_{HRS} \rangle$) is given by,

$$\langle \beta_{HRS} \rangle = \sqrt{\langle \beta_{ZZZ}^2 \rangle + \langle \beta_{XZZ}^2 \rangle},\tag{2.5}$$

where X, Y, and Z are the coordinates of the laboratory reference system. The light beam propagation is assumed in X-direction and polarized in Z-direction [3,23]. $\langle \beta_{ZZZ}^2 \rangle$ and $\langle \beta_{XZZ}^2 \rangle$ are the macroscopic averages calculated from β_{ijk} and calculated from the expressions,

$$\langle \beta_{ZZZ}^2 \rangle = \frac{1}{210} (30\delta_1 + 12(\delta_2 + \delta_3 + \delta_5) + 6(\delta_4 + \delta_6) + 2(\delta_7 + \delta_8 + \delta_{11}) + 4\delta_9 + \delta_{10}), \tag{2.6}$$

$$\langle \beta_{XZZ}^2 \rangle = \frac{1}{210} (6(\delta_1 - \delta_3 - \delta_5 + \delta_7) + 8\delta_2 + 18\delta_4 + 4\delta_6 - \delta_8 - 2\delta_9 + 3\delta_{10} - \delta_{11}), \tag{2.7}$$

where the coefficients δ_n are defined in Table 1.

Table 1. The δ_n cooefficients used for the calculation of HRS first hyperpolarizability

$$\begin{split} \delta_{1} &= \sum_{i} \beta_{iii}^{2} ;\\ \delta_{2} &= \sum_{ij} \beta_{iii} \beta_{ijj} ;\\ \delta_{3} &= \sum_{ij} \beta_{iii} (\beta_{jij} + \beta_{jji}) ;\\ \delta_{4} &= \sum_{ij} \beta_{ijj}^{2} ;\\ \delta_{5} &= \sum_{ij} \beta_{ijj} (\beta_{jij} + \beta_{jji}) ;\\ \delta_{6} &= \sum_{ijk} (\beta_{jij} + \beta_{jji})^{2} ;\\ \delta_{7} &= \sum_{ijk} \beta_{ijj} \beta_{ikk} ;\\ \delta_{8} &= \sum_{ijk} (\beta_{jij} + \beta_{jji}) (\beta_{kik} + \beta_{kki}) ;\\ \delta_{9} &= \sum_{ijk} \beta_{ijj} (\beta_{kik} + \beta_{kki}) ;\\ \delta_{10} &= \sum_{ijk} (\beta_{ijk} + \beta_{ikj})^{2} ;\\ \delta_{11} &= \sum_{ijk} (\beta_{ijk} + \beta_{ikj}) (\beta_{jjk} + \beta_{jki}). \end{split}$$

All computational calculations were performed using the Gaussian 09 program package [11] and converted to electrostatic units (esu).

3. Results and Discussion

Molecular Analysis in Solvent Media

The similarities between the optimized molecular structure a solvent medium and the molecular structure obtained by X-ray diffraction were analysed calculating the Root Mean Square Deviation (RMSD). The anchoring pointswere chosen at the benzene ring (a) and at the benzenering (c) for DMTT and DTTPrespectively. Figure 2 shows the overlap between the X-ray molecular structure (in red) and the optimized molecular geometry in DMSO (in yellow) for both triazole derivatives. The anchoring points can be seen clearly in Figure 2.

Figure 2. Overlap between the X-ray diffraction results and the PCM/DFT optimized structures for DMTT and DMTT both in DMSO

Figure 3 shows the RMSD-values for DMTT and DTTP, as function of the static dielectric constant (ϵ) of the solvent media. As can be seen the RMSD-values for DTTP increases monotonically with the increasing of the ϵ -values. For DMTT, in the range of $1 \le \epsilon \le 5.70$ a decreasing of the RMSD-value with the increasing of ϵ -value is observed in the Figure 3 and a smooth increasing of the RMSD-value is observed for $5.7 < \epsilon \le 30$. For solvent medium with $\epsilon > 30$ the curves tend to stability, for both compounds.

Figure 3. RMSD-values for DMTT and DTTP as function of ϵ -values

Table S41 (Support Information) shows the results for the bond-angles and torsion-angles for DMTP and DTTP molecules in gas-phase and solvent media. The X-ray diffraction results are also shown for comparison. As can be seen in Table S41 the solvent medium effects on the bond-angles for both molecules are weak, the changes are smaller than 2%. The changes in the torsion-angles in general are also not significant, as can be seen in Table S41, however the torsion-angle N2-N1-C13-C18 (N2-N1-C13-C14) for DMTT (DTTP), increases with the increasing of the ϵ -value ($1 \le \epsilon \le 181.56$) going from 54° (51°) to 64° (61°) showing a considerable variation of 10° due to the solvent media effects.

The CHELPG partial charges of the compounds also can be seen in the Support Information Tables S42–S43. For DMTT the methoxy group O1-C21 has a charge of -0.202e and the benzene ring (a) has 0.067e in DMSO. Also, in DMSO, for the DTTP the charges of the methoxy group O1-C19 and the hydroxyl (O3-H3) are of -0.162e and -0.230e respectively.

HOMO-LUMO

Figure 4 shows the plots of the frontier molecular orbitals, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) for DMTT and DTTP in DMSO, the blue and red colours, represent the positive and negative regions, respectively. HOMO and LUMO energies are important parameters to help our understanding about the molecular chemical reaction. While HOMO behaves as an electron donor, LUMO behaves as an electron acceptor. The HOMO and LUMO for DMTT and DTTPin gas-phase and in various solvent media can be seen in the Figures S1-S19 (Support Information).

Figure 4. The HOMO and LUMO orbitals of the compounds in DMSO

Table 2 shows the values of the HOMO-energy (ε_{HOMO}) and LUMO-energy (ε_{LUMO}) for both DMTT and DTTP in Chloroform, DMSO and Water. From these parameters the global reactivity descriptors as, the ionization energy ($I_E = -\varepsilon_{HOMO}$), the electron affinity ($A_E = -\varepsilon_{LUMO}$), the global hardness ($\eta = (I_E - A_E)/2$), the chemical potential ($\mu = -(I_E + A_E)/2$), the global electrophilicity ($\omega = \mu^2/2\eta$), the global softness ($S = 1/\eta$) and additional electronic charge ($\Delta N = -\mu/\eta$) were calculated. These global quantities can be used as complementary tools in the description of thermodynamic aspects of chemical reactivity in connection with minimum polarizability and maximum hardness principles.

	Chlor	oform	DMSO Water		Water	
	DMTT	DTTP	DMTT	DTTP	DMTT	DTTP
ε_{HOMO} (eV)	-7.81	-7.37	-7.88	-7.45	-7.89	-7.46
ε_{LUMO} (eV)	-0.47	-0.55	-0.48	-0.53	-0.48	-0.53
Ionization energy (I_E) (eV)	7.81	7.37	7.88	7.45	7.89	7.46
Electron affinity (A_E) (eV)	0.47	0.55	0.48	0.53	0.48	0.53
Global hardness (μ)	3.67	3.41	3.70	3.46	3.70	3.46
Chemical potential (μ_p)	-4.14	-3.96	-4.18	-3.99	-4.18	-3.99
Global electrophilicity (ω)	2.34	2.30	2.36	2.30	2.37	2.30
Global softness (S)	0.27	0.29	0.27	0.29	0.27	0.29
Additional electronic charge (ΔN)	1.13	1.16	1.13	1.15	1.13	1.15

Table 2. Chemical parameters of the DMTT and DTTP in some solvent media

As can be seen in Table 2 the global quantities present small variations with the increasing of the static dielectric constant values. Particularly the global softness and the additional electronic charge are practically insensible to the change of the solvent medium for both compounds. The values of the ionization energy, global hardness, and chemical potential for DMTT are greater than for the DTTP although this difference is small. However, the value of the electron affinity energy (A_E) of DTTP is greater than of DMTT.

Other important parameter to be considered is the gap energy, defined as the difference between the HOMO-LUMO energies. The gap energies results for the two 1,2,3-triazole derivatives as function of the static dielectric constant of the solvent media are shown in Figure 5. As can be seen the values of the gap energy increases with the increasing of the ϵ -values, this increase is more significant for ϵ in the range of $1 < \epsilon < 20$; for $\epsilon > 20$ the increase is smaller, and the gap energies tends asymptotically to the values of 7.41 eV (DMTT) and 6.93 eV (DTTP). The fact that the DTTP gap energies in solvent media are smaller than for DMTT molecule (Figure 5) indicates that the DTTP molecule is more polarizable and more reactive than DMTT [29]. An analysis of the reactivity parameters of the compounds, suggests that the DTTP has potential to present better nonlinear optical properties than DMTT.

Figure 5. Gap energy as function of the *c*-values of solvent medium for the two 1,2,3-triazole derivatives

Nonlinear Optical Properties

The DFT/CAM-B3LYP/6-311+G(d) static results for the dipole moment (μ), the average linear polarizability ($\langle \beta(0;0) \rangle$), the first hyperpolarizability parallel to the dipole moment ($\beta_{\parallel z}(0;0,0)$) and the average second hyperpolarizability ($\langle \gamma(0;0,0,0) \rangle$) for both DMTT and DTTP are shown in Figure 6. As can be seen the values of μ , ($\beta(0;0)$), and ($\gamma(0;0,0,0)$), increase with the increasing of the ϵ -values, this increasing is more significant in the region where $\epsilon < 20$.

Figure 6. Static electric parameters: μ , $\langle \beta(0;0) \rangle$, $\beta_{\parallel z}(0;0,0)$ and $\langle \gamma(0;0,0,0) \rangle$ for DMTT and DTTP, as function of the ϵ -values

The μ -values for DMTT are greater than for DTTP and go from 3.44 D to 4.70 D (DMTT) and goes from 0.963 D to 2.20 D (DTTP). However, the $\langle \beta(0;0) \rangle$ -values for DMTT and DTTP in a determined solvent medium are practically the same. For example, in DMSO the α -values are 46.95×10^{-24} esu (DMTT) and 46.70×10^{-24} esu (DTTP) and in Water 47.2×10^{-24} esu (DMTT) and 47.0×10^{-24} esu (DTTP). Differently the $|\beta_{\parallel z}(0;00)|$ -values show a significant variation as function of ϵ -value. With the increasing of the ϵ -value for DMTT the $|\beta_{\parallel z}(0;00)|$ -values decrease, while for DTTP increase (see Figure 6). These results for the static parameters show that the NLO properties of DTTP are better than of DMTT.

Figure 7 shows the HRS first hyperpolarizability as function of the static dielectric constant in the static and dynamic (at $\lambda = 1064$ nm) cases for both the compounds. As we can note the β_{HRS} -value in both cases (static and dynamic) for DTTP are greater than those for DMTT in all solvent media. The behaviour of the β_{HRS} -value as function of ϵ -value is similar for both compounds. Particularly the β_{HRS} -values (static case) in Chloroform are 1.63×10^{-30} esu (DMTT) and 6.77×10^{-30} esu (DTTP) and in DMSO are 2.02×10^{-30} esu (DMTT) and 7.26×10^{-30} esu (DTTP). The β_{HRS} -values at $\lambda = 1064$ nm are greater than the static values, in Chloroform, for DMTT (+5%) and DTTP (+1.8%), however in DMSO the values are smaller -18.5% (DMTT) and -17% (DTTP).

Figure 7. Static and dynamic β_{HRS} -values for DTTP and for DMTT as function of the dielectric constant

Figure 8 shows the DFT/CAM-B3LYP/6-311+G(d) results for the dynamic average second hyperpolarizabilities $\langle \gamma(-\omega;\omega,0,0) \rangle$ and $\langle \gamma(-2\omega;\omega,\omega,0) \rangle$ corresponding to Kerr effect and second harmonic generation (dc-SHG) respectively for both compounds at 1064nm.As can be seen the results for the DTTP are greater than those for the DMTT, and the dispersion curves present similar behaviour. The $\langle \gamma(-\omega;\omega,0,0) \rangle$ -values in Chloroform (nonpolar), DMSO (polar, aprotic) and Water (polar, protic) for DTTP are 22.0%, 18.7% and 18.5% respectively greater than the values for DMTT. Likewise, the $\langle \gamma(-2\omega;\omega,\omega,0) \rangle$ -values in the same solvent media for DTTP are greater than those for DMTT of 31.3%, 25.8% and 25.4% respectively.

The standard compound to compare the values of the HRS first hyperpolarizability is the P-nitroaniline (pNA), that presents good NLO properties and have β_{HRS} -value wellknown experimentally. The HRS first hyperpolarizability of pNA in DMSOat $\lambda = 1064$ nm is 25.3×10^{-30} esu, this value is greater than the values of DMTT(1.64×10^{-30} esu) and of DTTP $(6.04 \times 10^{-30}$ esu). However, the value of the second hyperpolarizability ($\langle \gamma(-2\omega; \omega, \omega, 0) \rangle$) for pNA is $\langle \gamma_{pNA} \rangle = 8.0 \times 10^{-36}$ esu [2], this value is smaller those obtained for both, DMTT and DTTP, $\langle \gamma_{DMTT} \rangle = 69.2 \times 10^{-36}$ esu and $\langle \gamma_{DTTP} \rangle = 87.0 \times 10^{-36}$ esu, that aremore than ten times greater than pNA-value, suggesting that these molecules could be promising for NLO applications.

Figure 8. Average second hyperpolarizabilities $\langle \gamma(-\omega;\omega,0,0) \rangle$ and $\langle \gamma(-2\omega;\omega,\omega,0) \rangle$, as function of the dielectric constant

The difference in the NLO responses of the two compounds studied is directly related to the transition energies toward the most absorbing excited state. In addition, the presence of two methoxy groups in the molecule (DTTP) which are groups with a high capacity to donate electrons, i.e.,ğ-donor character, since it has the oxygen with negative partial charge linked to the aromatic ring and therefore increases the electron density in phenolic hydroxyl, while the molecule (DMTT) presents two methyl groups which are weak electron donor groups. Thus, the DMTT compound becomes more symmetrical (see Figure 3) and therefore reduces its second order NLO response. Conversely, the use of two methoxy groups improves the push-pull character of DTTP and, in turn, its first hyperpolarizability. Also, the energy difference between the HOMO and LUMO orbitals for DTTP is smaller than for DMTT.

4. Conclusions

The static and dynamic first and second hyperpolarizability of two 1,2,3-triazole derivatives: 1-(34-dimethylphenyl)-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-123-triazole (DMTT) and 3-[4-(3)4-dimethoxyphenyl)-5-(trifluoromethyl)-1H-123-triazol-1-yl] phenol (DTTP) as function of the dielectric constant of the solvent media were investigated at PCM/DFT/CAM-B3LYP/6-311+G(d) level of theory. The static values of the parallel first hyperpolarizability and the average second hyperpolarizability, $\beta_{\parallel z}(0;0,0)$ and $\langle \gamma(0;0,0,0) \rangle$, for DTTP are greater than for DMTT in all solvent media and increase with the dielectric constant increasing. The HRS first hyperpolarizability values of the second hyperpolarizability, ($\langle \gamma(-2\omega;\omega,\omega,0) \rangle$), obtained for both compounds. The values of the second hyperpolarizability, ($\langle \gamma(-2\omega;\omega,\omega,0) \rangle$), obtained for both, DMTT and DTTP, in DMSO at electric field frequency of 0.0426 a.u. (1064 nm), are more than eight times greater than for P-nitroaniline (pNA), that is a compound commonly used as reference. The results of the present study on the nonlinear optical (NLO) properties of the molecular compounds, DMTT and DTTP, suggest that these compounds present favourable conditions for applications as nonlinear optical materials.

Acknowledgments

The authors would like to thank the following Brazilian agencies for their financial supports: CAPES, CNPq and FAPEG; we also thank PrP/UEG for this research developed with supports of the "Núcleo de Computação de Alto Desempenho da UEG".

Appendix: Supporting Information

	Coordinates			
	x	у	z	
C4	1.2405	-0.3393	-0.3254	
C5	0.0243	0.2079	0.0722	
C6	-0.2978	1.4814	0.7870	
C7	2.6173	0.1863	-0.3232	
C8	3.6709	-0.7142	-0.0776	
H8	3.4302	-1.7508	0.1189	
C9	4.9931	-0.2628	-0.1009	
C10	5.2710	1.0870	-0.3696	
H10	6.3052	1.4151	-0.3807	
C11	4.2250	1.9679	-0.6226	
H11	4.4435	3.0084	-0.8436	
C12	2.8976	1.5284	-0.6059	
H12	2.0961	2.2235	-0.8293	
C13	-2.3372	-0.7572	-0.0944	
C14	-3.0909	0.2551	-0.6906	
H14	-2.5893	1.0487	-1.2353	
C15	-4.4860	0.2535	-0.5966	
C16	-5.1290	-0.7986	0.0953	
C17	-4.3490	-1.8117	0.6673	
H17	-4.8405	-2.6239	1.1959	
C18	-2.9569	-1.8032	0.5840	
H18	-2.3608	-2.5902	1.0318	
C19	-5.2845	1.3621	-1.2404	
H19A	-4.6307	2.0803	-1.7416	
H19B	-5.8779	1.9106	-0.4990	
H19C	-5.9883	0.9715	-1.9851	
C20	-6.6335	-0.8390	0.2153	
H20A	-6.9591	-1.7098	0.7901	
H20B	-7.1151	-0.8880	-0.7689	
H20C	-7.0223	0.0572	0.7137	
C21	5.8703	-2.4420	0.3859	
H21A	5.2824	-2.5926	1.2998	
H21B	6.8636	-2.8720	0.5192	
H21C	5.3686	-2.9340	-0.4563	
F1	0.7626	1.9356	1.4841	
F2	-0.6647	2.4817	-0.0670	
F3	-1.3166	1.3298	1.6654	
N1	-0.9081	-0.7567	-0.2171	
N2	-0.2949	-1.8425	-0.7366	
N3	0.9811	-1.5985	-0.7961	
01	6.0805	-1.0578	0.1271	

Table S1.DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in Gas Phase

	Coordinates		
	x	у	z
C4	1.2399	-0.3398	-0.3453
C5	0.0255	0.2012	0.0660
C6	-0.2939	1.4629	0.8026
$\mathbf{C7}$	2.6168	0.1862	-0.3358
C8	3.6704	-0.7113	-0.0800
H8	3.4318	-1.7475	0.1213
C9	4.9920	-0.2571	-0.0964
C10	5.2684	1.0925	-0.3684
H10	6.3017	1.4238	-0.3745
C11	4.2222	1.9707	-0.6307
H11	4.4400	3.0109	-0.8536
C12	2.8955	1.5282	-0.6207
H12	2.0935	2.2207	-0.8509
C13	-2.3383	-0.7542	-0.1046
C14	-3.0938	0.2515	-0.7095
H14	-2.5948	1.0355	-1.2702
C15	-4.4883	0.2537	-0.6051
C16	-5.1277	-0.7873	0.1074
C17	-4.3453	-1.7935	0.6886
H17	-4.8341	-2.5966	1.2331
C18	-2.9537	-1.7891	0.5943
H18	-2.3561	-2.5701	1.0509
C19	-5.2901	1.3539	-1.2591
H19A	-4.6391	2.0626	-1.7770
H19B	-5.8758	1.9145	-0.5208
H19C	-6.0011	0.9528	-1.9911
C20	-6.6312	-0.8231	0.2392
H20A	-6.9540	-1.6839	0.8301
H20B	-7.1193	-0.8865	-0.7410
H20C	-7.0141	0.0821	0.7256
C21	5.8701	-2.4342	0.4050
H21A	5.2768	-2.5815	1.3157
H21B	6.8634	-2.8613	0.5465
H21C	5.3754	-2.9297	-0.4388
F1	0.7730	1.9113	1.4945
F2	-0.6745	2.4736	-0.0318
F3	-1.3018	1.2942	1.6906
N1	-0.9091	-0.7557	-0.2379
N2	-0.3005	-1.8314	-0.7802
N3	0.9769	-1.5888	-0.8397
01	6.0793	-1.0491	0.1419

Table S2. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in Argon

	Coordinates			
	x	у	z	
C4	1.2394	-0.3388	-0.3613	
C5	0.0267	0.1972	0.0608	
C6	-0.2909	1.4495	0.8140	
$\mathbf{C7}$	2.6167	0.1868	-0.3456	
C8	3.6695	-0.7093	-0.0817	
H8	3.4316	-1.7449	0.1232	
C9	4.9910	-0.2539	-0.0925	
C10	5.2674	1.0954	-0.3671	
H10	6.3002	1.4283	-0.3690	
C11	4.2218	1.9722	-0.6369	
H11	4.4400	3.0120	-0.8613	
C12	2.8954	1.5285	-0.6324	
H12	2.0936	2.2194	-0.8681	
C13	-2.3389	-0.7511	-0.1128	
C14	-3.0969	0.2496	-0.7230	
H14	-2.6006	1.0272	-1.2949	
C15	-4.4909	0.2537	-0.6102	
C16	-5.1264	-0.7798	0.1169	
C17	-4.3412	-1.7808	0.7037	
H17	-4.8272	-2.5777	1.2596	
C18	-2.9501	-1.7786	0.6006	
H18	-2.3506	-2.5549	1.0627	
C19	-5.2961	1.3475	-1.2705	
H19A	-4.6477	2.0508	-1.7990	
H19B	-5.8777	1.9151	-0.5343	
H19C	-6.0111	0.9390	-1.9942	
C20	-6.6290	-0.8132	0.2581	
H20A	-6.9488	-1.6681	0.8591	
H20B	-7.1225	-0.8852	-0.7186	
H20C	-7.0078	0.0971	0.7379	
C21	5.8681	-2.4298	0.4211	
H21A	5.2703	-2.5739	1.3290	
H21B	6.8610	-2.8552	0.5692	
H21C	5.3786	-2.9279	-0.4240	
F1	0.7813	1.8949	1.5001	
F2	-0.6844	2.4672	-0.0050	
F3	-1.2888	1.2665	1.7105	
N1	-0.9098	-0.7534	-0.2547	
N2	-0.3049	-1.8209	-0.8149	
N3	0.9736	-1.5794	-0.8743	
01	6.0775	-1.0442	0.1542	

Table S3. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Heptane*

	Coordinates			
	x	у	z	
C4	1.2391	-0.3379	-0.3715	
C5	0.0274	0.1948	0.0575	
C6	-0.2888	1.4412	0.8211	
C7	2.6167	0.1872	-0.3519	
C8	3.6688	-0.7081	-0.0828	
H8	3.4312	-1.7433	0.1246	
C9	4.9903	-0.2521	-0.0901	
C10	5.2669	1.0969	-0.3663	
H10	6.2994	1.4307	-0.3656	
C11	4.2218	1.9729	-0.6409	
H11	4.4403	3.0124	-0.8663	
C12	2.8956	1.5287	-0.6398	
H12	2.0940	2.2187	-0.8790	
C13	-2.3393	-0.7490	-0.1180	
C14	-3.0991	0.2487	-0.7311	
H14	-2.6047	1.0226	-1.3097	
C15	-4.4928	0.2537	-0.6130	
C16	-5.1256	-0.7754	0.1228	
C17	-4.3384	-1.7731	0.7128	
H17	-4.8224	-2.5664	1.2755	
C18	-2.9476	-1.7720	0.6041	
H18	-2.3467	-2.5454	1.0694	
C19	-5.3002	1.3436	-1.2769	
H19A	-4.6536	2.0440	-1.8112	
H19B	-5.8798	1.9148	-0.5419	
H19C	-6.0174	0.9306	-1.9959	
C20	-6.6276	-0.8076	0.2700	
H20A	-6.9453	-1.6593	0.8766	
H20B	-7.1246	-0.8842	-0.7045	
H20C	-7.0040	0.1055	0.7464	
C21	5.8665	-2.4273	0.4315	
H21A	5.2656	-2.5692	1.3376	
H21B	6.8590	-2.8518	0.5840	
H21C	5.3803	-2.9271	-0.4143	
F1	0.7868	1.8847	1.5036	
F2	-0.6900	2.4632	0.0119	
F3	-1.2805	1.2494	1.7228	
N1	-0.9103	-0.7515	-0.2654	
N2	-0.3078	-1.8137	-0.8371	
N3	0.9713	-1.5729	-0.8964	
01	6.0761	-1.0416	0.1620	

Table S4. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Toluene*

	Coordinates			
	x	У	z	
C4	1.2381	-0.3348	-0.3956	
C5	0.0293	0.1897	0.0506	
C6	-0.2831	1.4211	0.8399	
C7	2.6166	0.1886	-0.3668	
C8	3.6667	-0.7056	-0.0865	
H8	3.4291	-1.7398	0.1264	
C9	4.9883	-0.2487	-0.0855	
C10	5.2660	1.0996	-0.3650	
H10	6.2980	1.4352	-0.3582	
C11	4.2225	1.9747	-0.6499	
H11	4.4423	3.0135	-0.8772	
C12	2.8964	1.5296	-0.6567	
H12	2.0956	2.2181	-0.9031	
C13	-2.3404	-0.7425	-0.1299	
C14	-3.1051	0.2449	-0.7534	
H14	-2.6159	1.0079	-1.3508	
C15	-4.4979	0.2518	-0.6227	
C16	-5.1236	-0.7643	0.1377	
C17	-4.3308	-1.7513	0.7389	
H17	-4.8094	-2.5337	1.3209	
C18	-2.9409	-1.7525	0.6168	
H18	-2.3359	-2.5165	1.0925	
C19	-5.3117	1.3291	-1.2991	
H19A	-4.6696	2.0219	-1.8485	
H19B	-5.8884	1.9100	-0.5696	
H19C	-6.0322	0.9023	-2.0065	
C20	-6.6240	-0.7938	0.2995	
H20A	-6.9359	-1.6365	0.9214	
H20B	-7.1293	-0.8837	-0.6694	
H20C	-6.9949	0.1267	0.7657	
C21	5.8615	-2.4225	0.4550	
H21A	5.2534	-2.5585	1.3567	
H21B	6.8530	-2.8450	0.6181	
H21C	5.3832	-2.9269	-0.3922	
$\mathbf{F1}$	0.8002	1.8585	1.5149	
F2	-0.7014	2.4538	0.0550	
F3	-1.2605	1.2076	1.7525	
N1	-0.9117	-0.7456	-0.2904	
N2	-0.3155	-1.7939	-0.8908	
N3	0.9652	-1.5551	-0.9502	
01	6.0724	-1.0365	0.1785	

Table S5. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Choroform*

	Coordinates		
	x	у	z
C4	1.2378	-0.3339	-0.4010
C5	0.0297	0.1887	0.0491
C6	-0.2817	1.4167	0.8442
$\mathbf{C7}$	2.6166	0.1890	-0.3702
C8	3.6661	-0.7051	-0.0874
H8	3.4284	-1.7390	0.1268
C9	4.9878	-0.2481	-0.0846
C10	5.2659	1.1000	-0.3650
H10	6.2978	1.4358	-0.3569
C11	4.2228	1.9749	-0.6523
H11	4.4431	3.0135	-0.8800
C12	2.8967	1.5298	-0.6607
H12	2.0962	2.2181	-0.9087
C13	-2.3407	-0.7409	-0.1325
C14	-3.1065	0.2444	-0.7580
H14	-2.6184	1.0052	-1.3590
C15	-4.4991	0.2515	-0.6246
C16	-5.1231	-0.7620	0.1408
C17	-4.3290	-1.7468	0.7440
H17	-4.8063	-2.5271	1.3300
C18	-2.9393	-1.7483	0.6191
H18	-2.3334	-2.5103	1.0968
C19	-5.3144	1.3263	-1.3032
H19A	-4.6734	2.0177	-1.8555
H19B	-5.8906	1.9089	-0.5747
H19C	-6.0356	0.8967	-2.0083
C20	-6.6232	-0.7912	0.3057
H20A	-6.9337	-1.6320	0.9306
H20B	-7.1303	-0.8838	-0.6621
H20C	-6.9931	0.1307	0.7698
C21	5.8600	-2.4215	0.4606
H21A	5.2503	-2.5559	1.3613
H21B	6.8512	-2.8436	0.6264
H21C	5.3835	-2.9272	-0.3867
F1	0.8034	1.8527	1.5174
F2	-0.7039	2.4517	0.0649
F3	-1.2557	1.1982	1.7593
N1	-0.9121	-0.7440	-0.2959
N2	-0.3173	-1.7892	-0.9027
N3	0.9637	-1.5508	-0.9622
01	6.0714	-1.0356	0.1821

Table S6. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Chlorobenzene*

	Coordinates		
	x	у	z
C4	1.2375	-0.3326	-0.4078
C5	0.0302	0.1877	0.0470
C6	-0.2799	1.4112	0.8493
C7	2.6166	0.1896	-0.3745
C8	3.6653	-0.7045	-0.0885
H8	3.4272	-1.7379	0.1275
C9	4.9871	-0.2475	-0.0834
C10	5.2658	1.1003	-0.3650
H10	6.2977	1.4363	-0.3553
C11	4.2235	1.9751	-0.6554
H11	4.4443	3.0134	-0.8839
C12	2.8973	1.5301	-0.6658
H12	2.0971	2.2181	-0.9159
C13	-2.3409	-0.7389	-0.1359
C14	-3.1082	0.2443	-0.7628
H14	-2.6216	1.0031	-1.3677
C15	-4.5006	0.2515	-0.6261
C16	-5.1225	-0.7595	0.1443
C17	-4.3268	-1.7420	0.7493
H17	-4.8025	-2.5201	1.3394
C18	-2.9373	-1.7438	0.6210
H18	-2.3301	-2.5038	1.1004
C19	-5.3177	1.3237	-1.3066
H19A	-4.6780	2.0139	-1.8619
H19B	-5.8933	1.9078	-0.5788
H19C	-6.0397	0.8914	-2.0091
C20	-6.6221	-0.7884	0.3129
H20A	-6.9310	-1.6275	0.9410
H20B	-7.1314	-0.8837	-0.6534
H20C	-6.9909	0.1349	0.7751
C21	5.8579	-2.4204	0.4680
H21A	5.2460	-2.5525	1.3675
H21B	6.8487	-2.8420	0.6372
H21C	5.3836	-2.9278	-0.3794
F1	0.8074	1.8458	1.5201
F2	-0.7074	2.4491	0.0771
F3	-1.2496	1.1865	1.7677
N1	-0.9125	-0.7419	-0.3028
N2	-0.3194	-1.7832	-0.9174
N3	0.9619	-1.5453	-0.9771
01	6.0701	-1.0347	0.1868

Table S7. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Tetrahydrofuran*

x

1.2373

0.0305

-0.2789

2.6166

3.6647

C4

C5

C6

C7

C8

nized DMTT mole	ecule in <i>Dichloromethe</i>	ane
Coordinates		
У	z	
-0.3317	-0.4120	
0.1871	0.0457	
1.4080	0.8524	
0.1900	-0.3772	
-0.7041	-0.0890	
-1.7372	0.1280	
-0.2472	-0.0826	
1.1003	-0.3650	
1.4364	-0.3543	
1.9752	-0.6574	
3.0132	-0.8863	

Table S8. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in Dichloromethane

H8	3.4263	-1.7372	0.1280
C9	4.9867	-0.2472	-0.0826
C10	5.2659	1.1003	-0.3650
H10	6.2977	1.4364	-0.3543
C11	4.2240	1.9752	-0.6574
H11	4.4453	3.0132	-0.8863
C12	2.8977	1.5303	-0.6691
H12	2.0979	2.2181	-0.9205
C13	-2.3410	-0.7377	-0.1380
C14	-3.1093	0.2444	-0.7655
H14	-2.6236	1.0023	-1.3723
C15	-4.5015	0.2517	-0.6268
C16	-5.1221	-0.7581	0.1464
C17	-4.3253	-1.7395	0.7520
H17	-4.8001	-2.5166	1.3443
C18	-2.9360	-1.7414	0.6215
H18	-2.3280	-2.5003	1.1017
C19	-5.3198	1.3226	-1.3078
H19A	-4.6810	2.0122	-1.8648
H19B	-5.8949	1.9073	-0.5802
H19C	-6.0423	0.8889	-2.0090
C20	-6.6214	-0.7870	0.3172
H20A	-6.9292	-1.6252	0.9470
H20B	-7.1320	-0.8837	-0.6483
H20C	-6.9895	0.1370	0.7785
C21	5.8565	-2.4197	0.4728
H21A	5.2431	-2.5504	1.3715
H21B	6.8469	-2.8411	0.6441
H21C	5.3835	-2.9282	-0.3747
$\mathbf{F1}$	0.8098	1.8418	1.5215
F2	-0.7097	2.4474	0.0845
F3	-1.2458	1.1793	1.7728
N1	-0.9127	-0.7406	-0.3071
N2	-0.3207	-1.7794	-0.9265
N3	0.9609	-1.5419	-0.9862
01	6 0601	1 0949	0 1900

		Coordinates	
	x	У	z
C4	1.2372	-0.3311	-0.4146
C5	0.0307	0.1868	0.0448
C6	-0.2783	1.4060	0.8542
C7	2.6166	0.1902	-0.3789
C8	3.6644	-0.7038	-0.0894
H8	3.4258	-1.7367	0.1283
C9	4.9864	-0.2470	-0.0821
C10	5.2659	1.1003	-0.3650
H10	6.2978	1.4365	-0.3537
C11	4.2244	1.9752	-0.6586
H11	4.4460	3.0131	-0.8878
C12	2.8980	1.5305	-0.6711
H12	2.0984	2.2182	-0.9234
C13	-2.3411	-0.7370	-0.1394
C14	-3.1099	0.2446	-0.7670
H14	-2.6248	1.0019	-1.3749
C15	-4.5021	0.2519	-0.6270
C16	-5.1218	-0.7574	0.1476
C17	-4.3244	-1.7381	0.7535
H17	-4.7985	-2.5146	1.3470
C18	-2.9352	-1.7401	0.6217
H18	-2.3268	-2.4983	1.1022
C19	-5.3211	1.3220	-1.3083
H19A	-4.6828	2.0114	-1.8662
H19B	-5.8959	1.9071	-0.5807
H19C	-6.0440	0.8876	-2.0086
C20	-6.6210	-0.7862	0.3198
H20A	-6.9282	-1.6239	0.9505
H20B	-7.1324	-0.8836	-0.6452
H20C	-6.9887	0.1382	0.7807
C21	5.8555	-2.4194	0.4759
H21A	5.2412	-2.5491	1.3740
H21B	6.8458	-2.8406	0.6485
H21C	5.3834	-2.9286	-0.3717
$\mathbf{F1}$	0.8113	1.8394	1.5222
F2	-0.7112	2.4464	0.0890
F3	-1.2434	1.1749	1.7759
N1	-0.9129	-0.7398	-0.3098
N2	-0.3215	-1.7771	-0.9321
N3	0.9602	-1.5397	-0.9917
01	6.0685	-1.0341	0.1918

Table S9. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Dichloroethane*

	Coordinates			
	x	У	z	
C4	1.2370	-0.3302	-0.4185	
C5	0.0310	0.1864	0.0435	
C6	-0.2774	1.4031	0.8569	
$\mathbf{C7}$	2.6166	0.1907	-0.3813	
C8	3.6638	-0.7034	-0.0899	
H8	3.4248	-1.7361	0.1288	
C9	4.9860	-0.2468	-0.0813	
C10	5.2660	1.1003	-0.3649	
H10	6.2979	1.4364	-0.3526	
C11	4.2250	1.9752	-0.6604	
H11	4.4471	3.0129	-0.8901	
C12	2.8986	1.5307	-0.6741	
H12	2.0993	2.2184	-0.9277	
C13	-2.3412	-0.7359	-0.1414	
C14	-3.1109	0.2450	-0.7691	
H14	-2.6266	1.0017	-1.3784	
C15	-4.5029	0.2522	-0.6272	
C16	-5.1214	-0.7563	0.1494	
C17	-4.3231	-1.7362	0.7554	
H17	-4.7963	-2.5120	1.3506	
C18	-2.9340	-1.7382	0.6217	
H18	-2.3248	-2.4957	1.1026	
C19	-5.3230	1.3214	-1.3086	
H19A	-4.6855	2.0106	-1.8677	
H19B	-5.8973	1.9068	-0.5810	
H19C	-6.0464	0.8860	-2.0077	
C20	-6.6203	-0.7852	0.3236	
H20A	-6.9265	-1.6223	0.9556	
H20B	-7.1329	-0.8835	-0.6406	
H20C	-6.9875	0.1397	0.7840	
C21	5.8540	-2.4189	0.4804	
H21A	5.2383	-2.5472	1.3777	
H21B	6.8439	-2.8400	0.6551	
H21C	5.3831	-2.9291	-0.3672	
F1	0.8134	1.8359	1.5233	
F2	-0.7135	2.4449	0.0956	
F3	-1.2399	1.1684	1.7804	
N1	-0.9131	-0.7385	-0.3137	
N2	-0.3226	-1.7736	-0.9403	
N3	0.9593	-1.5365	-1.0000	
01	6.0676	-1.0338	0.1947	

Table S10. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in 2-Methyl-2-Propanol

	Coordinates		
	x	у	z
C4	1.2368	-0.3290	-0.4235
C5	0.0314	0.1859	0.0417
C6	-0.2762	1.3994	0.8602
C7	2.6167	0.1913	-0.3846
C8	3.6631	-0.7029	-0.0905
H8	3.4236	-1.7352	0.1295
C9	4.9854	-0.2466	-0.0801
C10	5.2662	1.1001	-0.3648
H10	6.2981	1.4362	-0.3512
C11	4.2259	1.9751	-0.6627
H11	4.4488	3.0125	-0.8931
C12	2.8994	1.5310	-0.6780
H12	2.1006	2.2186	-0.9333
C13	-2.3413	-0.7346	-0.1441
C14	-3.1121	0.2457	-0.7715
H14	-2.6289	1.0018	-1.3823
C15	-4.5039	0.2527	-0.6272
C16	-5.1209	-0.7551	0.1517
C17	-4.3213	-1.7342	0.7575
H17	-4.7933	-2.5093	1.3545
C18	-2.9325	-1.7361	0.6213
H18	-2.3223	-2.4927	1.1024
C19	-5.3254	1.3210	-1.3083
H19A	-4.6890	2.0100	-1.8688
H19B	-5.8992	1.9065	-0.5803
H19C	-6.0496	0.8846	-2.0061
C20	-6.6195	-0.7841	0.3284
H20A	-6.9244	-1.6206	0.9618
H20B	-7.1336	-0.8834	-0.6349
H20C	-6.9859	0.1412	0.7885
C21	5.8518	-2.4184	0.4865
H21A	5.2344	-2.5448	1.3827
H21B	6.8414	-2.8392	0.6640
H21C	5.3827	-2.9299	-0.3612
$\mathbf{F1}$	0.8162	1.8316	1.5245
F2	-0.7165	2.4430	0.1040
F3	-1.2353	1.1600	1.7861
N1	-0.9133	-0.7368	-0.3189
N2	-0.3241	-1.7690	-0.9509
N3	0.9580	-1.5322	-1.0107
01	6.0663	-1.0336	0.1986

Table S11. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in 1-Butanol

х

1.2367

0.0315

-0.2757

2.6167

3.6627

3.4230

4.9851

5.2663

6.2982

4.2263

4.4494

2.8997

2.1011

-2.3413

-3.1126

-2.6298

-4.5043

-5.1207

-4.3206

-4.7921

-2.9318

-2.3212

-5.3264

-4.6904

-5.8998

-6.0510

-6.6191

-6.9235

-7.1338

-6.9854

5.8509

5.2326

6.8402

5.3825

0.8174

-0.7177

-1.2334

-0.9134

-0.3246

0.9575

C4

C5

C6

C7

C8

H8

C9

C10

H10

C11

H11

C12

H12

C13

C14

H14

C15

C16

C17

H17

C18

H18

C19

H19A

H19B

H19C

H20A

H20B

H20C

H21A

H21B

H21C

F1

F2

F3

N1

N2

N3

C21

C20

molecule in Acetone	
z	
-0.4256	
0.0410	
0.8615	
-0.3859	
-0.0907	
0.1299	
-0.0797	

-0.3648

-0.3507

-0.6638

-0.8944

-0.6797

-0.9357

-0.1452

-0.7723

-1.3836

-0.6271

0.1525

0.7581

1.3556

0.6210

1.1019

-1.3078

-1.8688

-0.5795

-2.0050

0.3303

0.9641

-0.6327

0.7901

0.4890

1.3848

0.6677

1.5249

0.1074

1.7885

-0.3210

-0.9553

-1.0151

-0.3587

Table S12.	DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in Aceta	one

Coordinates

-0.3285

0.1857

1.3980

0.1915

-0.7027

-1.7348

-0.2466

1.1000

1.4360

1.9751

3.0123

1.5311

2.2187

-0.7340

0.2461

1.0021

0.2530

-0.7547

-1.7336

-2.5085

-1.7354

-2.4917

1.3211

2.0101

1.9065

0.8844

-0.7838

-1.6201

-0.8835

0.1417

-2.4182

-2.5438

-2.8390

-2.9303

1.8298

2.4422

1.1567

-0.7361

-1.7671

-1.5304

у

01	6.0658	-1.0335	0.2002

	Coordinates		
	x	У	z
C4	1.2366	-0.3279	-0.4278
C5	0.0317	0.1855	0.0402
C6	-0.2752	1.3964	0.8629
$\mathbf{C7}$	2.6167	0.1918	-0.3873
C8	3.6624	-0.7025	-0.0910
H8	3.4224	-1.7345	0.1301
C9	4.9849	-0.2465	-0.0792
C10	5.2665	1.0999	-0.3647
H10	6.2984	1.4358	-0.3501
C11	4.2268	1.9750	-0.6648
H11	4.4503	3.0121	-0.8956
C12	2.9001	1.5313	-0.6814
H12	2.1018	2.2189	-0.9382
C13	-2.3413	-0.7334	-0.1464
C14	-3.1131	0.2465	-0.7732
H14	-2.6309	1.0023	-1.3851
C15	-4.5048	0.2533	-0.6270
C16	-5.1204	-0.7542	0.1534
C17	-4.3198	-1.7328	0.7588
H17	-4.7908	-2.5075	1.3571
C18	-2.9311	-1.7345	0.6207
H18	-2.3201	-2.4905	1.1016
C19	-5.3275	1.3209	-1.3075
H19A	-4.6920	2.0100	-1.8690
H19B	-5.9007	1.9064	-0.5790
H19C	-6.0524	0.8839	-2.0041
C20	-6.6188	-0.7834	0.3323
H20A	-6.9226	-1.6196	0.9667
H20B	-7.1341	-0.8834	-0.6302
H20C	-6.9847	0.1422	0.7921
C21	5.8499	-2.4180	0.4916
H21A	5.2308	-2.5428	1.3869
H21B	6.8390	-2.8388	0.6715
H21C	5.3822	-2.9307	-0.3562
F1	0.8186	1.8280	1.5254
F2	-0.7189	2.4414	0.1110
F3	-1.2315	1.1531	1.7909
N1	-0.9135	-0.7353	-0.3233
N2	-0.3253	-1.7651	-0.9598
N3	0.9570	-1.5285	-1.0197
01	6.0652	-1.0335	0.2019

Table S13. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Ethanol*

	Coordinates		
	x	У	z
C4	1.2365	-0.3272	-0.4302
C5	0.0318	0.1854	0.0393
C6	-0.2746	1.3947	0.8645
C7	2.6168	0.1921	-0.3888
C8	3.6620	-0.7023	-0.0913
H8	3.4217	-1.7340	0.1305
C9	4.9846	-0.2465	-0.0786
C10	5.2666	1.0998	-0.3646
H10	6.2986	1.4356	-0.3494
C11	4.2273	1.9749	-0.6659
H11	4.4512	3.0119	-0.8971
C12	2.9005	1.5314	-0.6833
H12	2.1025	2.2190	-0.9410
C13	-2.3414	-0.7327	-0.1477
C14	-3.1137	0.2469	-0.7742
H14	-2.6320	1.0027	-1.3866
C15	-4.5053	0.2536	-0.6268
C16	-5.1202	-0.7538	0.1544
C17	-4.3189	-1.7321	0.7595
H17	-4.7893	-2.5066	1.3585
C18	-2.9304	-1.7337	0.6202
H18	-2.3188	-2.4894	1.1010
C19	-5.3287	1.3210	-1.3069
H19A	-4.6937	2.0101	-1.8689
H19B	-5.9015	1.9064	-0.5781
H19C	-6.0540	0.8837	-2.0029
C20	-6.6183	-0.7831	0.3346
H20A	-6.9215	-1.6190	0.9694
H20B	-7.1344	-0.8834	-0.6276
H20C	-6.9840	0.1427	0.7943
C21	5.8488	-2.4178	0.4946
H21A	5.2287	-2.5417	1.3894
H21B	6.8376	-2.8385	0.6759
H21C	5.3819	-2.9312	-0.3532
F1	0.8199	1.8260	1.5259
F2	-0.7204	2.4404	0.1151
F3	-1.2292	1.1491	1.7936
N1	-0.9137	-0.7344	-0.3258
N2	-0.3259	-1.7628	-0.9650
N3	0.9564	-1.5264	-1.0248
01	6.0645	-1.0335	0.2039

Table S14. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Methanol*

	Coordinates		
	x	У	z
C4	1.2364	-0.3270	-0.4309
C5	0.0319	0.1853	0.0391
C6	-0.2745	1.3942	0.8649
$\mathbf{C7}$	2.6168	0.1922	-0.3893
C8	3.6619	-0.7022	-0.0914
H8	3.4215	-1.7339	0.1306
C9	4.9845	-0.2465	-0.0784
C10	5.2666	1.0997	-0.3646
H10	6.2986	1.4355	-0.3492
C11	4.2275	1.9749	-0.6663
H11	4.4514	3.0118	-0.8975
C12	2.9007	1.5315	-0.6839
H12	2.1027	2.2190	-0.9418
C13	-2.3414	-0.7325	-0.1481
C14	-3.1139	0.2471	-0.7744
H14	-2.6323	1.0028	-1.3870
C15	-4.5054	0.2537	-0.6267
C16	-5.1201	-0.7536	0.1547
C17	-4.3187	-1.7319	0.7597
H17	-4.7889	-2.5063	1.3588
C18	-2.9301	-1.7335	0.6200
H18	-2.3185	-2.4891	1.1008
C19	-5.3290	1.3211	-1.3067
H19A	-4.6942	2.0102	-1.8688
H19B	-5.9017	1.9064	-0.5778
H19C	-6.0544	0.8837	-2.0026
C20	-6.6182	-0.7830	0.3352
H20A	-6.9213	-1.6189	0.9701
H20B	-7.1345	-0.8833	-0.6268
H20C	-6.9837	0.1428	0.7949
C21	5.8484	-2.4177	0.4955
H21A	5.2281	-2.5414	1.3901
H21B	6.8372	-2.8384	0.6772
H21C	5.3818	-2.9313	-0.3523
$\mathbf{F1}$	0.8203	1.8254	1.5261
F2	-0.7208	2.4402	0.1162
F3	-1.2286	1.1480	1.7944
N1	-0.9137	-0.7341	-0.3265
N2	-0.3261	-1.7622	-0.9664
N3	0.9563	-1.5258	-1.0263
01	6.0643	-1.0335	0.2044

Table S15. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in Acetonitrile

	Coordinates		
-	x	у	z
C4	1.2364	-0.3267	-0.4325
C5	0.0320	0.1851	0.0386
C6	-0.2741	1.3930	0.8660
$\mathbf{C7}$	2.6167	0.1924	-0.3903
C8	3.6616	-0.7020	-0.0914
H8	3.4211	-1.7335	0.1311
C9	4.9843	-0.2463	-0.0780
C10	5.2666	1.0997	-0.3648
H10	6.2986	1.4355	-0.3490
C11	4.2277	1.9748	-0.6674
H11	4.4519	3.0116	-0.8991
C12	2.9009	1.5315	-0.6854
H12	2.1030	2.2190	-0.9440
C13	-2.3414	-0.7321	-0.1489
C14	-3.1142	0.2475	-0.7748
H14	-2.6328	1.0033	-1.3876
C15	-4.5056	0.2542	-0.6265
C16	-5.1200	-0.7533	0.1551
C17	-4.3183	-1.7316	0.7597
H17	-4.7882	-2.5060	1.3591
C18	-2.9298	-1.7332	0.6194
H18	-2.3179	-2.4888	1.1000
C19	-5.3296	1.3216	-1.3059
H19A	-4.6950	2.0106	-1.8685
H19B	-5.9017	1.9070	-0.5766
H19C	-6.0555	0.8843	-2.0013
C20	-6.6180	-0.7827	0.3362
H20A	-6.9207	-1.6183	0.9718
H20B	-7.1346	-0.8837	-0.6256
H20C	-6.9835	0.1433	0.7955
C21	5.8478	-2.4174	0.4975
H21A	5.2268	-2.5404	1.3916
H21B	6.8364	-2.8380	0.6802
H21C	5.3818	-2.9315	-0.3504
F1	0.8213	1.8241	1.5263
F2	-0.7219	2.4394	0.1190
F3	-1.2269	1.1452	1.7964
N1	-0.9138	-0.7337	-0.3280
N2	-0.3266	-1.7608	-0.9696
N3	0.9559	-1.5245	-1.0295
01	6.0639	-1.0333	0.2056

Table S16. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *dmso*

	Coordinates		
	x	У	z
C4	1.2363	-0.3266	-0.4330
C5	0.0320	0.1850	0.0384
C6	-0.2740	1.3926	0.8663
C7	2.6168	0.1924	-0.3906
C8	3.6616	-0.7019	-0.0914
H8	3.4209	-1.7334	0.1312
C9	4.9842	-0.2463	-0.0778
C10	5.2667	1.0997	-0.3647
H10	6.2986	1.4355	-0.3489
C11	4.2278	1.9748	-0.6676
H11	4.4520	3.0116	-0.8994
C12	2.9009	1.5315	-0.6858
H12	2.1031	2.2190	-0.9446
C13	-2.3414	-0.7320	-0.1492
C14	-3.1143	0.2477	-0.7750
H14	-2.6331	1.0034	-1.3878
C15	-4.5057	0.2543	-0.6264
C16	-5.1199	-0.7532	0.1553
C17	-4.3181	-1.7314	0.7598
H17	-4.7879	-2.5059	1.3593
C18	-2.9296	-1.7331	0.6193
H18	-2.3176	-2.4886	1.0998
C19	-5.3298	1.3216	-1.3058
H19A	-4.6953	2.0107	-1.8684
H19B	-5.9019	1.9070	-0.5764
H19C	-6.0558	0.8843	-2.0010
C20	-6.6179	-0.7826	0.3367
H20A	-6.9205	-1.6182	0.9723
H20B	-7.1346	-0.8837	-0.6251
H20C	-6.9833	0.1434	0.7960
C21	5.8475	-2.4174	0.4981
H21A	5.2263	-2.5402	1.3921
H21B	6.8361	-2.8379	0.6811
H21C	5.3817	-2.9316	-0.3498
F1	0.8215	1.8236	1.5264
F2	-0.7222	2.4392	0.1198
F3	-1.2265	1.1444	1.7970
N1	-0.9138	-0.7335	-0.3285
N2	-0.3267	-1.7604	-0.9706
N3	0.9558	-1.5241	-1.0305
01	6.0638	-1.0333	0.2060

Table S17. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Formicacid*

	Coordinates		
	x	у	z
C4	1.2362	-0.3261	-0.4349
C5	0.0322	0.1849	0.0377
C6	-0.2735	1.3913	0.8676
$\mathbf{C7}$	2.6168	0.1927	-0.3918
C8	3.6612	-0.7018	-0.0916
H8	3.4203	-1.7331	0.1315
C9	4.9840	-0.2463	-0.0774
C10	5.2668	1.0996	-0.3647
H10	6.2988	1.4353	-0.3484
C11	4.2282	1.9748	-0.6686
H11	4.4527	3.0114	-0.9007
C12	2.9013	1.5316	-0.6874
H12	2.1037	2.2191	-0.9469
C13	-2.3415	-0.7315	-0.1502
C14	-3.1148	0.2481	-0.7756
H14	-2.6339	1.0039	-1.3888
C15	-4.5061	0.2546	-0.6261
C16	-5.1197	-0.7528	0.1561
C17	-4.3175	-1.7310	0.7601
H17	-4.7869	-2.5054	1.3600
C18	-2.9291	-1.7325	0.6187
H18	-2.3167	-2.4879	1.0990
C19	-5.3307	1.3219	-1.3050
H19A	-4.6967	2.0110	-1.8680
H19B	-5.9025	1.9071	-0.5753
H19C	-6.0570	0.8844	-1.9998
C20	-6.6176	-0.7824	0.3383
H20A	-6.9197	-1.6180	0.9742
H20B	-7.1348	-0.8835	-0.6231
H20C	-6.9828	0.1437	0.7977
C21	5.8466	-2.4172	0.5005
H21A	5.2247	-2.5392	1.3941
H21B	6.8350	-2.8376	0.6846
H21C	5.3815	-2.9320	-0.3474
 F1	0.8226	1.8220	1.5269
F2	-0.7232	2.4385	0.1230
 F3	-1.2247	1,1413	1 7990
N1	-0.9139	-0.7328	-0 3305
N2	-0.3273	-1 7586	-0.9746
N3	0.9553	-1 5224	-1 0345
01	6 0632	-1 0333	0 2076

 Table S18. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in Water

	Coordinates		
	x	у	z
C4	1.2362	-0.3254	-0.4365
C5	0.0323	0.1851	0.0371
C6	-0.2732	1.3905	0.8684
$\mathbf{C7}$	2.6169	0.1930	-0.3929
C8	3.6609	-0.7017	-0.0920
H8	3.4197	-1.7329	0.1312
C9	4.9838	-0.2465	-0.0770
C10	5.2671	1.0993	-0.3642
H10	6.2991	1.4348	-0.3472
C11	4.2289	1.9747	-0.6687
H11	4.4538	3.0113	-0.9005
C12	2.9019	1.5319	-0.6882
H12	2.1046	2.2196	-0.9481
C13	-2.3415	-0.7309	-0.1510
C14	-3.1153	0.2480	-0.7768
H14	-2.6350	1.0034	-1.3908
C15	-4.5066	0.2543	-0.6265
C16	-5.1195	-0.7526	0.1571
C17	-4.3166	-1.7300	0.7615
H17	-4.7854	-2.5040	1.3625
C18	-2.9283	-1.7313	0.6193
H18	-2.3155	-2.4861	1.1000
C19	-5.3319	1.3207	-1.3058
H19A	-4.6984	2.0098	-1.8694
H19B	-5.9040	1.9060	-0.5764
H19C	-6.0581	0.8823	-2.0002
C20	-6.6172	-0.7823	0.3404
H20A	-6.9188	-1.6178	0.9766
H20B	-7.1352	-0.8835	-0.6206
H20C	-6.9821	0.1439	0.8000
C21	5.8456	-2.4176	0.5018
H21A	5.2231	-2.5393	1.3951
H21B	6.8339	-2.8382	0.6866
H21C	5.3810	-2.9323	-0.3463
F1	0.8233	1.8210	1.5272
F2	-0.7240	2.4382	0.1252
F3	-1.2235	1.1392	1.8004
N1	-0.9140	-0.7321	-0.3321
N2	-0.3276	-1.7570	-0.9778
N3	0.9550	-1.5208	-1.0378
01	6.0627	-1.0337	0.2088

Table S19. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *Formamide*

	Coordinates		
	x	у	z
C4	1.2361	-0.3249	-0.4381
C5	0.0324	0.1850	0.0366
C6	-0.2727	1.3894	0.8694
C7	2.6169	0.1933	-0.3941
C8	3.6606	-0.7015	-0.0923
H8	3.4191	-1.7327	0.1311
C9	4.9835	-0.2465	-0.0766
C10	5.2672	1.0992	-0.3639
H10	6.2992	1.4346	-0.3464
C11	4.2293	1.9747	-0.6692
H11	4.4545	3.0112	-0.9011
C12	2.9022	1.5321	-0.6895
H12	2.1051	2.2198	-0.9499
C13	-2.3415	-0.7304	-0.1518
C14	-3.1158	0.2480	-0.7779
H14	-2.6359	1.0030	-1.3927
C15	-4.5070	0.2542	-0.6268
C16	-5.1193	-0.7521	0.1580
C17	-4.3160	-1.7290	0.7627
H17	-4.7843	-2.5025	1.3645
C18	-2.9277	-1.7302	0.6197
H18	-2.3145	-2.4845	1.1007
C19	-5.3329	1.3199	-1.3065
H19A	-4.6998	2.0087	-1.8711
H19B	-5.9045	1.9057	-0.5772
H19C	-6.0595	0.8809	-2.0001
C20	-6.6169	-0.7819	0.3422
H20A	-6.9179	-1.6168	0.9794
H20B	-7.1354	-0.8842	-0.6185
H20C	-6.9817	0.1447	0.8010
C21	5.8449	-2.4176	0.5033
H21A	5.2218	-2.5391	1.3961
H21B	6.8330	-2.8382	0.6888
H21C	5.3808	-2.9325	-0.3450
$\mathbf{F1}$	0.8242	1.8196	1.5277
F2	-0.7246	2.4378	0.1279
F3	-1.2222	1.1368	1.8021
N1	-0.9141	-0.7315	-0.3336
N2	-0.3281	-1.7555	-0.9811
N3	0.9545	-1.5194	-1.0411
01	6.0622	-1.0338	0.2101

Table S20. DFT-B3LYP/6-311+G(d) of the optimized DMTT molecule in *n-Methylformamide-Mixture*

	Coordinates		
	x	у	z
C20	6.4573	-1.7194	-0.2711
H20A	7.5329	-1.5767	-0.1618
H20B	6.1061	-2.4374	0.4808
H20C	6.2409	-2.1052	-1.2753
C19	4.4671	3.2880	0.5019
H19A	5.3635	3.8872	0.6656
H19B	3.9336	3.6605	-0.3813
H19C	3.8139	3.3610	1.3806
F1	-1.1078	-2.6872	-0.1766
F3	-2.0702	-1.6612	1.4901
F2	0.0890	-1.9055	1.4653
N1	-1.8883	0.4745	-0.3638
N3	-0.1316	1.6239	-0.8164
O3	-6.3743	1.9212	0.7572
H3	-5.8922	2.6821	1.1071
O2	5.8774	-0.4361	-0.0729
N2	-1.4304	1.6549	-0.8364
01	4.9269	1.9560	0.3068
C9	4.0038	0.9854	0.0607
C5	-0.8284	-0.3280	-0.0163
C11	3.6454	-1.3686	-0.4158
H11	4.0261	-2.3670	-0.5935
C15	-5.5066	1.0167	0.2119
C10	4.5248	-0.3196	-0.1484
C7	1.7429	0.1264	-0.2513
C14	-4.1224	1.2052	0.2284
H14	-3.6777	2.0881	0.6766
C12	2.2642	-1.1488	-0.4710
H12	1.6108	-1.9817	-0.7049
C8	2.6303	1.1934	0.0057
H8	2.2172	2.1828	0.1527
C18	-3.8293	-0.9061	-0.9534
H18	-3.1788	-1.6354	-1.4216
C16	-6.0575	-0.1326	-0.3679
H16	-7.1346	-0.2599	-0.3629
C4	0.3043	0.4165	-0.3349
C6	-0.9797	-1.6379	0.6880
C13	-3.3014	0.2367	-0.3536
C17	-5.2159	-1.0818	-0.9433
H17	-5.6441	-1.9674	-1.4020

Table S21. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Gas Phase

		Coordinates	
	x	у	z
C20	6.4531	-1.7299	-0.2686
H20A	7.5283	-1.5902	-0.1534
H20B	6.0960	-2.4494	0.4785
H20C	6.2400	-2.1092	-1.2755
C19	4.4679	3.2818	0.5217
H19A	5.3643	3.8779	0.6955
H19B	3.9412	3.6610	-0.3623
H19C	3.8097	3.3484	1.3969
F1	-1.1107	-2.6804	-0.1437
F3	-2.0664	-1.6269	1.5092
F2	0.0929	-1.8734	1.4810
N1	-1.8883	0.4755	-0.3843
N3	-0.1322	1.6162	-0.8602
O3	-6.3707	1.9016	0.7817
H3	-5.8899	2.6640	1.1314
O2	5.8747	-0.4444	-0.0667
N2	-1.4321	1.6457	-0.8799
01	4.9269	1.9489	0.3194
C9	4.0033	0.9811	0.0632
C5	-0.8282	-0.3194	-0.0229
C11	3.6427	-1.3708	-0.4245
H11	4.0222	-2.3692	-0.6039
C15	-5.5043	1.0040	0.2237
C10	4.5227	-0.3243	-0.1486
$\mathbf{C7}$	1.7426	0.1283	-0.2650
C14	-4.1202	1.1966	0.2320
H14	-3.6759	2.0761	0.6869
C12	2.2622	-1.1475	-0.4860
H12	1.6079	-1.9780	-0.7268
C8	2.6304	1.1925	0.0013
H8	2.2198	2.1823	0.1521
C18	-3.8297	-0.9052	-0.9693
H18	-3.1800	-1.6280	-1.4486
C16	-6.0555	-0.1428	-0.3612
H16	-7.1321	-0.2742	-0.3502
C4	0.3043	0.4191	-0.3556
C6	-0.9786	-1.6176	0.7028
C13	-3.3019	0.2351	-0.3645
C17	-5.2156	-1.0854	-0.9503
H17	-5.6449	-1.9685	-1.4128

Table S22. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Argon

	Coordinates		
	x	у	z
C20	6.4515	-1.7347	-0.2656
H20A	7.5262	-1.5962	-0.1457
H20B	6.0906	-2.4561	0.4773
H20C	6.2415	-2.1088	-1.2748
C19	4.4646	3.2779	0.5388
H19A	5.3602	3.8725	0.7212
H19B	3.9431	3.6624	-0.3457
H19C	3.8020	3.3382	1.4108
$\mathbf{F1}$	-1.1113	-2.6768	-0.1188
F3	-2.0628	-1.6023	1.5226
$\mathbf{F2}$	0.0965	-1.8492	1.4923
N1	-1.8885	0.4736	-0.4015
N3	-0.1331	1.6074	-0.8968
O3	-6.3649	1.8917	0.7993
H3	-5.8835	2.6544	1.1485
O2	5.8729	-0.4483	-0.0604
N2	-1.4339	1.6355	-0.9158
01	4.9247	1.9450	0.3301
C9	4.0019	0.9786	0.0654
C5	-0.8279	-0.3147	-0.0291
C11	3.6419	-1.3718	-0.4315
H11	4.0216	-2.3699	-0.6118
C15	-5.5012	0.9971	0.2327
C10	4.5213	-0.3266	-0.1483
C7	1.7424	0.1286	-0.2770
C14	-4.1171	1.1914	0.2325
H14	-3.6716	2.0692	0.6892
C12	2.2619	-1.1472	-0.4988
H12	1.6079	-1.9764	-0.7451
C8	2.6293	1.1914	-0.0028
H8	2.2195	2.1811	0.1510
C18	-3.8321	-0.9069	-0.9776
H18	-3.1845	-1.6271	-1.4636
C16	-6.0546	-0.1487	-0.3525
H16	-7.1310	-0.2820	-0.3354
C4	0.3041	0.4189	-0.3735
C6	-0.9771	-1.6034	0.7134
C13	-3.3024	0.2325	-0.3729
C17	-5.2178	-1.0888	-0.9501
H17	-5.6492	-1.9708	-1.4126

Table S23. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Heptane

		Coordinates	
	x	У	z
C20	6.4508	-1.7391	-0.2544
H20A	7.5250	-1.6013	-0.1296
H20B	6.0858	-2.4602	0.4865
H20C	6.2449	-2.1122	-1.2647
C19	4.4618	3.2757	0.5462
H19A	5.3566	3.8696	0.7341
H19B	3.9449	3.6618	-0.3402
H19C	3.7952	3.3339	1.4150
F1	-1.1196	-2.6727	-0.1032
F3	-2.0609	-1.5804	1.5320
F2	0.0976	-1.8346	1.4954
N1	-1.8879	0.4726	-0.4182
N3	-0.1322	1.5995	-0.9274
O3	-6.3561	1.8806	0.8263
H3	-5.8728	2.6401	1.1804
O2	5.8718	-0.4517	-0.0512
N2	-1.4335	1.6274	-0.9468
01	4.9227	1.9424	0.3368
C9	4.0008	0.9763	0.0668
C5	-0.8279	-0.3112	-0.0365
C11	3.6420	-1.3739	-0.4327
H11	4.0220	-2.3721	-0.6116
C15	-5.4964	0.9910	0.2461
C10	4.5206	-0.3291	-0.1452
$\mathbf{C7}$	1.7426	0.1276	-0.2865
C14	-4.1124	1.1862	0.2367
H14	-3.6642	2.0605	0.6974
C12	2.2624	-1.1485	-0.5062
H12	1.6090	-1.9773	-0.7554
C8	2.6286	1.1900	-0.0077
H8	2.2190	2.1798	0.1460
C18	-3.8353	-0.9036	-0.9909
H18	-3.1907	-1.6198	-1.4868
C16	-6.0534	-0.1506	-0.3440
H16	-7.1295	-0.2851	-0.3203
C4	0.3046	0.4177	-0.3891
C6	-0.9784	-1.5927	0.7183
C13	-3.3023	0.2319	-0.3818
C17	-5.2208	-1.0862	-0.9549
H17	-5.6554	-1.9647	-1.4207

Table S24. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Toluene

	Coordinates		
	x	у	z
C20	6.4504	-1.7475	-0.2211
H20A	7.5227	-1.6104	-0.0822
H20B	6.0745	-2.4670	0.5153
H20C	6.2568	-2.1194	-1.2337
C19	4.4502	3.2711	0.5658
H19A	5.3421	3.8641	0.7688
H19B	3.9453	3.6616	-0.3252
H19C	3.7726	3.3226	1.4260
$\mathbf{F1}$	-1.1406	-2.6637	-0.0641
$\mathbf{F3}$	-2.0562	-1.5252	1.5530
$\mathbf{F2}$	0.1001	-1.7983	1.5017
N1	-1.8865	0.4669	-0.4633
N3	-0.1300	1.5748	-1.0090
O3	-6.3273	1.8566	0.8978
H3	-5.8351	2.6029	1.2687
O2	5.8689	-0.4576	-0.0253
N2	-1.4326	1.6027	-1.0290
01	4.9149	1.9376	0.3538
C9	3.9967	0.9713	0.0697
C5	-0.8279	-0.3045	-0.0575
C11	3.6438	-1.3790	-0.4354
H11	4.0257	-2.3773	-0.6093
C15	-5.4811	0.9784	0.2820
C10	4.5187	-0.3341	-0.1366
C7	1.7432	0.1235	-0.3131
C14	-4.0975	1.1746	0.2455
H14	-3.6403	2.0404	0.7128
C12	2.2651	-1.1531	-0.5260
H12	1.6142	-1.9816	-0.7829
C8	2.6253	1.1858	-0.0224
H8	2.2149	2.1755	0.1306
C18	-3.8464	-0.8959	-1.0223
H18	-3.2115	-1.6038	-1.5422
C16	-6.0503	-0.1526	-0.3177
H16	-7.1257	-0.2889	-0.2746
C4	0.3055	0.4116	-0.4318
C6	-0.9817	-1.5665	0.7292
C13	-3.3021	0.2298	-0.4052
C17	-5.2314	-1.0780	-0.9623
H17	-5.6765	-1.9479	-1.4343

Table S25. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Chloroform

	Coordinates		
	x	у	z
C20	6.4501	-1.7493	-0.2187
H20A	7.5223	-1.6124	-0.0781
H20B	6.0729	-2.4690	0.5167
H20C	6.2579	-2.1203	-1.2318
C19	4.4486	3.2696	0.5713
H19A	5.3400	3.8621	0.7774
H19B	3.9454	3.6619	-0.3197
H19C	3.7694	3.3187	1.4303
F1	-1.1447	-2.6612	-0.0537
F 3	-2.0549	-1.5130	1.5595
F2	0.1009	-1.7902	1.5050
N1	-1.8863	0.4660	-0.4705
N3	-0.1297	1.5699	-1.0237
O3	-6.3235	1.8514	0.9074
H3	-5.8303	2.5960	1.2807
O2	5.8684	-0.4590	-0.0229
N2	-1.4326	1.5977	-1.0438
01	4.9139	1.9362	0.3570
C9	3.9961	0.9702	0.0702
C5	-0.8279	-0.3027	-0.0598
C11	3.6438	-1.3799	-0.4371
H11	4.0260	-2.3782	-0.6108
C15	-5.4789	0.9754	0.2865
C10	4.5183	-0.3352	-0.1363
$\mathbf{C7}$	1.7433	0.1229	-0.3173
C14	-4.0954	1.1722	0.2464
H14	-3.6371	2.0364	0.7155
C12	2.2653	-1.1537	-0.5298
H12	1.6145	-1.9820	-0.7881
C8	2.6248	1.1850	-0.0243
H8	2.2145	2.1746	0.1294
C18	-3.8475	-0.8950	-1.0280
H18	-3.2139	-1.6013	-1.5516
C16	-6.0496	-0.1539	-0.3151
H16	-7.1248	-0.2907	-0.2695
C4	0.3056	0.4107	-0.4386
C6	-0.9822	-1.5604	0.7335
C13	-3.3020	0.2291	-0.4093
C17	-5.2325	-1.0774	-0.9647
H17	-5.6788	-1.9460	-1.4380

Table S26. DFT-B3LYP/6-311+G(d) of the	optimized DTTP molecule in Chlorobenzene
---	--

	Coordinates		
	x	у	z
C20	6.4497	-1.7516	-0.2173
H20A	7.5216	-1.6151	-0.0746
H20B	6.0707	-2.4718	0.5165
H20C	6.2590	-2.1210	-1.2311
C19	4.4470	3.2673	0.5790
H19A	5.3379	3.8591	0.7888
H19B	3.9457	3.6623	-0.3118
H19C	3.7662	3.3134	1.4368
$\mathbf{F1}$	-1.1507	-2.6579	-0.0396
F3	-2.0525	-1.4969	1.5690
F2	0.1025	-1.7799	1.5091
N1	-1.8860	0.4649	-0.4789
N3	-0.1294	1.5640	-1.0414
O3	-6.3198	1.8453	0.9169
H3	-5.8259	2.5884	1.2926
O2	5.8677	-0.4608	-0.0209
N2	-1.4326	1.5916	-1.0616
01	4.9128	1.9341	0.3613
C9	3.9954	0.9686	0.0709
C5	-0.8278	-0.3004	-0.0622
C11	3.6437	-1.3809	-0.4400
H11	4.0260	-2.3791	-0.6141
C15	-5.4766	0.9716	0.2908
C10	4.5178	-0.3365	-0.1365
C7	1.7433	0.1223	-0.3223
C14	-4.0932	1.1693	0.2469
H14	-3.6338	2.0320	0.7177
C12	2.2655	-1.1543	-0.5350
H12	1.6148	-1.9821	-0.7951
C8	2.6243	1.1840	-0.0262
H8	2.2140	2.1734	0.1289
C18	-3.8485	-0.8946	-1.0342
H18	-3.2159	-1.5990	-1.5616
C16	-6.0485	-0.1563	-0.3125
H16	-7.1235	-0.2939	-0.2640
C4	0.3058	0.4099	-0.4466
C6	-0.9827	-1.5526	0.7397
C13	-3.3019	0.2282	-0.4140
C17	-5.2332	-1.0777	-0.9672
H17	-5.6808	-1.9451	-1.4416

Table S27. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Tetrahydrofuran

	Coordinates		
	x	У	z
C20	6.4494	-1.7528	-0.2168
H20A	7.5210	-1.6166	-0.0724
H20B	6.0692	-2.4736	0.5156
H20C	6.2598	-2.1207	-1.2313
C19	4.4454	3.2655	0.5851
H19A	5.3360	3.8570	0.7975
H19B	3.9455	3.6625	-0.3056
H19C	3.7634	3.3093	1.4419
F1	-1.1552	-2.6555	-0.0294
F3	-2.0500	-1.4854	1.5762
F2	0.1044	-1.7730	1.5114
N1	-1.8859	0.4640	-0.4846
N3	-0.1294	1.5598	-1.0537
O3	-6.3174	1.8422	0.9215
H3	-5.8231	2.5847	1.2979
O2	5.8672	-0.4619	-0.0195
N2	-1.4328	1.5872	-1.0738
01	4.9119	1.9327	0.3648
C9	3.9948	0.9676	0.0715
C5	-0.8277	-0.2989	-0.0640
C11	3.6437	-1.3814	-0.4427
H11	4.0262	-2.3794	-0.6172
C15	-5.4752	0.9694	0.2930
C10	4.5174	-0.3373	-0.1368
$\mathbf{C7}$	1.7434	0.1220	-0.3261
C14	-4.0919	1.1678	0.2462
H14	-3.6318	2.0302	0.7168
C12	2.2656	-1.1545	-0.5393
H12	1.6150	-1.9818	-0.8012
C8	2.6238	1.1833	-0.0274
H8	2.2135	2.1725	0.1289
C18	-3.8491	-0.8955	-1.0366
H18	-3.2172	-1.5993	-1.5657
C16	-6.0478	-0.1583	-0.3099
H16	-7.1227	-0.2966	-0.2593
C4	0.3058	0.4092	-0.4523
C6	-0.9827	-1.5472	0.7441
C13	-3.3018	0.2272	-0.4170
C17	-5.2336	-1.0792	-0.9670
H17	-5.6820	-1.9463	-1.4409

	Coordinates		
	x	У	z
C20	6.4495	-1.7531	-0.2170
H20A	7.5210	-1.6170	-0.0717
H20B	6.0687	-2.4745	0.5145
H20C	6.2607	-2.1202	-1.2320
C19	4.4442	3.2645	0.5893
H19A	5.3345	3.8557	0.8035
H19B	3.9450	3.6629	-0.3011
H19C	3.7615	3.3065	1.4456
F1	-1.1588	-2.6542	-0.0227
F3	-2.0481	-1.4780	1.5815
F2	0.1058	-1.7692	1.5126
N1	-1.8858	0.4631	-0.4880
N3	-0.1294	1.5569	-1.0613
O3	-6.3160	1.8410	0.9233
H3	-5.8214	2.5833	1.2997
O2	5.8671	-0.4622	-0.0191
N2	-1.4329	1.5841	-1.0814
01	4.9111	1.9320	0.3670
C9	3.9944	0.9670	0.0719
C5	-0.8276	-0.2982	-0.0649
C11	3.6439	-1.3816	-0.4446
H11	4.0266	-2.3794	-0.6197
C15	-5.4742	0.9684	0.2939
C10	4.5172	-0.3377	-0.1372
$\mathbf{C7}$	1.7434	0.1216	-0.3284
C14	-4.0910	1.1671	0.2454
H14	-3.6305	2.0294	0.7158
C12	2.2659	-1.1547	-0.5421
H12	1.6154	-1.9818	-0.8050
C8	2.6235	1.1828	-0.0281
H8	2.2130	2.1718	0.1291
C18	-3.8495	-0.8965	-1.0377
H18	-3.2181	-1.6002	-1.5675
C16	-6.0474	-0.1595	-0.3085
H16	-7.1222	-0.2979	-0.2567
C4	0.3058	0.4085	-0.4557
C6	-0.9827	-1.5439	0.7471
C13	-3.3017	0.2265	-0.4187
C17	-5.2340	-1.0802	-0.9665
H17	-5.6828	-1.9475	-1.4399

Table S29. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Dichloroethane

	Coordinates		
	x	у	z
C20	6.4498	-1.7532	-0.2180
H20A	7.5212	-1.6171	-0.0713
H20B	6.0683	-2.4758	0.5119
H20C	6.2622	-2.1184	-1.2338
C19	4.4420	3.2627	0.5966
H19A	5.3317	3.8536	0.8139
H19B	3.9439	3.6635	-0.2932
H19C	3.7581	3.3017	1.4521
F1	-1.1659	-2.6519	-0.0114
F3	-2.0440	-1.4653	1.5912
F2	0.1086	-1.7638	1.5137
N1	-1.8857	0.4614	-0.4936
N3	-0.1295	1.5519	-1.0736
O3	-6.3137	1.8400	0.9248
H3	-5.8188	2.5825	1.3005
O2	5.8668	-0.4625	-0.0185
N2	-1.4332	1.5788	-1.0936
01	4.9098	1.9308	0.3709
C9	3.9936	0.9661	0.0726
C5	-0.8274	-0.2972	-0.0663
C11	3.6444	-1.3818	-0.4481
H11	4.0276	-2.3792	-0.6241
C15	-5.4728	0.9672	0.2946
C10	4.5170	-0.3380	-0.1381
C7	1.7435	0.1209	-0.3322
C14	-4.0897	1.1661	0.2434
H14	-3.6283	2.0286	0.7126
C12	2.2664	-1.1550	-0.5469
H12	1.6162	-1.9818	-0.8116
C8	2.6228	1.1819	-0.0290
H8	2.2119	2.1706	0.1298
C18	-3.8502	-0.8987	-1.0383
H18	-3.2196	-1.6027	-1.5687
C16	-6.0469	-0.1613	-0.3058
H16	-7.1215	-0.3001	-0.2520
C4	0.3058	0.4072	-0.4613
C6	-0.9826	-1.5387	0.7522
C13	-3.3016	0.2249	-0.4214
C17	-5.2345	-1.0826	-0.9645
H17	-5.6841	-1.9503	-1.4363

Table S30	. DFT-B3LYP/	6-311+G(d) of th	e optimized DTTI	P molecule in 2	2-Methyl-2-Propanol
-----------	--------------	------------------	------------------	-----------------	---------------------

	Coordinates			
	x	у	z	
C20	6.4507	-1.7525	-0.2196	
H20A	7.5217	-1.6162	-0.0707	
H20B	6.0683	-2.4771	0.5077	
H20C	6.2648	-2.1150	-1.2366	
C19	4.4380	3.2602	0.6078	
H19A	5.3268	3.8508	0.8297	
H19B	3.9415	3.6648	-0.2812	
H19C	3.7524	3.2944	1.4620	
$\mathbf{F1}$	-1.1777	-2.6488	0.0050	
F3	-2.0369	-1.4466	1.6061	
F2	0.1135	-1.7573	1.5140	
N1	-1.8856	0.4584	-0.5015	
N3	-0.1298	1.5442	-1.0914	
O3	-6.3102	1.8402	0.9253	
H3	-5.8146	2.5832	1.2993	
O2	5.8666	-0.4624	-0.0176	
N2	-1.4337	1.5707	-1.1111	
01	4.9074	1.9295	0.3767	
C9	3.9924	0.9651	0.0736	
C5	-0.8271	-0.2964	-0.0686	
C11	3.6455	-1.3819	-0.4534	
H11	4.0295	-2.3787	-0.6309	
C15	-5.4707	0.9662	0.2951	
C10	4.5169	-0.3383	-0.1394	
C7	1.7436	0.1197	-0.3378	
C14	-4.0876	1.1652	0.2398	
H14	-3.6250	2.0286	0.7063	
C12	2.2675	-1.1556	-0.5543	
H12	1.6179	-1.9820	-0.8215	
C8	2.6216	1.1805	-0.0304	
H8	2.2100	2.1685	0.1306	
C18	-3.8514	-0.9029	-1.0378	
H18	-3.2220	-1.6080	-1.5681	
C16	-6.0461	-0.1638	-0.3012	
H16	-7.1206	-0.3027	-0.2444	
C4	0.3059	0.4050	-0.4695	
C6	-0.9824	-1.5316	0.7594	
C13	-3.3015	0.2224	-0.4250	
C17	-5.2355	-1.0867	-0.9600	
H17	-5.6864	-1.9555	-1.4285	

Table S31. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in 1-Butanol

x

6.4511

7.5219

6.0680

C20

H20A

H20B

Coordinates	
у	z
-1.7522	-0.2203
-1.6159	-0.0701
-2.4776	0.5059
-2.1135	-1.2378
3.2591	0.6126
3.8495	0.8364
3.6652	-0.2759
3.2912	1.4663
-2.6476	0.0126
-1.4384	1.6128
-1.7542	1.5141
0.4570	-0.5047
1.5411	-1.0985
1.8404	0.9249
2.5838	1.2978

Table S32. DFT-B3LYP/6-311+G(d) of the

H20C	6.2663	-2.1135	-1.2378
C19	4.4363	3.2591	0.6126
H19A	5.3247	3.8495	0.8364
H19B	3.9403	3.6652	-0.2759
H19C	3.7500	3.2912	1.4663
F1	-1.1826	-2.6476	0.0126
F3	-2.0336	-1.4384	1.6128
F2	0.1159	-1.7542	1.5141
N1	-1.8855	0.4570	-0.5047
N3	-0.1301	1.5411	-1.0985
O3	-6.3090	1.8404	0.9249
H3	-5.8132	2.5838	1.2978
O2	5.8665	-0.4622	-0.0174
N2	-1.4340	1.5673	-1.1181
01	4.9064	1.9289	0.3792
C9	3.9918	0.9646	0.0740
C5	-0.8269	-0.2962	-0.0696
C11	3.6459	-1.3818	-0.4562
H11	4.0303	-2.3784	-0.6345
C15	-5.4699	0.9657	0.2950
C10	4.5168	-0.3383	-0.1402
C7	1.7437	0.1192	-0.3404
C14	-4.0869	1.1649	0.2379
H14	-3.6239	2.0287	0.7031
C12	2.2680	-1.1557	-0.5579
H12	1.6187	-1.9820	-0.8266
C8	2.6210	1.1799	-0.0309
H8	2.2091	2.1676	0.1313
C18	-3.8518	-0.9050	-1.0372
H18	-3.2229	-1.6107	-1.5672
C16	-6.0458	-0.1651	-0.2994
H16	-7.1202	-0.3041	-0.2412
C4	0.3058	0.4040	-0.4730
C6	-0.9821	-1.5286	0.7626
C13	-3.3015	0.2212	-0.4265
C17	-5.2359	-1.0888	-0.9578
H17	-5.6871	-1.9583	-1.4247

	Coordinates			
	x	У	z	
C20	6.4518	-1.7516	-0.2204	
H20A	7.5224	-1.6150	-0.0692	
H20B	6.0682	-2.4776	0.5048	
H20C	6.2679	-2.1121	-1.2384	
C19	4.4343	3.2584	0.6166	
H19A	5.3223	3.8488	0.8420	
H19B	3.9389	3.6657	-0.2717	
H19C	3.7474	3.2887	1.4698	
$\mathbf{F1}$	-1.1884	-2.6465	0.0187	
$\mathbf{F3}$	-2.0304	-1.4311	1.6189	
$\mathbf{F2}$	0.1179	-1.7529	1.5133	
N1	-1.8854	0.4556	-0.5077	
N3	-0.1301	1.5379	-1.1052	
O3	-6.3074	1.8409	0.9252	
H3	-5.8113	2.5848	1.2969	
O2	5.8666	-0.4618	-0.0169	
N2	-1.4341	1.5639	-1.1246	
01	4.9052	1.9287	0.3813	
C9	3.9913	0.9643	0.0744	
C5	-0.8268	-0.2962	-0.0705	
C11	3.6466	-1.3818	-0.4582	
H11	4.0315	-2.3780	-0.6370	
C15	-5.4689	0.9657	0.2952	
C10	4.5168	-0.3382	-0.1407	
C7	1.7438	0.1185	-0.3426	
C14	-4.0860	1.1646	0.2367	
H14	-3.6223	2.0286	0.7009	
C12	2.2687	-1.1561	-0.5607	
H12	1.6199	-1.9823	-0.8305	
C8	2.6204	1.1792	-0.0314	
H8	2.2081	2.1666	0.1316	
C18	-3.8524	-0.9065	-1.0370	
H18	-3.2241	-1.6127	-1.5670	
C16	-6.0456	-0.1656	-0.2976	
H16	-7.1199	-0.3044	-0.2384	
C4	0.3059	0.4028	-0.4761	
C6	-0.9822	-1.5262	0.7652	
C13	-3.3014	0.2202	-0.4277	
C17	-5.2364	-1.0901	-0.9560	
H17	-5.6883	-1.9598	-1.4217	

Table S33. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Ethanol

	Coordinates			
	x	у	z	
C20	6.4525	-1.7509	-0.2206	
H20A	7.5229	-1.6141	-0.0684	
H20B	6.0685	-2.4777	0.5034	
H20C	6.2695	-2.1102	-1.2392	
C19	4.4321	3.2576	0.6210	
H19A	5.3195	3.8481	0.8483	
H19B	3.9373	3.6660	-0.2671	
H19C	3.7443	3.2861	1.4736	
F1	-1.1944	-2.6452	0.0256	
F3	-2.0268	-1.4230	1.6255	
F2	0.1202	-1.7511	1.5125	
N1	-1.8854	0.4541	-0.5111	
N3	-0.1302	1.5342	-1.1129	
O3	-6.3056	1.8416	0.9253	
H3	-5.8092	2.5857	1.2961	
02	5.8666	-0.4614	-0.0162	
N2	-1.4343	1.5601	-1.1321	
01	4.9039	1.9284	0.3840	
C9	3.9906	0.9640	0.0749	
C5	-0.8266	-0.2962	-0.0717	
C11	3.6474	-1.3817	-0.4606	
H11	4.0328	-2.3776	-0.6400	
C15	-5.4679	0.9656	0.2955	
C10	4.5169	-0.3381	-0.1411	
C7	1.7439	0.1178	-0.3451	
C14	-4.0849	1.1644	0.2351	
H14	-3.6205	2.0287	0.6980	
C12	2.2695	-1.1564	-0.5641	
H12	1.6210	-1.9825	-0.8352	
C8	2.6198	1.1786	-0.0320	
H8	2.2069	2.1656	0.1321	
C18	-3.8531	-0.9084	-1.0364	
H18	-3.2254	-1.6152	-1.5663	
C16	-6.0453	-0.1664	-0.2953	
H16	-7.1196	-0.3050	-0.2347	
C4	0.3059	0.4015	-0.4797	

Table S34. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Methanol

-1.5235

0.2190

-1.0917

-1.9620

-0.9821

-3.3013

-5.2371

-5.6896

0.7680

-0.4292

-0.9536

-1.4177

C6

C13

C17

H17

	Coordinates			
	x	у	z	
C20	6.4530	-1.7503	-0.2207	
H20A	7.5234	-1.6133	-0.0683	
H20B	6.0691	-2.4774	0.5032	
H20C	6.2701	-2.1094	-1.2393	
C19	4.4313	3.2576	0.6219	
H19A	5.3186	3.8481	0.8495	
H19B	3.9368	3.6662	-0.2662	
H19C	3.7433	3.2857	1.4743	
F1	-1.1969	-2.6451	0.0273	
F3	-2.0259	-1.4209	1.6275	
F2	0.1206	-1.7514	1.5119	
N1	-1.8853	0.4535	-0.5120	
N3	-0.1301	1.5331	-1.1147	
O3	-6.3048	1.8420	0.9257	
H3	-5.8082	2.5864	1.2960	
O2	5.8667	-0.4610	-0.0159	
N2	-1.4342	1.5590	-1.1339	
01	4.9034	1.9285	0.3845	
C9	3.9904	0.9639	0.0751	
C5	-0.8266	-0.2965	-0.0720	
C11	3.6478	-1.3817	-0.4609	
H11	4.0335	-2.3776	-0.6404	
C15	-5.4674	0.9659	0.2957	
C10	4.5170	-0.3380	-0.1411	
$\mathbf{C7}$	1.7440	0.1173	-0.3456	
C14	-4.0844	1.1643	0.2349	
H14	-3.6196	2.0285	0.6978	
C12	2.2699	-1.1568	-0.5646	
H12	1.6217	-1.9831	-0.8359	
C8	2.6196	1.1782	-0.0321	
H8	2.2064	2.1651	0.1321	
C18	-3.8535	-0.9086	-1.0366	
H18	-3.2261	-1.6156	-1.5667	
C16	-6.0452	-0.1660	-0.2949	
H16	-7.1196	-0.3044	-0.2340	
C4	0.3060	0.4008	-0.4806	
C6	-0.9824	-1.5231	0.7687	
C13	-3.3013	0.2187	-0.4296	
C17	-5.2375	-1.0916	-0.9533	
H17	-5.6903	-1.9618	-1.4173	

Table S35. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Acetonitrile

		Coordinates	
	<i>x</i>	у	z
C20	6.4532	-1.7502	-0.2202
H20A	7.5234	-1.6133	-0.0667
H20B	6.0685	-2.4775	0.5031
H20C	6.2713	-2.1090	-1.2391
C19	4.4301	3.2570	0.6245
H19A	5.3171	3.8476	0.8532
H19B	3.9359	3.6664	-0.2635
H19C	3.7417	3.2840	1.4765
$\mathbf{F1}$	-1.1998	-2.6441	0.0312
F3	-2.0239	-1.4163	1.6310
F2	0.1220	-1.7499	1.5117
N1	-1.8853	0.4527	-0.5141
N3	-0.1302	1.5310	-1.1194
O3	-6.3039	1.8421	0.9260
H3	-5.8072	2.5866	1.2956
O2	5.8667	-0.4609	-0.0157
N2	-1.4344	1.5568	-1.1385
01	4.9028	1.9282	0.3861
C9	3.9901	0.9637	0.0753
C5	-0.8265	-0.2962	-0.0726
C11	3.6482	-1.3817	-0.4624
H11	4.0341	-2.3773	-0.6424
C15	-5.4668	0.9656	0.2960
C10	4.5170	-0.3380	-0.1415
C7	1.7440	0.1170	-0.3472
C14	-4.0839	1.1641	0.2341
H14	-3.6188	2.0285	0.6962
C12	2.2702	-1.1568	-0.5668
H12	1.6222	-1.9829	-0.8389
C8	2.6192	1.1779	-0.0325
H8	2.2059	2.1645	0.1325
C18	-3.8538	-0.9097	-1.0362
H18	-3.2267	-1.6170	-1.5663
C16	-6.0450	-0.1667	-0.2935
H16	-7.1193	-0.3052	-0.2317
C4	0.3060	0.4002	-0.4828
C6	-0.9822	-1.5213	0.7704
C13	-3.3013	0.2181	-0.4304
C17	-5.2377	-1.0927	-0.9519

Table S36. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in dmso

-1.9632

-1.4149

-5.6909

H17

	Coordinates			
	x	у	z	
C20	6.4533	-1.7501	-0.2205	
H20A	7.5235	-1.6130	-0.0669	
H20B	6.0687	-2.4776	0.5026	
H20C	6.2715	-2.1086	-1.2395	
C19	4.4296	3.2568	0.6256	
H19A	5.3165	3.8474	0.8547	
H19B	3.9355	3.6665	-0.2623	
H19C	3.7410	3.2832	1.4774	
F1	-1.2008	-2.6438	0.0327	
F3	-2.0232	-1.4146	1.6324	
F2	0.1224	-1.7493	1.5118	
N1	-1.8852	0.4524	-0.5148	
N3	-0.1303	1.5302	-1.1210	
O3	-6.3036	1.8422	0.9259	
H3	-5.8069	2.5869	1.2951	
O2	5.8667	-0.4608	-0.0156	
N2	-1.4344	1.5560	-1.1400	
01	4.9025	1.9282	0.3865	
C9	3.9899	0.9636	0.0754	
C5	-0.8265	-0.2962	-0.0727	
C11	3.6483	-1.3817	-0.4629	
H11	4.0344	-2.3773	-0.6430	
C15	-5.4667	0.9655	0.2959	
C10	4.5170	-0.3380	-0.1416	
C7	1.7440	0.1169	-0.3477	
C14	-4.0837	1.1641	0.2337	
H14	-3.6185	2.0286	0.6955	
C12	2.2704	-1.1569	-0.5674	
H12	1.6225	-1.9830	-0.8398	
C8	2.6191	1.1778	-0.0326	
H8	2.2057	2.1643	0.1325	
C18	-3.8539	-0.9102	-1.0361	
H18	-3.2269	-1.6176	-1.5661	
C16	-6.0449	-0.1670	-0.2931	
H16	-7.1192	-0.3055	-0.2310	
C4	0.3060	0.3999	-0.4836	
C6	-0.9822	-1.5206	0.7710	
C13	-3.3013	0.2178	-0.4307	
C17	-5.2378	-1.0932	-0.9514	
H17	-5.6910	-1.9638	-1.4140	

Table S37. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Formicacid

_

_

	Coordinates			
	x	У	z	
C20	6.4540	-1.7495	-0.2203	
H20A	7.5241	-1.6122	-0.0665	
H20B	6.0694	-2.4773	0.5025	
H20C	6.2724	-2.1077	-1.2394	
C19	4.4284	3.2567	0.6270	
H19A	5.3150	3.8474	0.8569	
H19B	3.9347	3.6668	-0.2609	
H19C	3.7394	3.2824	1.4786	
$\mathbf{F1}$	-1.2041	-2.6433	0.0355	
F3	-2.0220	-1.4112	1.6351	
F2	0.1230	-1.7491	1.5113	
N1	-1.8851	0.4516	-0.5164	
N3	-0.1301	1.5283	-1.1244	
O3	-6.3024	1.8424	0.9270	
H3	-5.8055	2.5870	1.2961	
O2	5.8669	-0.4604	-0.0151	
N2	-1.4343	1.5541	-1.1434	
01	4.9018	1.9283	0.3874	
C9	3.9897	0.9635	0.0756	
C5	-0.8265	-0.2964	-0.0733	
C11	3.6489	-1.3818	-0.4634	
H11	4.0353	-2.3772	-0.6435	
C15	-5.4659	0.9657	0.2965	
C10	4.5171	-0.3379	-0.1416	
C7	1.7442	0.1162	-0.3487	
C14	-4.0829	1.1639	0.2336	
H14	-3.6171	2.0280	0.6956	
C12	2.2709	-1.1573	-0.5684	
H12	1.6234	-1.9837	-0.8411	
C8	2.6188	1.1773	-0.0329	
H8	2.2050	2.1637	0.1325	
C18	-3.8544	-0.9104	-1.0366	
H18	-3.2279	-1.6179	-1.5670	
C16	-6.0448	-0.1666	-0.2924	
H16	-7.1191	-0.3049	-0.2298	
C4	0.3061	0.3990	-0.4851	
C6	-0.9825	-1.5197	0.7721	
C13	-3.3012	0.2174	-0.4314	
C17	-5.2383	-1.0931	-0.9512	
H17	-5.6921	-1.9635	-1.4137	

Table S38. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in Water

	Coordinates			
	x	у	z	
C20	6.4540	-1.7496	-0.2199	
H20A	7.5241	-1.6123	-0.0656	
H20B	6.0691	-2.4774	0.5026	
H20C	6.2729	-2.1077	-1.2392	
C19	4.4280	3.2564	0.6282	
H19A	5.3145	3.8470	0.8586	
H19B	3.9344	3.6669	-0.2596	
H19C	3.7388	3.2815	1.4796	
$\mathbf{F1}$	-1.2056	-2.6427	0.0374	
F3	-2.0211	-1.4088	1.6369	
F2	0.1235	-1.7484	1.5112	
N1	-1.8851	0.4513	-0.5173	
N3	-0.1301	1.5273	-1.1267	
O3	-6.3021	1.8421	0.9273	
H3	-5.8051	2.5867	1.2965	
O2	5.8668	-0.4604	-0.0150	
N2	-1.4344	1.5530	-1.1457	
01	4.9016	1.9281	0.3880	
C9	3.9895	0.9634	0.0756	
C5	-0.8264	-0.2961	-0.0735	
C11	3.6490	-1.3818	-0.4641	
H11	4.0355	-2.3772	-0.6444	
C15	-5.4657	0.9654	0.2968	
C10	4.5171	-0.3380	-0.1417	
C7	1.7442	0.1161	-0.3494	
C14	-4.0827	1.1637	0.2334	
H14	-3.6168	2.0279	0.6951	
C12	2.2710	-1.1574	-0.5693	
H12	1.6235	-1.9836	-0.8424	
C8	2.6186	1.1772	-0.0331	
H8	2.2049	2.1635	0.1327	
C18	-3.8545	-0.9107	-1.0367	
H18	-3.2281	-1.6182	-1.5673	
C16	-6.0447	-0.1670	-0.2918	
H16	-7.1190	-0.3053	-0.2289	
C4	0.3061	0.3988	-0.4861	
C6	-0.9825	-1.5187	0.7730	
C13	-3.3012	0.2172	-0.4318	
C17	-5.2384	-1.0935	-0.9508	
H17	-5.6923	-1.9640	-1.4131	

Table S39.	DFT-B3LYP/6-311+G(d) of the	optimized DTTP	molecule in	Formamide

_

		Coordinates	
	<i>x</i>	у	z
C20	6.4544	-1.7492	-0.2199
H20A	7.5244	-1.6118	-0.0651
H20B	6.0693	-2.4772	0.5022
H20C	6.2738	-2.1069	-1.2394
C19	4.4271	3.2563	0.6295
H19A	5.3134	3.8470	0.8603
H19B	3.9337	3.6669	-0.2583
H19C	3.7376	3.2811	1.4807
$\mathbf{F1}$	-1.2078	-2.6424	0.0397
$\mathbf{F3}$	-2.0199	-1.4061	1.6391
F2	0.1242	-1.7480	1.5109
N1	-1.8851	0.4507	-0.5185
N3	-0.1301	1.5258	-1.1293
O3	-6.3014	1.8426	0.9273
H3	-5.8042	2.5871	1.2963
O2	5.8669	-0.4601	-0.0147
N2	-1.4344	1.5516	-1.1482
01	4.9010	1.9280	0.3891
C9	3.9892	0.9633	0.0759
C5	-0.8264	-0.2963	-0.0739
C11	3.6494	-1.3817	-0.4650
H11	4.0361	-2.3769	-0.6456
C15	-5.4653	0.9655	0.2969
C10	4.5172	-0.3378	-0.1419
$\mathbf{C7}$	1.7442	0.1157	-0.3502
C14	-4.0823	1.1637	0.2328
H14	-3.6160	2.0279	0.6942
C12	2.2714	-1.1576	-0.5706
H12	1.6242	-1.9838	-0.8443
C8	2.6183	1.1768	-0.0332
H8	2.2043	2.1630	0.1331
C18	-3.8548	-0.9114	-1.0365
H18	-3.2287	-1.6191	-1.5670
C16	-6.0446	-0.1671	-0.2911
H16	-7.1188	-0.3053	-0.2276
C4	0.3061	0.3981	-0.4874
C6	-0.9825	-1.5179	0.7739
C13	-3.3012	0.2168	-0.4323
C17	-5.2387	-1.0939	-0.9500
H17	-5.6928	-1.9646	-1.4117

Table S40. DFT-B3LYP/6-311+G(d) of the optimized DTTP molecule in n-Methylformamide-Mixture

				Angles						Torsic	ns		
		DMTT			DT	TP			DMTT			DTTP	
	C5-C6-F1	C13-N1-C5	C9-O1-C21	C13-N1-C5	C5-C6-F1	C9-O1-C19	C15-O3-H13	C7-C4-C5-C6	N2-N1-C13-C18	C9-O1-C21-H21A	C7-C4-C5-C6	N2-N1-C13-C14	C9-O1-C19-H19B
X-ray	111.49	130.09	117.86	132.20	112.86	117.41	109.47	-7.73	73.90	59.95	3.78	48.92	60.02
1.000	111.39	131.23	118.59	131.44	112.61	118.23	110.41	-7.71	53.96	62.18	8.73	51.16	60.36
1.430	111.36	131.08	118.61	131.32	112.63	118.24	110.51	-7.51	55.87	62.18	8.51	52.75	60.52
1.911	111.35	130.98	118.62	131.25	112.64	118.25	110.57	-7.31	57.29	62.18	8.26	53.83	60.67
2.374	111.33	130.93	118.63	131.17	112.64	118.26	110.62	-7.16	58.17	62.17	7.99	54.95	60.73
4.711	111.30	130.80	118.66	131.00	112.65	118.28	110.69	-6.79	60.57	62.08	7.24	57.74	60.94
5.697	111.29	130.77	118.67	130.96	112.66	118.28	110.71	-6.71	61.08	62.04	7.13	58.29	61.01
7.426	111.28	130.74	118.68	130.91	112.67	118.29	110.73	-6.62	61.66	61.99	7.03	58.94	61.08
8.930	111.28	130.73	118.68	130.88	112.67	118.28	110.74	-6.56	61.99	61.96	6.97	59.30	61.12
10.125	111.28	130.72	118.69	130.87	112.68	118.28	110.74	-6.53	62.18	61.94	6.94	59.51	61.15
12.470	111.27	130.70	118.69	130.85	112.68	118.29	110.76	-6.48	62.45	61.91	6.90	59.79	61.20
17.332	111.26	130.69	118.70	130.82	112.69	118.29	110.77	-6.41	62.78	61.86	6.84	60.13	61.29
20.493	111.26	130.68	118.70	130.81	112.70	118.29	110.78	-6.38	62.99	61.84	6.85	60.24	61.31
24.852	111.26	130.68	118.70	130.80	112.71	118.29	110.78	-6.35	63.03	61.82	6.83	60.36	61.34
32.613	111.26	130.67	118.70	130.79	112.71	118.28	110.79	-6.31	63.17	61.79	6.80	60.49	61.36
35.688	111.26	130.67	118.70	130.79	112.72	118.29	110.80	-6.31	63.21	61.79	6.80	60.53	61.37
46.826	111.25	130.66	118.70	130.78	112.72	118.29	110.80	-6.29	63.29	61.76	6.76	60.62	61.38
51.100	111.25	130.66	118.70	130.78	112.72	118.28	110.80	-6.28	63.31	61.75	6.75	60.65	61.39
78.355	111.25	130.66	118.71	130.78	112.72	118.29	110.81	-6.25	63.42	61.73	6.73	60.74	61.41
108.940	111.25	130.65	118.71	130.77	112.72	118.29	110.81	-6.23	63.55	61.74	6.70	60.80	61.42
181.560	111.25	130.64	118.71	130.77	112.72	118.29	110.81	-6.21	63.68	61.73	6.69	60.84	61.40

Table S42. CAM-B3LYP/6-311+G(d) charges ChelpG of the DMTT structure

										Ch	arge (e)	1								
											ε									
Atom	1.00	1.43	1.91	2.37	4.71	5.70	7.43	8.93	10.13	12.47	17.33	20.49	24.85	32.61	35.69	46.83	51.10	78.36	108.94	181.56
C4	0.42	0.44	0.43	0.43	0.44	0.45	0.45	0.46	0.47	0.47	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
C5	-0.43	-0.43	-0.43	-0.43	-0.41	-0.41	-0.41	-0.42	-0.42	-0.41	-0.40	-0.40	-0.40	-0.41	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40
C6	0.91	0.92	0.93	0.93	0.93	0.92	0.92	0.93	0.93	0.91	0.90	0.91	0.91	0.92	0.92	0.92	0.92	0.92	0.92	0.92
C7	-0.06	-0.07	-0.05	-0.05	-0.05	-0.07	-0.07	-0.08	-0.08	-0.08	-0.07	-0.07	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06
C8	-0.25	-0.25	-0.28	-0.28	-0.29	-0.29	-0.29	-0.28	-0.28	-0.28	-0.29	-0.30	-0.30	-0.30	-0.31	-0.31	-0.31	-0.31	-0.31	-0.32
H8	0.12	0.12	0.13	0.14	0.15	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16
C9	0.46	0.47	0.49	0.49	0.50	0.50	0.50	0.49	0.49	0.49	0.50	0.50	0.50	0.51	0.51	0.51	0.51	0.51	0.51	0.51
C10	-0.30	-0.31	-0.32	-0.32	-0.33	-0.33	-0.33	-0.32	-0.33	-0.33	-0.33	-0.33	-0.34	-0.34	-0.34	-0.34	-0.34	-0.34	-0.34	-0.34
H10	0.14	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
C11	-0.02	-0.03	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
H11	0.10	0.11	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
C12	-0.12	-0.12	-0.13	-0.13	-0.14	-0.13	-0.13	-0.13	-0.13	-0.13	-0.14	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15
H12	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
C13	-0.04	-0.06	-0.07	-0.06	-0.07	-0.09	-0.10	-0.11	-0.13	-0.13	-0.13	-0.13	-0.12	-0.12	-0.12	-0.12	-0.12	-0.11	-0.11	-0.11
C14	-0.16	-0.17	-0.17	-0.17	-0.18	-0.17	-0.16	-0.16	-0.14	-0.14	-0.14	-0.14	-0.14	-0.15	-0.14	-0.14	-0.14	-0.15	-0.15	-0.15
H14	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.11
C15	0.14	0.15	0.14	0.14	0.14	0.14	0.14	0.14	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.14
C16	0.09	0.10	0.10	0.10	0.11	0.11	0.10	0.11	0.12	0.12	0.12	0.12	0.12	0.11	0.12	0.12	0.12	0.12	0.12	0.12
C17	-0.15	-0.16	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16	-0.16
H17	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
C18	-0.15	-0.14	-0.15	-0.16	-0.16	-0.15	-0.15	-0.14	-0.13	-0.13	-0.14	-0.14	-0.14	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15
H18	0.14	0.14	0.14	0.14	0.15	0.14	0.14	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
C19	-0.30	-0.32	-0.30	-0.30	-0.29	-0.29	-0.30	-0.31	-0.31	-0.31	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33
H19A	0.10	0.11	0.11	0.11	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
H19B	0.09	0.10	0.10	0.10	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.10	0.11
H19C	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
C20	-0.22	-0.26	-0.26	-0.26	-0.28	-0.28	-0.27	-0.27	-0.28	-0.28	-0.29	-0.28	-0.29	-0.28	-0.28	-0.29	-0.29	-0.30	-0.30	-0.29
H20A	0.07	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
H20B	0.07	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10
H200	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
U21	0.15	0.15	0.15	0.15	0.17	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.19	0.19	0.19	0.10	0.10	0.10	0.19	0.19
П21А U91D	0.03	0.03	0.05	0.03	0.05	0.05	0.05	0.05	0.03	0.03	0.05	0.05	0.03	0.03	0.05	0.03	0.03	0.05	0.05	0.05
H91C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F1	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
F 1 F 2	0.27	-0.28	-0.29	-0.29	-0.25	-0.29	-0.29	-0.29	-0.29	-0.25	-0.28	-0.28	-0.28	-0.25	-0.29	-0.25	-0.25	-0.29	-0.29	-0.25
F2	0.20	0.20	0.20	0.20	0.31	0.20	0.20	0.20	0.31	0.31	0.31	0.20	0.31	0.31	0.20	0.31	0.31	0.20	-0.20	-0.20
10 N1	0.54	0.56	0.59	0.51	0.57	0.50	0.60	0.61	0.69	0.51	0.51	0.69	0.51	0.51	0.51	-0.51	0.51	0.69	-0.01	0.51
N2	_0.34	-0.34	-0.35	-0.35	-0.36	-0.37	-0.37	_0.37	-0.38	_0.38	-0.38	-0.38	_0.38	-0.38	_0.38	-0.38	_0.38	_0.38	_0.02	_0.02
N3	_0.98	-0.34	-0.33	_0.33	-0.33	-0.34	-0.34	-0.34	-0.35	-0.35	-0.35	-0.35	-0.35	-0.35	-0.35	-0.35	-0.35	-0.35	-0.35	_0.35
01	_0.43	-0.44	-0.45	-0.46	-0.47	-0.47	-0.48	-0.48	-0.48	_0.48	-0.48	-0.48	-0.48	_0.49	-0.49	-0.49	_0.49	-0.49	_0.49	-0.49
F3 N1 N2 N3 O1	-0.30 0.54 -0.33 -0.28 -0.43	-0.31 0.56 -0.34 -0.30 -0.44	-0.31 0.58 -0.35 -0.31 -0.45	-0.31 0.57 -0.35 -0.31 -0.46	-0.31 0.57 -0.36 -0.33 -0.47	-0.31 0.59 -0.37 -0.34 -0.47	-0.31 0.60 -0.37 -0.34 -0.48	-0.31 0.61 -0.37 -0.34 -0.48	-0.31 0.62 -0.38 -0.35 -0.48	-0.31 0.62 -0.38 -0.35 -0.48	-0.31 0.62 -0.38 -0.35 -0.48	-0.31 0.62 -0.38 -0.35 -0.48	-0.31 0.62 -0.38 -0.35 -0.48	-0.31 0.62 -0.38 -0.35 -0.49	-0.31 0.62 -0.38 -0.35 -0.49	-0.31 0.62 -0.38 -0.35 -0.49	-0.31 0.62 -0.38 -0.35 -0.49	-0.31 0.62 -0.38 -0.35 -0.49	-0.31 0.62 -0.39 -0.35 -0.49	-0.31 0.62 -0.39 -0.35 -0.49

Table S43. CAM-B3LYP/6-311+G(d) charges ChelpG of the DTTP structure

										Ch	arge (e)									
											ε									
Atom	1.00	1.43	1.91	2.37	4.71	5.70	7.43	8.93	10.13	12.47	17.33	20.49	24.85	32.61	35.69	46.83	51.10	78.36	108.94	181.56
C20	0.19	0.19	0.19	0.18	0.17	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.18	0.17	0.18
H20A	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06
H20B	0.01	0.01	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
H20C	0.00	0.00	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
C19	0.17	0.18	0.19	0.18	0.19	0.19	0.19	0.19	0.21	0.21	0.21	0.22	0.21	0.21	0.21	0.22	0.22	0.22	0.22	0.23
H19A	0.05	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.04	0.04	0.05	0.04	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04
H19B	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H19C	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02
F1	-0.25	-0.25	-0.25	-0.26	-0.25	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26
F3	-0.29	-0.30	-0.29	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30
F2	-0.26	-0.27	-0.27	-0.28	-0.27	-0.27	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28
N1	0.51	0.51	0.52	0.50	0.53	0.55	0.56	0.57	0.57	0.57	0.56	0.56	0.57	0.56	0.57	0.56	0.56	0.57	0.56	0.56
N3	-0.29	-0.29	-0.31	-0.31	-0.34	-0.34	-0.35	-0.35	-0.35	-0.35	-0.36	-0.36	-0.36	-0.36	-0.36	-0.36	-0.36	-0.36	-0.36	-0.36
03	-0.68	-0.69	-0.69	-0.70	-0.71	-0.71	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.73	-0.73	-0.73
H3	0.46	0.46	0.47	0.48	0.48	0.48	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.50
02	-0.38	-0.39	-0.40	-0.40	-0.41	-0.41	-0.41	-0.42	-0.42	-0.42	-0.42	-0.42	-0.43	-0.43	-0.43	-0.43	-0.43	-0.42	-0.42	-0.43
N2	-0.33	-0.34	-0.35	-0.35	-0.37	-0.37	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.39	-0.38	-0.38
01	-0.38	-0.39	-0.40	-0.40	-0.43	-0.43	-0.44	-0.44	-0.44	-0.44	-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	-0.45	-0.46	-0.46
C9	0.24	0.25	0.25	0.26	0.29	0.29	0.30	0.30	0.29	0.29	0.29	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
C5	-0.42	-0.42	-0.43	-0.41	-0.42	-0.42	-0.42	-0.42	-0.42	-0.42	-0.41	-0.41	-0.41	-0.41	-0.41	-0.40	-0.40	-0.40	-0.40	-0.39
C11	-0.22	-0.21	-0.22	-0.22	-0.21	-0.21	-0.22	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21	-0.21
H11	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.17	0.17
C15	0.53	0.54	0.54	0.54	0.55	0.55	0.55	0.56	0.56	0.56	0.56	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
C10	0.28	0.27	0.28	0.27	0.26	0.26	0.26	0.26	0.26	0.27	0.27	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
C7	-0.18	-0.18	-0.20	-0.17	-0.19	-0.17	-0.17	-0.17	-0.17	-0.18	-0.19	-0.19	-0.18	-0.18	-0.18	-0.17	-0.17	-0.17	-0.17	-0.17
C14	-0.38	-0.39	-0.40	-0.40	-0.41	-0.40	-0.40	-0.41	-0.41	-0.41	-0.41	-0.41	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.41	-0.41
H14	0.17	0.17	0.18	0.18	0.20	0.19	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
C12	-0.09	-0.10	-0.10	-0.12	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.12	-0.12	-0.12	-0.12	-0.12	-0.12	-0.12
HIZ	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.10	0.10
08	-0.14	-0.16	-0.17	-0.18	-0.21	-0.22	-0.23	-0.23	-0.23	-0.23	-0.23	-0.23	-0.24	-0.24	-0.24	-0.25	-0.25	-0.24	-0.25	-0.25
H8	0.10	0.11	0.11	0.12	0.13	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16
U18	-0.13	-0.13	-0.15	-0.15	-0.16	-0.15	-0.15	-0.15	-0.15	-0.15	-0.16	-0.16	-0.16	-0.16	-0.16	-0.15	-0.16	-0.16	-0.16	-0.16
H18	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
C16	-0.28	-0.28	-0.29	-0.28	-0.29	-0.29	-0.29	-0.29	-0.29	-0.29	-0.29	-0.29	-0.28	-0.28	-0.28	-0.28	-0.28	-0.28	-0.29	-0.28
H16	0.17	0.17	0.18	0.17	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
04	0.47	0.48	0.51	0.49	0.52	0.51	0.51	0.51	0.51	0.52	0.52	0.52	0.52	0.52	0.52	0.51	0.51	0.10	0.51	0.51
010	0.13	0.13	0.13	0.14	0.14	0.14	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
017	0.43	0.43	0.44	0.45	0.43	0.43	0.45	0.45	0.45	0.46	0.45	0.48	0.48	0.48	0.48	0.48	0.48	0.47	0.48	0.48
017	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
н17	0.45	0.46	0.46	0.47	0.48	0.48	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.50

Figure S1. HOMO and LUMO of DMTT and DTTP structures in Gas Phase

Figure S2. HOMO and LUMO of DMTT and DTTP structures in Argon

Figure S3. HOMO and LUMO of DMTT and DTTP structures in Heptane

Figure S4. HOMO and LUMO of DMTT and DTTP structures in Toluene

Figure S5. HOMO and LUMO of DMTT and DTTP structures in Chloroform

Figure S6. HOMO and LUMO of DMTT and DTTP structures in Chlorobenzene

Figure S7. HOMO and LUMO of DMTT and DTTP structures in Tetrahydrofuran

Figure S8. HOMO and LUMO of DMTT and DTTP structures in Dichloromethane

Figure S9. HOMO and LUMO of DMTT and DTTP structures in Dichloroethane

Figure S10. HOMO and LUMO of DMTT and DTTP structures in 2-Methyl-2-Propanol

Figure S11. HOMO and LUMO of DMTT and DTTP structures in 1-Butanol

Figure S12. HOMO and LUMO of DMTT and DTTP structures in Acetone

Figure S13. HOMO and LUMO of DMTT and DTTP structures in Ethanol

Figure S14. HOMO and LUMO of DMTT and DTTP structures in Methanol

Figure S15. HOMO and LUMO of DMTT and DTTP structures in Acetonitrile

Figure S16. HOMO and LUMO of DMTT and DTTP structures in Formicacid

Figure S17. HOMO and LUMO of DMTT and DTTP structures in Water

Figure S18. HOMO and LUMO of DMTT and DTTP structures in Formamide

n-Methylformamide-Mixture

Figure S19. HOMO and LUMO of DMTT and DTTP structures in n-Methylformamide-Mixture

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- L. M. G. Abegão, R. D. Fonseca, T. N. Ramos, F. Mahuteau-Betzer, S. Piguel, J. Joatan R. (Jr.), C. R. Mendonça, S. Canuto, D. L. Silva and L. De Boni, Oxazole Dyes with Potential for Photoluminescence Bioprobes: A Two-Photon Absorption Study, *Journal of Physical Chemistry C* 122 (2018), 10526 – 10534, DOI: 10.1021/acs.jpcc.8b01904.
- [2] W. Bartkowiak and J. Lipiński, Finite-field calculations of the second-order hyperpolarizabilities γ of molecules in solutions, *Chemical Physics Letters* **292** (1998), 92 96, DOI: 10.1016/S0009-2614(98)00669-1.
- [3] R. Bersohn, Y. Pao and H. L. Frisch, Double-quantum light scattering by molecules, *The Journal of Chemical Physics* **45** (1966), 3184, DOI: 10.1063/1.1728092.
- [4] R. Cammi and J. Tomasi, Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges, *Journal of Computational Chemistry* 16 (1995), 1449 - 1458, DOI: 10.1002/jcc.540161202.
- J. M. F. Custodio, G. D. C. D'Oliveira, F. Gotardo, L. H. Z. Cocca, L. De Boni, C. N. Perez, L. J. Q. Maia, C. Valverde, F. A. P. Osório and H. B. Napolitano, Chalcone as potential nonlinear optical material: A combined theoretical, structural, and spectroscopic study, *The Journal of Physical Chemistry C* 123 (2019), 5931 5941, DOI: 10.1021/acs.jpcc.9b01063.
- [6] V. V. Dodonov, C. Valverde, L. S. Souza and B. Baseia, Classicalization times of parametrically amplified "Schrödinger cat" states coupled to phase-sensitive reservoirs, *Physics Letters A* 375 (2011), 3668, DOI: 10.1016/j.physleta.2011.08.058.

- [7] V. V. Dodonov, C. Valverde, L. S. Souza and B. Baseia, Decoherence of odd compass states in the phase-sensitive amplifying/dissipating environment, *Annals of Physics* **371** (2016), 296 – 312, DOI: 10.1016/j.aop.2016.04.019.
- [8] İ. S. Doğan, Z. Özdemir, S. Sari, İ. Bozbey, A. Karakurt and S. Saraç, Synthesis, anticonvulsant activity, and molecular modeling studies of novel 1-phenyl/1-(4-chlorophenyl)-2-(1H-triazol-1-yl)ethanol ester derivatives, *Medicinal Chemistry Research* 27 (2018), 2171 2186, DOI: 10.1007/s00044-018-2225-6.
- [9] M. Er, A. M. Abounakhla, H. Tahtaci, A. H. Bawah, S. S. Çinaroglu, A. Onaran and A. Ece, An integrated approach towards the development of novel antifungal agents containing thiadiazole: synthesis and a combined similarity search, homology modelling, molecular dynamics and molecular docking study, *Chemistry Central Journal* 12 (2018), Article number: 121, DOI: 10.1186/s13065-018-0485-3.
- [10] M. Á. Farrán, M. Á. Bonet, R. M. Claramunt, M. C. Torralba, I. Alkorta and J. Elguero, The structures of 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles related to J147, a drug for treating Alzheimer's disease, *Acta Crystallographica Section C: Structural Chemistry* 74 (2018), 513 522, DOI: 10.1107/S2053229618004394.
- [11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery (Jr.), J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, (2009), URL: https://gaussian.com/glossary/g09/.
- [12] O. Gómez-García, D. Andrade-Pavón, E. Campos-Aldrete, R. Ballinas-Indilí, A. Méndez-Tenorio, L. Villa-Tanaca and C. Álvarez-Toledano, Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines, *Molecules* 23 (2018), 599, DOI: 10.3390/molecules23030599.
- [13] Y.-Y. He, J. Chen, X.-L. Zheng, X. Xu, W.-Q. Li, L. Yang and W. Q. Tian, Spiral graphene nanoribbons with azulene defects as potential nonlinear optical materials, ACS Applied Nano Materials 2 (2019), 1648 – 1654, DOI: 10.1021/acsanm.9b00089.
- [14] J. Jeyaram, K. Varadharajan, B. Singaram and R. Rajendhran, Growth and characterization of organic second order nonlinear optical (NLO) 4-chloroanilinium-L-tartrate monohydrate single crystals, *Journal of Crystal Growth* 486 (2018), 96 – 103, DOI: 10.1016/j.jcrysgro.2018.01.015.
- [15] K. Karypidou, S. R. Ribone, M. A. Quevedo, L. Persoons, C. Pannecouque, C. Helsen and F. Claessens, Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents, *Bioorganic & Medicinal Chemistry Letters* 28 (2018), 3472 – 3476, DOI: 10.1016/j.bmcl.2018.09.019.
- [16] E. É. Klen, I. L. Nikitina, N. N. Makarova, A. F. Miftakhova, O. A. Ivanova, F. A. Khaliullin and E. K. Alekhin, 3-substituted thietane-1,1-dioxides: Synthesis, antidepressant activity, and in silico prediction of their pharmacokinetic and toxicological properties, *Pharmaceutical Chemistry Journal* 50 (2017), 642 – 648, DOI: 10.1007/s11094-017-1506-6.

- [17] T. K. Kuruvilla, J. C. Prasana, S. Muthu, J. George and S. A. Mathew, Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3phenylpropyl]amine by density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 188 (2018), 382 – 393, DOI: 10.1016/j.saa.2017.07.029.
- [18] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, Mercury 4.0: from visualization to analysis, design and prediction, *Journal of Applied Crystallography* 53 (2020), 226 – 235, DOI: 10.1107/S1600576719014092.
- [19] B. Mennucci, R. Cammi and J. Tomasi, Medium effects on the properties of chemical systems: Electric and magnetic response of donor-acceptor systems within the polarizable continuum model, *International Journal of Quantum Chemistry* 75 (1999), 767 – 781, DOI: 10.1002/(SICI)1097-461X(1999)75:4/5%3C767::AID-QUA43%3E3.0.CO;2-L.
- [20] S. Miertuš, E. Scrocco and J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects, *Chemical Physics* 55 (1981), 117 129, DOI: 10.1016/0301-0104(81)85090-2.
- [21] E. Rtibi, M. Abderrabba, S. Ayadi and B. Champagne, Theoretical assessment of the second-order nonlinear optical responses of Lindqvist-type organoimido polyoxometalates, *Inorganic Chemistry* 58 (2019), 11210 – 11219, DOI: 10.1021/acs.inorgchem.9b01857.
- [22] S. Sert-Ozgur, B. C. Tel, E. I. Somuncuoglu, I. Kazkayasi, M. Ertan and B. Tozkoparan, Centennial anniversary of Mannich's report on the formation of β -amino-ketones in the Archiv der Pharmazie, *Archiv der Pharmazie* 350 (2017), e1700052, DOI: 10.1002/ardp.201700152.
- [23] D. L. Silva, R. D. Fonseca, M. G. Vivas, E. Ishow, S. Canuto, C. R. Mendonca, D. L. Silva, R. D. Fonseca, M. G. Vivas, E. Ishow, S. Canuto and L. De Boni, Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives, *The Journal of Chemical Physics* 142 (2015), 064312, DOI: 10.1063/1.4906893.
- [24] J. Tomasi, B. Mennucci and R. Cammi, Quantum mechanical continuum Solvation models, *Chemical Reviews* 105 (2005), 2999 3094, DOI: 10.1021/cr9904009.
- [25] C. Tonnelé, B. Champagne, L. Muccioli and F. Castet, Second-order nonlinear optical properties of Stenhouse photoswitches: insights from density functional theory, *Physical Chemistry Chemical Physics* 20 (2018), 27658 – 27667, DOI: 10.1039/C8CP05843A.
- [26] C. Travelli, S. Aprile, R. Rahimian, A. A. Grolla, F. Rogati, M. Bertolotti, F. Malagnino, R. di Paola, D. Impellizzeri, R. Fusco, V. Mercalli, A. Massarotti, G. Stortini, S. Terrazzino, E. Del Grosso, G. Fakhfouri, M. P. Troiani, M. A. Alisi, G. Grosa, G. Sorba, P. L. Canonico, G. Orsomando, S. Cuzzocrea, A. A. Genazzani, U. Galli and G. C. Tron, Identification of Novel Triazole-Based Nicotinamide Phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory Activity, *Journal of Medicinal Chemistry* 60 (2017), 1768 – 1792, DOI: 10.1021/acs.jmedchem.6b01392.
- [27] C. Valverde, F. A. P. Osório, T. L. Fonseca and B. Baseia, DFT study of third-order nonlinear susceptibility of a chalcone crystal, *Chemical Physics Letters* 706 (2018), 170 – 174, DOI: 10.1016/j.cplett.2018.06.001.
- [28] C. Valverde, Í. N. Ribeiro, J. V. B. Soares, B. Baseia and F. A. P. Osório, Prediction of the linear and nonlinear optical properties of a Schiff base derivatives via DFT, *Advances in Condensed Matter Physics* 2019 (2019), Article ID 8148392, DOI: 10.1155/2019/8148392.

- [29] C. Valverde, S. A. de Lima e Castro, G. R. Vaz, J. L. de A. Ferreira, B. Baseia and F. A. P. Osório, Third-order Nonlinear optical properties of a carboxylic acid derivative, *Acta Chimica Slovenica* 65 (2018), 739 – 749, DOI: 10.17344/acsi.2018.4462.
- [30] C. Valverde, V. G. Gonçalves and B. Baseia, Controlling the non-classical properties of a hybrid Cooper pair box system and an intensity dependent nanomechanical resonator, *Physica A: Statistical Mechanics and its Applications* 446 (2016), 171 – 181, DOI: 10.1016/j.physa.2015.11.027.
- [31] M. G. Vivas, R. D. Fonseca, J. de P. Siqueira, C. R. Mendonça, P. Rodrigues and L. De Boni, Femtosecond two-photon absorption spectroscopy of poly(fluorene) derivatives containing benzoselenadiazole and benzothiadiazole, *Materials* 10 (2017), 512, DOI: 10.3390/ma10050512.

