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Abstract. Bound and resonance states of symmetric three-body exotic pX X negative atomic ions
(X = µ−,π−,K−) as well as exotic ppX positive molecular ions for total angular momentum J = 0,
are studied in details under the framework of Stabilization method. The resonance states under
consideration lie below N = 2 ionization threshold of the corresponding pX atom. The wave-function
is expanded in correlated multi-exponent Hylleraas type basis set for explicit incorporation of p-p,
µ-µ, π-π or K -K correlations. The methodology has been tested by estimating the parameters of the
resonance states of (pµµ)−, (ppµ)+, (pππ)− and (ppπ)+ and comparing with the results existing in the
literature. The interparticle interactions for all the systems under consideration are purely Coulombic.
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1. Introduction
The non-separability of the dynamical equation of motion of three body systems in both
classical and quantum mechanics, draws a considerable attention by the researchers around the
globe [9,35]. From the very beginning of quantum mechanics various approximation methods
had been used to study the structural properties of such systems. Being a quintessential
quantum mechanical three body system, the non-relativistic upper bound energy eigenvalue
of helium atom was estimated by Hylleraas [17] in the year 1929, using variational approach.
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In this work [17] Hylleraas used a new coordinate system to expand the wavefunction in
terms of inter-particle (electron-nucleus and electron-electron) distances. After this pioneering
work of Hylleraas [17], different variants of this correlated variational framework has been
evolved [12,13,16,17,20,21,27,29,32,33] which adequately account for the effect of inter-particle
correlation in the basis set.

Quantum mechanical three body system with arbitrary comparable masses bounded via
Coulomb interaction also drags considerable attention in recent years. In general, there are
two class of energy levels for these systems: the bound states lying below the first ionization
threshold (N = 1) and the resonant states embedded in the continuum. Thus the bound states
are stable against autoionization, while the resonant states decays to an neutral atomic
configuration by ejecting particle due to the autoionizing process and thus posses a finite lifetime.
It has been observed that when massive negatively charged particles, such as antiprotons (p̄),
kaons (K), pions (π), and muons (µ), enters into matter, they slow down as they excite and
ionize the atoms or molecules of the matter and at the end the particles being captured by
the positive ions present in the medium, form the bound or resonance states of exotic atoms
[2, 11, 30, 36]. Thus during the decay of these three-body ions, X-rays are emmited during
bound-bound transition or one of the particle is ejected from it via Augey process [30]. Such
investigations are going into full swing in case of muonic-, pionic- and kaonic-hydrogen atoms
[1,3,15,25,26,31].

Although the structural properties of bound states of these systems have extensively been
studied by adopting various quantum chemical methods [5,7,8,10,14,18,22,24], but the same
for the resonance states are rather considerably less in number [18,19]. In the present work, we
have made an attempt to estimate the energy eigenvalues of ground states and the parameters
(position and width) of first three resonant states of ppX positive molecular ions and first
two resonant states of pX X negative atomic ions (X = µ−,π−,K−), below the 2s threshold
of pX atom. For this purpose, we have expanded the basis set in the explicitly correlated
multi-exponent Hylleraas type basis set and carried out calculations under the framework of
Stabilization method [28,34]. In order to check the consistency of the present methodology, we
have compared the resonance parameters (position and width) with few existing theoretical
data [18,19].

2. Method
Here we use the designation of two identical particles (pp or X X ) as particle 3 and the
non-identical one (p or X ) as particle 3. Due to translation symmetry of the Hamiltonian of
three-body system, it is possible to describe the motion of the system with respect to their center
of mass in six co-ordinates. If the distances of the particles 1 and 2 with respect to the 3rd
particle are r1 and r2 and the distance between particles 1 and 2 is r12, then r1, r2 and r12 form
the sides of a triangle. Besides these three coordinates (r1, r2 and r12), the remaining three
coordinates are the Eulerian angles [4] defining the orientation of the triangle in space. For
the spherically symmetric ground state (1Se), the three-body general variational equation [23]
reduces to
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where the volume element is dτ= r1r2r12dr1dr2dr12 and the potential is given by
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where, the indices (i, j,k) ≡ (1,2,12) and the m and M are the masses of the identical and
non-identical particles respectively. The masses (in a.u.) of p and X (X =µ−,π−,K−) particles
are taken as mp = 1836.152 6675, mµ = 206.768 262, mπ = 273.132 426 and mK = 966.101 6949
respectively. The trial radial wave function Ψ(r1, r2, r12) can be written as,

Ψ(r1, r2, r12)=
s∑

k=1
rlk

1 rmk
2 rnk

12

[
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]
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In the second sum i < j and ηi(m) = e−ρ irm , ρ being the non-linear parameter. p denotes
the number of non-linear parameters which are taken in a geometrical sequence following
ρ i = ρ i−1γ; γ being the geometrical sequence. The function g(1,2) containing correlation terms,
is expanded into Hylleraas basis set as follows, the effect of the radial correlation is incorporated
through different ρ ’s in the wave function whereas, the angular correlation effect is taken
care of through different powers of r12. The dimension of the full multi-exponent basis (N) is[

p(p+1)
2 × s

]
, where s is the number of terms involving r12 and p is the number of exponents.

For a fixed number of basis, p and s should be chosen in such a manner that the effect of radial
as well as angular correlation is properly incorporated in the wavefunction.

After choosing the proper trial radial wave function, the energy eigenvalues are obtained by
solving the generalized eigenvalue equation involving the Hamiltonian and overlap matrices
given by

H C = ES C , (2.5)

where H and S are Hamiltonian and overlap matrices respectively. The necessary basis integrals
of the form

A(m,n, l;a1,a2)=
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with the condition, m ≥ 0, n ≥ 0, l ≥ 0 and a1,a2 > 0. This integral has been evaluated following
Calais and Lowdin [6]. All calculations are carried out in quadruple precision in order to have a
better numerical accuracy. Repeated diagonalization of the Hamiltonian matrix in the Hylleraas
basis set of 675 parameters is done in the present work for 200 different values of γ. The plot of
each energy eigenroot versus γ produces the stabilization diagram. The density of resonance
states is then calculated from the stabilization diagram and by fitting with a Lorentzian profile
we have estimated the parameters of a particular resonance state.

3. Results and Discussions
A portion of the stabilization diagram for 1Se states originating from two negatively charged
kions (K) of exotic pKK ion is given in Figure 1. In this diagram we have plotted first 40
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eigenroots of 1Se symmetry of exotic pKK ion for 200 different values of γ ranging from 0.63058
a.u. to 0.74954 a.u. From Figure 1, one can see that there exist two classes of states:

(1) There exists only one energy level below N = 1 ionization threshold of pK at −316.515
a.u., formed due to ground state (1s2) configuration remains invariant with the variation
in γ. The energy eigenvalue of this level is −330.800637 which is consistent with the
value obtained by Dutta et al. [10] using 990 terms in the multi-exponant Hylleraas type
basis set.

(2) Roots lying above N = 1 but below N = 2 ionization threshold of pK at −79.129 a.u. are
sensitive with the variation in γ and give rise to flat plateau in the vicinity of avoided
crossings of the energy eigenroots for some particular energy value which is a clear
signature of resonance states.

Similar classes of states are also observed for the other exotic systems like pµµ, ppµ, pππ,
ppπ and ppK . The ground state energies of atomic (pX X )− ion and molecular (ppX )+ ion
[X =µ,π,K] are given in Table 1 and the present results are compared with the lowest energy
eigenvalues available in literature [5,10,18].

Figure 1. Stabilization diagram for 1Se states of exotic pKK ion

Table 1. Bound states energies (−E in a.u.) of atomic (pX X )− ion and molecular (ppX )+ ion below
pX (1s) threshold EpX =−λ

2 a.u.; λ being the reduced mass of the exotic pX atom

Epµ =−92.920 408 Epπ =−118.882 182 EpK =−316.514 843

pµµ ppµ pππ ppπ pKK ppK

97.566 983 102.223 503 124.690 678 129.718 076 330.798 993 334.575 390

97.566 984 59a 102.223 503 6b 124.690 674c 129.718 073c 330.800 637c 334.575 377c

a [5]; b [18]; c [10]

Enlarged view of the stabilization diagram (Figure 1) for 1Se state of exotic pKK ion in the
energy range -100 a.u. to −78.5 a.u. is given in Figure 2. From a closer look at Figure 2, one
can see that for a short range of γ each eigenroot becomes almost flat in the vicinity of avoided
crossings in the neighborhood of a particular resonance state. The density of states ρn(E) is
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calculated by evaluating the inverse of the slope at a number of points near the flat plateau of
each energy eigenroot using the formula [28,34] given by:

ρn(E)=
∣∣∣∣ γi+1 −γi−1

En(γi+1)−En(γi−1)

∣∣∣∣
En(γi)=E i

. (3.1)

The calculated density of resonance states ρn(E) is then fitted to the following Lorentzian form
[28,34],

ρn(E)= y0 + A
π

Γr/2

(E−Er)2 + (Γr/2)2 , (3.2)

where y0 is the baseline background, A is the total area under the curve from the baseline, Er
gives the position of the centre of the peak of the curve and Γr represents the full width of the
peak of the curve at half height. Among different fitting curves for each eigenroot corresponding
to a particular resonance state, the fitting curve with least χ2 and the square of correlation
closer to unity leads to the desired resonance energy (Er) and width (Γ) as mentioned in ref. [28].
For example, from the stabilization plot of Figure 2 for the first 1Se resonance state below N = 2
ionization threshold of pK , we have calculated the inverse of the slope by using (3.1) at different
points near the flat plateau of 24th eigenvalues in the interval of γ= 0.724−0.738.

Figure 2. Enlarged view of the Stabilization diagram for 1Se states of exotic pKK ion below N = 2
ionization threshold of pK

The corresponding fitted curve is obtained by using (3.2) and is shown in Figure 3. The
circles in Figure 3 are the calculated values of ρn(E) while the solid line (red) corresponds to
the fitted curve. Repeated calculations of ρn(E) near the flat plateau of each of the eigenroot for
first 1Se resonance state resulted Lorentzian fitted curve similar to that of Figure 3. Among all
this fitting curve, we have found that 24th eigenroot corresponds to the best fit and from which
−Er = 95.06738(a.u.) and Γr = 0.31004(a.u.) are obtained. Similarly, the best fits for the second
and third 1Se resonance states are shown in Figure 4 and 5, respectively.

Table 2 shows all the resonance energies (Er in a.u.) and widths (Γr in a.u.) of 1Se states
of exotic atomic (pX X )− ions and molecular (ppX )+ ions [X = µ,π,K] below N = 2 ionization
threshold of pX atom. The results are being compared with those available in literature
[18,19] for (pX X )− and (ppX )+ [X =µ,π] ions. The comparison shows that resonance energies
and widths are in very good agreement with the available results [18,19]. To the best of our
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knowledge the present calculated resonance energies and widths of (pKK)− and (ppK)+ ions
are given for the first time in the literature. Table 2 shows that the widths of the negative
ions (pX X ) are higher than the corresponding three body positive counterpart (ppX ), which
indicates that the resonance states of the molecular (ppX )+ ions are more long lived than that
of the atomic (pX X )− ions.

Figure 3. Calculated density (circles) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [−Er = 95.06738(a.u.) and Γr = 0.31004(a.u.)] of exotic pKK ion

Figure 4. Calculated density (stars) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [−Er = 80.0428(a.u.) and Γr = 0.03131(a.u.)] of exotic pKK ion

Figure 5. Calculated density (diamonds) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [−Er = 79.1798(a.u.) and Γr = 0.0084(a.u.)] of exotic pKK ion
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4. Conclusion
In the present work we have adopted extended Hylleraas type basis set to estimate the ground
state energy eigenvalues of exotic atomic (pX X )− ions and molecular (ppX )+ ions [X =µ,π,K]
below N = 1 ionization threshold of pX atom. Stabilization method is used to calculate the
resonance energies and widths of the above mentioned exotic systems below N = 2 ionization
threshold of pX atom. The present results consistent with those available in literature. The
advantage of the present method lies in the fact that a single methodology enables us to predict
reasonably accurate bound state energies and resonance parameters with much lesser number
of terms in the basis set expansion thus minimizing the computational time. The resonance
parameters for ppK and pKK ions are given for the first time in the literature. We hope the
present results will be useful for the future references.
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