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Abstract. In order to explore structure-properties relationship, structural, electronic, elastic, optical
(linear and nonlinear), piezoelectric, and electro-optic properties of three cesium iodate CsIO3
polymorphs (monoclinic; M, rhombohedric; R, cubic; C) have been computed, discussed and compared
by means of density functional theory DFT using the Tran and Blaha modified Becke-Johnson potential
TB-mBJ and the Generalized Gradient Approximation GGA implemented in WIEN2K code. Also,
the Pseudo-Potential Plane Waves method PP-PW and Local Density Approximation LDA embedded
in ABINIT code were used. Calculated structural parameters are in agreement with experimental
values with both methods and we found that GGA grades are the closest. Band gaps of M and R
systems are both direct (4.00 and 5.13 eV respectively) which apparently increases with increasing
structural symmetry. The centrosymmetric cubic system C has no apparent band gap and adopt a
metallic behaviour. Noncentrosymmetric M and R phases show interesting piezoelectric and nonlinear
optical properties with several similarities in electronic characteristics principally related to the
pseudo-rhombohedric structure of the monoclinic M-CsIO3 system.
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1. Introduction
Physical and chemical properties of functional iodate-based systems still attract researchers
in their investigations [3,10,17,44,49,59]. Most works are dealing with structure-properties
relationship [9,26,27,32,50,58].

In this study, we are interested with cesium iodate CsIO3 compounds. According to
experimental results, they exhibit interesting optical properties [62].

As part of the alkali metal iodates family, cesium-based iodates have been the subject of
several works. First reports were performed by Wheeler and Barker regarding their synthesis
routes [7,57]. Also, optical properties, growth techniques and vibrational spectra were discussed
[4,6,11].

Cesium iodate as all simple alkali metal iodates (except sodium iodate) was first
characterized as having a cubic structure [28] until 1985 where a new monoclinic CsIO3

polymorph was elaborated [56]. In 2018, Zhang et al. [62] hydrothermally prepared single
crystals of the third new rhombohedric CsIO3 polymorph.

In addition, via crystal engineering, other mixed Cs-based iodates have been tailored,
such as Cs2Ge(IO3)6 [29], Cs(VO)2O2(IO3)3 [47], Cs2Sn(IO3)6 [20], Cs2MoO3(IO3) [46],
Cs2[(UO2)(CrO4)(IO3)2] [45,48].

Besides, some Cs-based nonlinear optical (NLO) crystals (not iodates) are also known and
reported in the literature [13,15,18,25,35,39,51,63].

The purpose of the present paper is to report and to compare results of ab initio investigations
(based on the density functional theory DFT) of structural, electronic, mechanical, linear
and nonlinear optical, and also of piezoelectric properties for the three polymorphs of CsIO3:
monoclinic (M), rhombohedric (R), and cubic (C). Our work contains three additional sections
starting with the computational details, then results and discussion, and finally the conclusion.

2. Computational Details
The above-mentioned physical properties of the considered compounds are computed using
both WIEN2K [12] and ABINIT [16] calculation codes. With the former, Full Potential (all
electron) Linearized Augmented Plane Waves method (FP-LAPW) [43], Generalized Gradient
Approximation (GGA) in the Perdew, Burke and Ernzerhof parametrisation (PBE08) [33],
and Tran and Blaha modified Becke-Johnson potential (TB-mBJ) for exchange correlation
(XC) [42,53] are adopted to evaluate structural, electronic (band structure, electronic density
and density of states), and linear optical properties (dielectric function, absorption coefficient,
reflectivity, energy-loss function and refractive index). Values of the Muffin-Tin radii RMT for
Cs, I and O atoms are 2, 1.8 and 1.4 Bohr respectively and the valence states are respectively
4d105s25p66s1, 4d105s25p5 and 2s22p4 (treated by scalar relativist alongside full relativist
treatment of core states). The RMTKmax is set to 7. In the irreducible Brillouin zone (IBZ), we
use 150k-points to calculate structural and electronic properties and 288k-points to estimate
optical properties.
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Furthermore, with the later code, we espouse the following details: Pseudo-Potential Plane
Waves method (PP-PW) and Local Density Approximation (LDA) [21] for XC potential (PW-
LDA) [34], with the Density Functional Perturbation Theory (DFPT) [8]. Structural, elastic, and
nonlinear optical, piezoelectric, and electro-optic properties are then computed. Norm-conserving
Trouiller-Martin [54] pseudo-potentials generated with the FHI code (Fritz-Haber-Institute) [14]
are used with electron valence of Cs, I and O atoms. Structural, elastic and optical properties
are extracted using 512-k points and a cut-off energy (Ecutoff) of 50eV.

3. Results and Discussion
3.1 Structural Properties
Calculated and experimental structural parameters of monoclinic (M), rhombohedric (R) and
cubic (C) cesium iodate CsIO3 are presented in Table 1.

Table 1. Calculated and experimental lattice parameters of CsIO3 polymorphs

Lattice parameters

Monoclinic (M) Method a (Å) b (Å) c (Å) β V (Å3)

Exp. [56] 6.613 6.613 4.676 90.8 204.47

GGA 6.657 6.657 4.707 90.8 208.57

LDA 6.1243 6.1467 4.3244 90.7 162.78

Rhombohedric (R) Method a (Å) c (Å) V (Å3)

Exp. [62] 6.6051 8.087 305.54

GGA 6.6836 7.6201 294.79

LDA 6.0410 7.6800 242.72

Cubic (C) Method a (Å) V (Å3)

Exp. [61] 4.6620 101.33

GGA 4.4601 88.72

LDA 5.5724 173.03

The obtained results for the cell parameters are close to experimental values with tolerable
errors between 0.06% and 7.52% leading to volume errors ranging from 2.00% to 20.56% (except
for the C phase where errors are much more important). We also observe that almost in general
GGA results are overestimated while LDA grades are underestimated (with some exceptions).

3.2 Electronic Properties
3.2.1 Band Structure
Band structures are one of the relevant electronic characteristics in material’s properties
studies. Figures 1, 2 and 3 present the obtained results of band structure calculations along
high symmetry directions in the Brillouin Zone (BZ) for the three polymorphs M, R and C,
respectively.
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Figure 1. Calculated band structure for monoclinic cesium iodate M-CsIO3

Figure 2. Calculated band structure for rhombohedric cesium iodate R-CsIO3

Figure 3. Calculated band structure for cubic cesium iodate C-CsIO3

The obtained results reveal that both M and R phases has direct gap at Z point (Figures 1
and 2, respectively) while the C phase displays a metallic characteristic with no apparent
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band gap (some bands cross the Fermi level) (Figure 3). Corresponding gap values for M and R
systems are 4.00 and 5.13 eV respectively showing up that R compound has higher value of the
gap than M compound indicating that both polymorphs possess relatively a high transparency
until the mid UV (UV-B) for the former and until the deep UV (DUV or UV-C) for the later. In
conclusion, it can be said that the more symmetric is the polymorph the higher is the gap. We
mention that obtained band gap values for the two M and R CsIO3 polymorphs are higher than
those reported for their monovalent isotypes RbIO3 and TlIO3 (3.82-D and 3.32-I eV) in ref. [9]
where the authors also used TB-mBJ method.

3.2.2 Density of State DOS
Since the C phase is centrosymmetric, and from band structure results, it exhibits a metallic
characteristic (Figure 3), therefore, in the next sections, we are going to present only results
related to M and R phases.

Figures 4 and 5 reflect the calculated total (TDOS) and partial (PDOS) density of states for
M and R systems, respectively. Fermi level is set at 0 eV.

Figure 4. Calculated partial and total DOS for monoclinic M-CsIO3

Figure 5. Calculated partial and total DOS for rhombohedric R-CsIO3
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From these figures we observe considerable similarities in TDOSs and PDOSs between
M-CsIO3 and R-CsIO3 crystals. The states O-s, I-s and Cs-s are present in the bottom of the
valence band (VB) while O-p, I-p, and Cs-p states dominate the top of the VB. Moreover, we find
out the overlapping of the states O-p and I-p in the VB bottom is an indicator of the probable
covalent character of the I-O bond but we observe a sizeable shift between O-p and Cs-p states
positions with a narrow overlap indicative of a possible mixed “ionic-less accentuated covalent”
Cs-O bond. In the conduction band (CB), there is also some sharing of the Cs-d states.

3.2.3 Charge Density
Planar total charge densities of M and R materials are computed and Figures 6 and 7 illustrate
respectively the obtained results in planes containing Cs, I and O atoms.

Figure 6. Calculated density of charge for M-CsIO3 in a plane containing Cs, I and O atoms

Figure 7. Calculated density of charge for R-CsIO3 in a plane containing Cs, I and O atoms

Obvious similarities are noticed between charge densities of M and R compounds. With
both polymorphs, there are clear spherical symmetries of charge densities around Cs atoms
with a very slight deviations toward O atoms indicating the predominately ionic Cs-O bond
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character. The deformed contours around I and O atoms (with both systems) illustrate the
covalent character of I-O bonds. These results are in agreement with DOS outcomes.

In conclusion, the huge resemblance found in electronic properties between M and R phases
can be explained by the fact that the M-CsIO3 has a pseudo-rhombohedric structure very close
to that of the R-CsIO3 structure.

3.3 Linear Optical Properties
3.3.1 Dielectric Function
The dielectric function ε(ω) is a complex, and consists of a real part ε1(ω) and an imaginary part
ε2(ω). From the momentum matrix elements between occupied and unoccupied wave functions,
the imaginary part of the dielectric function is calculated using equation in ref. [41]. Using
Kramers-Kronig transformation, the real part is obtained from the imaginary one [22–24].

Our calculations of the two parts of the dielectric function (as function of photon energy
along xx′, yy′ and/or zz′) are plotted in Figures 8 and 9 for M and R phase, respectively.

Figure 8. Calculated imaginary and real parts of the dielectric function for M-CsIO3

Figure 9. Calculated imaginary and real parts of the dielectric function for R-CsIO3
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For the M crystal, there are five main peaks in the imaginary part: A, B, C, D and E
(Figure 8). The first two peaks around 5 eV correspond to transitions from O-p (VB) toward I-p
(CB). C and D peaks come from transitions of states I-s (VB) and Cs-p (VB) into O-p (CB) and
I-p (CB) states. The last peak (E) represents the transitions: I-s (VB) to O-p (CB) and O-s (VB)
to I-p (CB).

In the dielectric function plot of R-CsIO3 (Figure 9) six major peaks are distinguished (A,
B, C, D, E and F). Those around 5 eV are due to O-2p (VB) to I-5p (CB). Transitions of states
I-5p (VB) toward O-2p (CB) states also contribute in that region. In the middle about 10 eV the
peaks are mainly due to I-5s (VB) and Cs-5p (VB) into O-2p (CB) and I-5p (CB).

At about 15 eV, we make out transitions of states I-5s (VB) toward O-2p (CB) and of states
O-2s (VB) toward I-5p (CB).

3.3.2 Other Linear Optical Properties
Absorption coefficients I(ω), reflectivity R(ω), energy-loss function L(ω) and refractive indices
n(ω) are all deduced from the two parts of the dielectric function [1,2]. The obtained results are
pointed out in Figures 10 and 11 for the M and R phases, respectively.

In the electron energy loss plot L(ω) (translating the energy loss of a fast electron when
traversing the crystal), the firs peak is the plasma frequency peak (where a sharp decrease in
reflectivity R(ω) is noticed) is situated at 24.22 eV and 6.71 eV for M and R systems, respectively.

From absorption spectra I(ω), we can extract energy values of optical gaps at about 3.54,
2.99 and 3.54 eV (xx′, yy′ and zz′) for M-CsIO3 and 3.85 and 4.45 eV (xx′ and zz′) for R-CsIO3.
These results are in accordance to our band structure grades keeping the same order between
the two polymorphs where the R one has in both cases the higher values of gaps. For the R
structure, our values are very close but slightly higher (especially in zz′ direction) than those
experimentally (4.2 eV) and theoretically (3.25 eV) reported in ref. [62] since the authors also
used GGA. Therefore, the R compound potentially has wider transparency range and thus may
generate higher laser damage threshold (LDT).

Figure 10. Calculated optical properties for M-CsIO3: absorption coefficient I(ω) (104/cm), reflectivity
R(ω), energy-loss function L(ω) and refractive indices n(ω) as function of the incident photon energy
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Figure 11. Calculated optical properties for R-CsIO3: absorption coefficient I(ω) (104/cm), reflectivity
R(ω), energy-loss function L(ω) and refractive indices n(ω) as function of the incident photon energy

Calculated refractive indices at static limit are 1.70, 1.83, 1.75 (nxx,nyy,nzz) for M-CsIO3 and
1.87, 1.69 (nxx,nzz) for R-CsIO3 (no experimental data is available for comparison) Maximum
values are 1.99, 2.23, 2.16 all attained at 4.63 eV, and 2.45, 2.04 (at 4.53, 4.86 eV) for M and R
systems respectively, then they decrease gradually to over unity.

3.3.3 Optical Gaps (Birefringence)
The birefringence (difference between each two components of the refractive indices n(ω)) has
the following maximum values: 0.26 and 0.16 both at 4.08 eV (nxx′ -nyy′ and nyy′ −nzz′) for the
M structure and 0.47 at 4.01 eV for the R compound. Corresponding static limit values are 0.14
and 0.09 (M phase), and 0.20 (R phase).

Figure 12. Birefringence of M-CsIO3 and R-CsIO3

At 1064 nm (1.16 eV), birefringence values are 0.088, 0.138, and 0.205 for M (nxx′ -nyy′ ,
nyy′ -nzz′) and R phases, respectively (Figure 12). The later value is very close to that found in
ref. [13] which is expected since the same approach is used. In all cases, even both polymorphs
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are promising birefringents, the R sample has the largest parameters so it is optically more
anisotropic.

3.4 Mechanical Properties
In this section, we are going to explore mechanical properties of the three polymorphs (M, R
and C) of cesium iodate CsIO3. Since the C phase has no evident electronic properties (metallic
character) we include its mechanical properties by means of comparison.

3.4.1 Elastic Coefficients
Cesium iodate CsIO3 in its monoclinic form (crystallising in the m class) has 13 independent
elastic constants Ci j . The repartition of these coefficients in their respective tensors is as follows
[30,31,52]:

C11 C12 C13 0 C15 0

C22 C23 0 C25 0

C33 0 C35 0

C44 0 C46

C55 0

C66


. (1)

The stability conditions of the m class are the following [30,60]:

C11,C22,C33,C44,C55,C66 > 0.

[C11 +C22 +C33 +2(C12 +C13 +C23)]> 0.

(C33C55 −C2
35)> 0.

(C44C66 −C2
46)> 0.

(C22 +C33 −2C23)> 0.

[C22(C33C55 −C2
35)+2C23C25C35 −C2

23C55 −C2
25C33]> 0.

{2[C15C25(C33C12 −C13C23)+C15C35(C22C13 −C12C23)

+C25C35(C11C23 −C12C13)]− [C2
15(C22C33 −C2

23)

+C2
25(C11C33 −C2

13)+C2
35(C11C22 −C2

12)]+C55 g}> 0.

with:

g = C11C22C33 −C11C2
23 −C22C2

13 −C33C2
12 +2C12C13C23.



(2)

The sample R-CsIO3 as a rhombohedric structure (3m crystal class, trigonal system) has
six independent elastic constants (C11, C12, C13, C14, C33 and C44 with C66 = 1

2 (C11 −C12))
distributed as follows [31,52]:

C11 C12 C13 C14 0 0

C11 C13 −C14 0 0

C33 0 0 0

C44 0 0

C44 C14
1
2 (C11 −C12)


. (3)
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The elastic stability criteria for this class are the following [30]:
C11 > |C12|
C2

13 < 1
2C33(C11 +C12)

C2
14 < 1

2C44(C11 −C12)= C44C66

C44 > 0

 . (4)

The cubic structure C of cesium iodate crystallizes in the m3m class characterized by 03
independent elastic coefficients Ci j and their repartition in the tensors is the following [30,52]:

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

C44 0
C44

 . (5)

The corresponding stability criteria are [30]:
C11,C44 > 0
C11 > |C22|
C11 +2.C12 > 0

 . (6)

Our obtained results for the three polymorphs are illustrated in Table 2.

Table 2. Elastic coefficients Ci j (GPa) calculated for M, R and C polymorohs of CsIO3

Elastic coefficients Ci j (GPa)

M C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

75.8 30.1 33.2 0.32 76.1 50.4 0.09 110.2 −0.14 52.9 −0.03 35 31.4

R C11 C12 C13 C14 C33 C44 C66

114.2 37.2 34.7 −0.00001 97.4 35.7 38.5

C C11 C12 C44

208.6 −30.1 80.8

The elastic stability conditions are all satisfied with the three iodates. So, they are
mechanically stable.

We observed that coefficients are generally greater with C- then R- then M-CsIO3. In
addition, we observe that C11, C22 and/or C33 are greater than C44, C55 and/or C66 (for
the three systems) reflecting that our considered compounds have better resistance toward
contraction than toward shear.

3.4.2 Other Mechanical Parameters
From elastic coefficients, the following parameters can be calculated: Bulk modulus B, Shear
modulus G, Young modulus E (in the three notifications; Voigt [55], Reuss [40] and Hill [19]),
Poisson ration σ and the B/G ratio (calculated from the three first above mentioned modula).

Journal of Atomic, Molecular, Condensed Matter & Nano Physics, Vol. 8, No. 2, pp. 133–155, 2021



144 Structural, Electronic, Mechanical, Linear and Nonlinear Optical, and Piezoelectric. . . : S. Belhadj et al.

For the m (M), 3m (R) and m3m (C) classes, these parameters are determined according to
expressions shown in equations (7), (8) and (9), respectively [60].

BV = 1
9 [C11 +C22 +C33 +2(C12 +C13 +C23)].

GV = 1
15 [C11 +C22 +C33 +3(C44 +C55 +C66)− (C12 +C13 +C23)].

BR =Ω[a(C11 +C22 −2C12)+b(2C12 −2C11 −C23)+ c(C15 −2C25)

+d(2C12 +2C23 −C13 −2C22)+2e(C25 −C15)+ f ]−1.

GR = 15{4[a(C11 +C22 +C12)+b(C11 −C12 −C23)+ c(C15 +C25)

+d(C22 −C12 −C23 −C13)+ e(C15 −C25)+ f ]/Ω

+3[g/Ω+ (C44 +C66)/(C44C66 −C2
46)]}−1.

a = C356C55 −C2
35,b = C23C55 − c25C35, c = C13C35 −C15C33

d = C13C55 −C15C35, e = C13C25 −C15C23

f = C11(C22C55 −C2
25)−C12(C12C55 −C15C25)+C15(C12C25 −C15C22)

+C25(C23C35 −C25C33).

g = C11C22C33 −C11C2
23 −C22C2

13 −C33C2
12 +2C12C13C23.

Ω= 2[C15C25(C33C12 −C13C23)+C15C35(C22C13 −C12C23)

+C25C35(C11C23 −C12C13)]− [C2
15(C22C33 −C2

23)

+C2
25(C11C33 −C2

13)+C2
35(C11C22 −C2

12)]+ gC55 .



(7)



Bv = 1
9 [2(C11 +C12)+4.C13 +C33]

BR = c2/M; c2 = (C11 +C12)C33 −2C2
13

M = C11 +C12 +2C33 −4C13

BH = 1
2 (BV +BR)

GV = 1
30 [M+12(C44 +C66)]

GR = 5
2 {c2.a/[3.BV .a+ c2(C44.C66)]}; a = C44.C66 −C2

14

GH = 1
2 (GV +GR)


. (8)


BV = BR = (C11 +2C12)/3.

GV = (C11 −C12 +3C44)/5.

GR = 5(C11 −C12)C44/[4C44 +3(C11 −C12)].

 . (9)

For the three phases, we consider the following formulas to calculate Young’s modulus E i in the
three notations, the three moduli in the Hill notation MH (M = B, G ou E), and Poisson’s ratio
σ [60]:

E i = 9BiG i/(3Bi +G i) i =V ,R, ouH

MH = 1
2 (MR +MV ), M = B,G,E.

σ= (3BH −2GH)/[2(3BH +GH)]

 . (10)

The obtained values are shown in Table 3.

Journal of Atomic, Molecular, Condensed Matter & Nano Physics, Vol. 8, No. 2, pp. 133–155, 2021



Structural, Electronic, Mechanical, Linear and Nonlinear Optical, and Piezoelectric. . . : S. Belhadj et al. 145

Table 3. Bulk B, Shear G and Young E moduli, Poisson’s ratio σ and the B/G ratio calculated for M-, R-
and C-CsIO3 polymorphs

Modulus B (GPa) G (GPa) E (GPa) Ratio

Phase BV BR BH GV GR GH EV ER EH σ B/G

M 54.41 51.38 52.90 33.74 30.09 31.91 83.88 75.52 79.71 0.2488 1.6575

R 59.88 59.48 59.68 36.60 35.50 36.05 91.22 88.82 90.02 0.2486 1.6555

C 49.88 49.48 49.48 96.21 92.78 94.49 175.13 171.29 173.22 −0.083 0.5237

From Table 3 we detect that all Mi parameters are greater for C-CsIO3 except the Bis
(which are most important with R-CsIO3 (Figures 13 and 14). These results can be explained
by the fact that Bi grades are related to the cell parameters a and c and therefore directly
related to values of the cell volume (Figure 13) and also that G i and E i increase with increasing
polymorph symmetry (C>R>M). Moreover, σ and B/G ratios adopt the following order: M≥R>C
and the nearby zero value of σ for the M compound is an indicator of its metallic behaviour.

Figure 13. Relation between Bulk G i and Young E i moduli for the CsIO3 phases

Figure 14. Relation between Shear modulus Bi and volume V for the CsIO3 phases
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The ratio B/G is used to determine if a material is brittle or tough (malleable); if B/G > 1.75
then the material is tough, whereas if B/G < 1.75 that means that it is brittle [37]. According to
values in Table 3, our materials are all brittle (difficult to sharp).

The Poisson’s ratio σ is also another criterion of brittleness and malleability such as σ> 0.26
we have a tough crystal and σ< 0.26 the system is brittle [40] and our results are consistent
with these norms confirming B/G results that our three polymorphs are all brittle.

3.4.3 Elastic Anisotropy
We calculated the anisotropy international index AU according to equation (11) [38] and the
found values are reported in Table 4.{

AU = 5
GV

GR
+ BV

BR
−6≥ 0

}
. (11)

Table 4. Elastic anisotropy AU of M, R and C phases of CsIO3 compound

Material M-CsIO3 R-CsIO3 C-CsIO3

AU 0.66 0.16 0.18

We evidently conclude that our phases are all anisotropic (positive values of AU ) and that
M-CsIO3 is the most anisotropic followed by C and R (the two later having close values).

To more illustrate the elastic anisotropic character of the studied structures, we plotted the
bulk modulus B and the Young’s modulus E in two dimensions (2-D) and three dimensions
(3-D). Figures 15-20 demonstrate the obtained plots for M, R and C phases, respectively.

According to Figures 15 and 16, the monoclinic cesium iodate M-CsIO3 clearly shows
enhanced elastic anisotropy in the three directions (important deviation from sphericity with
both bulk and Young moduli).
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Figure 16. Young modulus E of the M-CsIO3 in 2-D (left) and 3-D (right)

For R structure, there is some deviation from spherical shape with both moduli but less
important in (xy) direction (Figures 17 and 18).
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Figure 17. Bulk modulus B of the R-CsIO3 in 2-D (left) and 3-D (right)
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The cubic phase is obviously isotopic according to bulk plots (Figures 19) but from Figure 20
it is clearly anisotropic and with an identical behaviour in the three directions (xy, xz and yz).
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Figure 19. Bulk modulus B of the C-CsIO3 in 2-D (left) and 3-D (right)
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Figure 20. Young modulus E of the C-CsIO3 in 2-D (left) and 3-D (right)

In the next sections, cubic cesium iodate is not considered since it is centrosymmetric and
does not own piezoelectric and nonlinear optical (NLO) properties.

3.5 Piezoelectric Properties
As linear optical properties, piezoelectric coefficients of M (11 coefficients) and R (4 coefficients)
phases are distributed according to equations 12 and 13 respectively [30,31,52] (the C system
being centrosymmetric does not possess piezoelectric properties) and the results are reported in
Table 5.d11 d12 d13 0 d15 d16

0 0 0 d24 0 d26
d31 d32 d33 0 d35 0

 , (12)

 0 0 0 0 d15 −2d22
−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

 . (13)
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From a general inspection of the results, the monoclinic compound M acquires larger coefficients
but d31 and d33 are greater with R-phase.

Table 5. Piezoelectric coefficients di j (pc/N) calculated for M-CsIO3 and R-CsIO3

Phase Piezoelectric coefficient di j (pc/N)
M d11 d12 d13 d15 d16 d24 d26 d31 d32 d33 d35

15.2 16.9 −12.1 −0.24 9E-5 −0.06 37.74 −0.03 −9E-3 −0.03 1.99
R d15 d22 d31 d33

−32.06 −42E-7 −4.27 −8.16

The maximum values are |d15| = 32.06 (for R) and d26 = 37.74 (for M) which are close to
each other. This is possibly due to the pseudo-rhombohedric structure of the M-phase with
a ≈ b 6= c and β= 90.8◦ ≈ 90◦. In conclusion, more the material is structurally symmetric less it
has important piezoelectricity. Finally, we can say that M-CsIO3 is more piezoelectric.

3.6 Nonlinear Optical (NLO) Properties
NLO properties reported in this section are electrooptic coefficients r i j and second order optical
coefficients di j .

3.6.1 Electrooptic Coefficients
The independent electrooptic coefficients of the m class (M phase) are 10 (r11, r13, r21, r23,
r31, r33, r42, r51, r53 and r62) and of the 3m class (R phase) are 4 (r11, r13, r33 and r51). Their
distribution in the corresponding tensors are shown in equations (14) and (15), respectively [5].

r11 0 r13
r21 0 r23
r31 0 r33
0 r42 0

r51 0 r53
0 r62 0

 , (14)


r11 0 r13
−r11 0 r13

0 0 r33
0 r51 0

r51 0 0
0 −r11 0

 . (15)

Table 6 illustrate our obtained values of electro-optic coefficients r i j (pc/N) for M and R phases
of the CsIO3 compound.

Table 6. Calculated electro-optic coefficients r i j (pc/N) of monoclinic and rhombohedriccesium iodate

Phase Electrooptic coefficients r i j (pc/N)
M r11 r13 r21 r23 r31 r33 r42 r51 r53 r62

12.93 0.03 10.09 0.03 −0.06 −0.16 −12E-5 −85E-4 0.23 11.23
R r11 r13 r33 r51

−5.56 −8.40 −11.48 −10.14
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Both systems have comparable values of r i j , nevertheless those important with R phase are
neglected with M phase (around zero) except for r11.

Maximum values are r11 = 12.93 for M and r33| = 11.48 for R indicating that the former is
slightly more electro-optic than the later considering the pseudo-rhombohedric structure of M.

3.6.2 Second Order Optical Coefficients
Ten (10) second order optical coefficients characterized the m class while the 3m class is
characterized by only three coefficients (eq. (16) and eq. (17), respectively [36]).d11 d12 d13 0 d15 0

0 0 0 d24 0 d26
d31 d32 d33 0 d35 0

 , (16)

 0 0 0 0 d31 −d22
−d22 d22 0 −d22 0 0
d31 d31 d33 0 0 0

 . (17)

In Table 7, second order optical properties of both polymorphs are reported.

Table 7. Second order optical coefficients di j calculated for M and R polymorphs of CsIO3

Phase Second order coefficient di j (pm/V)

M d11 d12 d13 d15 d24 d26 d31 d32 d33 d35

−19.32 −14.17 −3.05 0.031 −0.087 −14.17 0.031 −0.087 −0.31 −3.05

R d22 d31 d33

0.00 14.06 16.83

M and R phases present maximum grades at |d11| = 19.32 (by analogy with r11 as maximum
value) and d33 = 16.83 (by analogy with r33 as maximum) respectively showing up that the
monoclinic polymorph exhibit somewhat a better second order optical character than the
rhombohedric polymorph (taking into account the pseudo-rhombohedric structure of the M
phase).

4. Conclusion
The aim of the present work is the theoretical investigation of structural, electronic, mechanical
and optical properties of three cesium iodate CsIO3 polymorphs; monoclinic (M), rhombohedric
(R) and cubic (C) by means of density functional theory (DFT). The calculated structural
parameters by the two methods (GGA and LDA) are in good agreement with experimental ones
especially those obtained with GGA method (with some exceptions).

Most considered properties are intrinsically related to the difference in structure from one
polymorph to another. Monoclinic system M-CsIO3 displays higher birefringence, Poisson ratio
σ, B/G ratio and elastic anisotropy, and also better piezoelectric and nonlinear optical properties
while its cubic structure (C) has enhanced resistance toward compression and toward shear and
elevated values of shear G i and Young E i moduli. In the case of R-CsIO3, it has superior band
gap value (C phase having metallic characteristic), higher bulk modulus Bi , but in particular,
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its piezoelectric and nonlinear optical tendencies are less but close to those found for monoclinic
CsIO3 which is explained by the pseudo-rhombohedric structure of the later. In conclusion,
M-CsIO3 is a better mechanical, nonlinear, and piezoelectric functional material while R-CsIO3

is a better electro-optic functional material.
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