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1. Introduction
In ‘Subdivision’, an initial mesh of vertices and edges are required to start the process of
refinement. Subdivision is currently one of the most powerful tool to model free form smooth
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shapes. In bivariate case, subdivision process generate smooth surfaces, which is important in
designing aesthetically pleasing shapes. Subdivision schemes were first introduced by Catmull
and Clark [1], and Doo and Sabin [2] in 1978. They gave the idea for genralized tensor
product of B-spline of bi-degree three and two respectively. There are two general classes
of subdivision schemes, namely, approximating and interpolating schemes. The limit curve of
an approximating scheme usually does not pass through the control points of control polygon.
As the level of refinement increases, the polygon usually shrinks towards the final limit curve.
The interpolating schemes are more attractive than approximating schemes because of their
interpolation property. All vertices in the control polygon are located on the limit curve of the
interpolation scheme, which facilitates and simplifies the graphics algorithms and engineering
designs.

Lian et al. [15] generalized the classical binary 4-point and 6-point interpolatory subdivision
schemes to a-ary setting for any integer a ≥ 3. After that they introduced the a-ary 3-point
and 5-point interpolatory subdivision schemes for curve design for arbitrary odd integer a ≥ 3
(see [14]). After that Lian et al. [16] investigate both the 2m-point, a-ary for any a ≥ 2 and
(2m+1)-point, a-ary for any odd a ≥ 3 interpolatory subdivision schemes for curve design. Ko [11]
presented explicitly a new formula for the mask of (2N +4)-point binary interpolating and
approximating subdivision schemes with two parameters. Recently, there has been tremendous
progress in construction of subdivision rules and properties as well as their applications in
multiresolution representation. The proposed work presents a new observation about bivariate
case by using 2D Lagrange interpolating polynomial. In this work, we avoid in finding the
mask of subdivision schemes separately, as a result its approach is simple and avoids complex
computation when deriving subdivision rules. This work also provides some special cases of the
classical subdivision schemes.

In the present paper, Section 2 gives some preliminaries results and a new relation for
(2N +4)-point n-ary interpolating curve scheme for closed and open polygon to access main
result. Section 3 presents the construction of general formula for the surface case using two
dimensional Lagrange interpolating polynomial. In Section 4, comparison of the proposed
subdivision schemes by estimating the error bounds of the derived schemes. In Section 5, we
also give some numerical example for the visual performance the proposed work. Conclusion of
the research work is provided in Section 6.

2. Preliminary results

The general form of univariate n-ary subdivision scheme which maps a control polygon
pk = {pk

i }i∈z to refined polygon pk+1 = {pk+1
i }i∈z is defined by

pk+1
ni+s =

∑
j∈z

an j+s pk
i− j, s = 0,1,2, · · · ,n−1, (2.1)

where Z is the set of integers and a = {ai | i ∈ z} a set of constants is the mask of the subdivision
scheme. A necessary condition for the uniform convergence of the subdivision scheme is∑

j∈z
an j+s = 1, s = 0,1,2, · · · ,n−1. (2.2)
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Let Υ2N+1 be the space of all polynomials of degree ≤ 2N +1, where N is non-negative integer.
If {Lµ(x)}N+1

µ=−N is fundamental Lagrange polynomial, then

p(x)=
N+1∑
µ=−N

p(µ)Lµ(x), p ∈Υ2N+1, (2.3)

where

Lµ(x)=


N+1∏
j=−N

x− j
µ− j , j 6= k,

δµ, j, µ, j =−N, · · · , N +1

and δµ, j is the Kronecker delta symbol defined as

δµ, j =
{

1, µ= j,
0, µ 6= j,

Using (2.1)-(2.3), Ko [11] gave the general formula for the mask of (2N + 4)-point binary
interpolating symmetric subdivision schemes. After that Mustafa and Najma [17] presented
the generalized form for the mask of (2N +4)-point n-ary interpolating symmetric subdivision
schemes{

an j = δ j,0 −vξ2(N, j)
an j+s = ξ1(N, j,n, s)−an(N+1)+sξ2(N, j)−an(N+1)+tξ3(N, j),

(2.4)

where

ξ1(N, j,n, s)=

N∏
b=−N−1

(ni+ s)

n2N+1(−1)− j+N−1(s+n j)(N − j)!(N +1+ j)!
,

ξ2(N, j)= (−1) j+N(2N +2)!
(N − j)!(N + j+1)!(N − j+1)

, ξ3(N, j)= (−1) j+N+1(2N +2)!
(N − j)!(N + j+1)!(N + j+2)

and

an(N+1)+s = a−n(N+2)−s , (2.5)

where an(N+1)+s can be explicitly defined as

an(N+1)+s =
(d−n)(d−2n) · · · (d− (2Nn+3n))

(−1)2N+3(n)2N+3(2N +3)!
, d = n(N +1)+ s.

Here, n is the arity of the subdivision scheme (i.e. for binary subdivision scheme n = 2, ternary
subdivision scheme n = 3, quaternary subdivision scheme n = 4, . . .), N is non-negative integer,
j =−N−1, · · · , N , s = 0,1,2, · · ·n−1 and t = n−s. Using (2.4) and the symmetry of the subdivision
scheme, (2N +4)-point binary interpolating subdivision scheme takes the form

pk+1
2i+α =

N+2∑
l=−N−1

a2l−αpk
i+l , N ≥ 0, α= 0,1, (2.6)

together with the symmetry condition a−2(N+2)−α = a2(N+1)+α.

Setting a2(N+2) = 0 and a2(N+1) = v, the masks a2l−α come from (2.4). Hence, using (2.4)-(2.6)
and n ≥ 2, we have the following form of 2(N +4)-point n-ary interpolating subdivision scheme

pk+1
ni+α =

N+2∑
l=−N−1

anl−αpk
i+l , where α= 0,1,2, · · · ,n−1, (2.7)
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together with the symmetry condition

a−n(N+1)−α = an(N+1)+α , (2.8)

and setting an(N+2) = 0, an(N+1) = v.

2.1 Construction of the Schemes for Open Polygon
In interpolating subdivision schemes, it is not possible to refine the end(first and last) edges of
the initial open polygon p0 = {p0

i : i = 0, · · · , N} by (2.7). Dealing with open polygons require a
well-defined neighborhood of end points. So, it will be adequate to define the auxiliary point
p0
−i = 2p0

0 − p0
i to the initial open polygon p0 as the extrapolatory rule. Therefore, the following

rule is defined to refine the open polygon using 2N +4-points interpolating scheme

pk+1
ni+α =

−i−1∑
l=−N−1

(2anl−αpk
0 −anl−αpk

−(i+l))+
N+2∑
l=−i

anl−αpk
i+l , (2.9)

together with the symmetry condition

a−n(N+1)−α = an(N+1)+α (2.10)

where N is non-negative integer, α= 0,1,2, . . . ,n−1, i = 0,1, . . . , N and n ≥ 2.

Example. To refine an open polygon using the 6-point ternary interpolating subdivision scheme
by (2.9), define the auxiliary points p0

−2 = 2p0
0−p0

2 and p0
−1 = 2p0

0−p0
1 in the initial open polygon

p0. The first two edges p0 p1 and p1 p2 of the non-refined polygon {pk
i , i = 0, . . . ,3kN} can be

refined by putting N = 1, n = 3 and i = 0 in (2.9).

pk+1
0 = (2a−6 +2a−3 +a0)pk

0 + (a3 −a−3)pk
1 + (a6 −a−6)pk

2 +a9 pk
3 ,

pk+1
1 = (2a−7 +2a−4 +a−1)pk

0 + (a2 −a−4)pk
1 + (a5 −a−7)pk

2 +a8 pk
3 ,

pk+1
2 = (2a−8 +2a−5 +a−2)pk

0 + (a1 −a−5)pk
1 + (a4 −a−8)pk

2 +a7 pk
3 .

Remark 2.1. Here, we observe that some well known interpolating schemes can be obtained
from our proposed result (2.7).

• By putting N = 0 in the proposed scheme (2.7), 4-point interpolatory scheme of Lian [15]
is obtained.

• By setting n = 2, N = v = a4 = 0 and a3 = −w
16 for 0 < w < 2(

p
5−1) in (2.7), the following

4-point interpolatory scheme of Dyn et al. [3] is obtainedpk+1
2i = pk

i ,

pk+1
2i+1 = 8+w

16 (pk
i + pk

i+1)− w
16 (pk

i−1 + pk
i+2).

3. Tensor Product of (2N +4)-point Interpolating Subdivision Schemes

Let pk
i, j ∈RN , i, j ∈Z, N ≥ 2, be the set of control points, where k ≥ 2 indicates the subdivision

level. We define n-ary subdivision surface as tensor product of n-ary subdivision curves by

pk+1
ni+α.n j+β =

m∑
r=0

m∑
s=0

aα,raβ,s pk
i+r, j+s, α,β= 0,1, · · · ,n−1, (3.1)
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where, aα,r and aβ,r are the sets of subdivision masks which satisfy (2.2).

For k = 0, pk
i, j ∈RN , i, j ∈Z, represent the initial points. As k →∞, the process (3.1) defines

an infinite set of points in RN . The diadic mesh points ( i
nk , j

nk )i, j∈Z are related to {pk
i, j}i, j∈Z

in a natural way. The process then defines a scheme whereby pk+1
ni+α,n j+β replaces the value

pk
i+α/n, j+β/n at the mesh point ( i+α/n

nk , j+β/n
nk ) for α,β ∈ {0,n}, while the values pk+1

ni+α,n j+β are

inserted at the new mesh points ( ni+α
nk+1 , n j+β

nk+1 ) for α,β= 0,1, · · · ,n−1 (where α=β 6= 0). Figure 1
illustrates labeling of old and new points formed by subdivision scheme (3.1).

(a) (b) (c)

Figure 1. Solid lines show one face of initial polygon whereas doted lines are refined polygons which
can be obtained by subdividing one face into four, nine and sixteen new faces using (3.1) for n = 2,3,4,
respectively.

3.1 Construction
Let Υ2ρ+1 and Υ2σ+1 be the space of all polynomials of degrees ≤ 2ρ+1 and ≤ 2σ+1, respectively.
Dahlquist and Bjork [13] presented the Lagrange interpolating polynomial for tensor product

p(x, y)=
ρ+1∑
µ=−ρ

σ+1∑
ν=−σ

Lµ,ν(x, y)p(µ,ν), (3.2)

where

Lµ,ν(x, y)=
ρ+1∏

i=−ρ,i 6=µ

ν+1∏
j=−σ, j 6=ν

x− i
µ− i

× x− j
ν− j

, µ=−ρ, · · · ,ρ+1, ν=−σ, · · · ,σ+1. (3.3)

To find the mask of a tensor product scheme, each point in the grid must be accessible from
the origin. Tensor product schemes are simply the tensor product of the univariate case.

Mustafa and Najma [17] presented the general formula to generate the masks {ai}
2γ+3
i=−2γ−3

and {a j}2σ+3
j=−2σ−3 for n-ary interpolating subdivision schemes given by{

ani = δi,0 −vξ2(γ, j)
ani+s1 = ξ1(γ, i,n, s1)−an(γ+1)+s1ξ2(γ, i)−an(γ+1)+t1ξ3(γ, i)

(3.4)

and {
am j = δ j,0 −vη2(σ, j)
am j+s2 = η1(σ, j,n, s2)−an(σ+1)+s2η2(σ, j)−an(σ+1)+t2η3(σ, j),

(3.5)
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where

ξ1(ρ, i,n, s1)=

ρ∏
b=−(ρ+1)

(nb+ s1)

(n)2ρ+1(−1)−i+ρ−1(ni+ s1)(ρ− i)!(ρ+ i+1)!
,

η1(σ, j,m, s2)=

σ∏
b=−(σ+1)

(mb+ s2)

(m)2σ+1(−1)− j+σ−1(m j+ s2)(σ− j)!(σ+ j+1)!
,

ξ2(ρ, i)= (−1)i+ρ(2ρ+2)!
(ρ− i)!(ρ+ i+1)!(ρ− i+1)

, η2(σ, j)= (−1) j+σ(2σ+2)!
(σ− j)!(σ+ j+1)!(σ− j+1)

,

ξ3(ρ, i)= (−1)i+ρ+1(2ρ+2)!
(ρ− i)!(ρ+ i+1)!(ρ+ i+2)

, η3(ρ, j)= (−1) j+σ+1(2σ+2)!
(σ− j)!(σ+ j+1)!(σ+ j+2)

and an(ρ+1)+s1 = (d−n)(d−2n)···(d−(2ρn+3n))
(−1)2ρ+3(n)2ρ+3(2ρ+3)! , d = n(ρ+1)+ s1,

am(σ+1)+s2 = (e−m)(e−2m)···(e−(2σm+3m))
(−1)2σ+3(2m)2σ+3(2σ+3)! , e = m(σ+1)+ s2 ,

(3.6)

where, δi,0 and δ j,0 are the kroneker delta symbols defined by (2.4), n,m are the arities
of the subdivision schemes (i.e. n,m = 2,3,4 represent binary, ternary and quaternary
interpolating subdivision schemes, respectively), ρ,σ are non-negative integers, i =−ρ−1, · · · ,ρ,
j =−σ−1, · · · ,σ, s1 = 1,2, · · · ,n−1, s2 = 1,2, · · · ,m−1, t1 = n− s1, and t2 = m− s2 and an(ρ+1)+s1

and am(σ+1)+s2 are the free parameters.

Since, ai, j ’s are the tensor product of the mask of univariate scheme (i.e. ai, j = bib j), then

a(ni+s1,m j+s2) = ani+s1 am j+s2 .

Hence, the tensor product of (2N +4)-point interpolating subdivision scheme is

pk+1
ni+α,m j+β =

ρ+2∑
l1=−ρ−1

σ+2∑
l2=−σ−1

a(nl1−α,ml2−β) pk
i+l1, j+l2

, (3.7)

together with the symmetry conditions{
a−n(ρ+1)−α = an(ρ+1)+α,
a−m(σ+1)−β = am(σ+1)+β,

(3.8)

where α= 0,1,2, · · · ,n−1, β= 0,1,2, · · · ,m−1, ρ,σ are non-negative integers and n,m ≥ 2 are
the arities of the tensor product. Setting an(ρ+2) = am(σ+2) = 0, the masks anl1−1−α and aml2−1−β
can be evaluated using (3.4) and (3.5).

Example. Consider the tensor product 4-point DD interpolating subdivision scheme which can
be evaluated using (3.7) together with (3.8) as follows.

Let a(z) be the Laurent polynomial defined by

a(z)= 1
16

(−1z−3 +9z−1 +1+9z1 −1z3). (3.9)

The Laurent polynomial of the tensor product 4-point binary interpolating scheme can be
obtained by taking the tensor product a(z1, z2)= a(z1)a(z2), where

a(z1)= 1
16

(−1z−3
1 +9z−1

1 +1+9z1
1 −1z3

1), a(z2)= 1
16

(−1z−3
2 +9z−1

2 +1+9z1
2 −1z3

2).
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So that the suggested tensor product 4-point binary DD interpolating subdivision scheme is

pk+1
2i,2 j = pk

i, j,

pk+1
2i+1,2 j = 1

16 (−pk
i−1, j +9pk

i, j +9pk
i+1, j − pk

i+2, j),

pk+1
2i,2 j+1 = 1

16 (−pk
i, j−1 +9pk

i, j +9pk
i, j+1 − pk

i, j+2),

pk+1
2i+1,2 j+1 = 1

256 (pk
i−1, j−1 −9pk

i, j−1 −9pk
i+1, j−1 + pk

i+2, j−1 −9pk
i−1, j +81pk

i, j +81pk
i+1, j −9pk

i+2, j

−9pk
i−1, j+1+81pk

i, j+1+81pk
i+1, j+1−9pk

i+2, j+1+pk
i−1, j+2−9pk

i, j+2−9pk
i+1, j+2+pk

i+2, j+2).

The tensor product of the DD interpolating subdivision scheme has the same C1 continuity
because the DD scheme has C1 continuity. Substituting n = m = 2, α,β= 0,1 and ρ =σ= 0 in
(3.7), the tensor product becomes

pk+1
2i+α,2 j+β =

2∑
l1=−1

2∑
l2=−1

a(2l1−α,2l2−β) pk
i+l1, j+l2

, (3.10)

together with the symmetry conditions{
a−2−α = a2+α ,
a−2−β = a2+β .

(3.11)

Since ai, j ’s satisfy ai, j = bib j , then

a(2l1−α,2l2−β) = a2l1−αa2l2−β .

Since a4 = 0 for n = m = 2. Also, when v1 = v2 = 0, w1 = w2 = −1
16 , b1 = b2 = 0 and s1, s2 = 1 is

substituted in (3.7) together with (3.8), the equations (3.10) are satisfied.

Remark 3.1. Some other well known interpolating schemes can be obtained from our proposed
result (2.7) which are given below.

• The interpolatory subdivision scheme of Kobbelt [5] is obtained by setting n = m = 2, and
ρ,σ= 0 in (3.7) together with (3.9). The end points of this scheme are given bypk+1

2i+1,2 j = 8+w
16 (pk

i, j + pk
i+1, j)− w

16 (pk
i−1, j + pk

i+2, j),

pk+1
2i,2 j+1 = 8+w

16 (pk
i, j + pk

i, j+1)− w
16 (pk

i, j−1 + pk
i, j+2),

and the face points are given by

pk+1
2i+1,2 j+1 =

1
256

(w2 pk
i−1, j−1 −w(8+w)pk

i, j−1 −w(8+w)pk
i+1, j−1 +w2 pk

i+2, j−1 −w(8+w)pk
i−1, j

+ (8+w)2 pk
i, j + (8+w)2 pk

i+1, j −w(8+w)pk
i+2, j −w(8+w)pk

i−1, j+1 + (8+w)2 pk
i, j+1

+ (8+w)2 pk
i+1, j+1 −w(8+w)pk

i+2, j+1 +w2 pk
i−1, j+2 −w(8+w)pk

i, j+2

−w(8+w)pk
i+1, j+2 +w2 pk

i+2, j+2) .

• By setting n = m = 3, b1 = b2 = 0, w1 = w2 = a5 = −5
81 , u1 = u2 = a4 = −4

81 in (3.7) together
with (3.8), the following 4-point interpolatory tensor product scheme is obtained

pk+1
3i,3 j =pk

i, j,

pk+1
3i+1,3 j =

1
6561

(−5pk
i−1, j +60pk

i, j +30pk
i+1, j −4pk

i+2, j),
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pk+1
3i+2,3 j =

1
6561

(−4pk
i−1, j +30pk

i, j +60pk
i+1, j −5pk

i+2, j),

pk+1
3i,3 j+1 =

1
6561

(−5pk
i, j−1 +60pk

i, j +30pk
i, j+1 −4pk

i, j+2),

pk+1
3i+1,3 j+1 =

1
6561

(25pk
i−1, j−1 −300pk

i, j−1 −150pk
i+1, j−1 +20pk

i+2, j−1 −150pk
i−1, j +1800pk

i, j

+900pk
i+1, j −120pk

i+2, j −300pk
i−1, j+1 +3600pk

i, j+1 +1800pk
i+1, j+1 −240pk

i+2, j+1

+25pk
i−1, j+2 −300pk

i, j+2 −150pk
i+1, j+2 +20pk

i+2, j+2),

pk+1
3i+2,3 j+1 =

1
6561

(20pk
i−1, j−1 −150pk

i, j−1 −300pk
i+1, j−1 +25pk

i+2, j−1 −240pk
i−1, j +1800pk

i, j

+3600pk
i+1, j −300pk

i+2, j −120pk
i−1, j+1 +900pk

i, j+1 +1800pk
i+1, j+1 −150pk

i+2, j+1

+16pk
i−1, j+2 −120pk

i, j+2 −240pk
i+1, j+2 +20pk

i+2, j+2),

pk+1
3i,3 j+2 =

1
6561

(−4pk
i, j−1 +30pk

i, j +60pk
i, j+1 −5pk

i, j+2),

pk+1
3i+1,3 j+2 =

1
6561

(20pk
i−1, j−1 −240pk

i, j−1 −120pk
i+1, j−1 +16pk

i+2, j−1 −150pk
i−1, j +1800pk

i, j

+900pk
i+1, j −120pk

i+2, j −300pk
i−2, j+2 +3600pk

i, j+1 +1800pk
i+1, j+1 −240pk

i+2, j+1

+25pk
i−2, j+1 −300pk

i, j+2 −150pk
i+1, j+2 +20pk

i+2, j+2),

pk+1
3i+2,3 j+2 =

1
6561

(16pk
i−1, j−1 −120pk

i, j−1 −240pk
i+1, j−1 +20pk

i+2, j−1 −120pk
i−2, j +900pk

i, j

+1800pk
i+1, j −150pk

i+2, j −240pk
i−2, j+2 +1800pk

i, j+1 +3600pk
i+1, j+1 −300pk

i+2, j+1

+20pk
i−2, j+1 −150pk

i, j+2 −300pk
i+1, j+2 +25pk

i+2, j+2).

4. Error Bound
In this section, we find the error bound for subdivision surfaces of (2N + 4)-point n-ary
interpolating subdivision schemes. Also, we present the error bounds of binary, ternary and
quaternary subdivision surfaces as special cases of the following lemma.

Lemma 4.1. Given initial control polygon p0
i, j = pi, j , i, j ∈Z, let the values pk

i, j , k ≥ 1 be defined
recursively by subdivision process (3.1) together with (3.2). Suppose pk is the piecewise linear
interpolant to the values pk

i, j and p∞ is the limit surface of the subdivision process (3.1). If ξs ≤ 1,
then the error bound between limit surface and its control polygon after k-fold subdivision is

‖pk − p∞‖∞ ≤σϑ
(

(ξs)k

1−ξs

)
, (4.1)

where

ξs =max
α,β

{∣∣∣∣∣ m∑
v=0

aα,t

m∑
u=0

aβ,u

∣∣∣∣∣ , α,β= 0,1, . . . ,n−1

}
,
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and

σϑ =max
α,β

{
3∑

q=1
(ϑq)(ωq

α,β), α,β= 0,1, . . . ,n−1

}
,

where

ω1
α,β =

∣∣∣∣∣aβ,0

m∑
q=1

aα,q − α(n−β)
n2

∣∣∣∣∣+
∣∣∣∣∣aβ,0

m−1∑
v=1

ãα,v

∣∣∣∣∣ , ω2
α,β =

∣∣∣∣∣ m∑
q=1

aβ,q − β

n

∣∣∣∣∣+
∣∣∣∣∣ m∑
u=0

aα,u

m∑
u=0

ãβ,v

∣∣∣∣∣ ,

ω3
α,β =

∣∣∣∣∣ m∑
q=1

aα,q

m∑
q=1

aβ,q − αβ

n2

∣∣∣∣∣+
∣∣∣∣∣ m∑
q=1

aβ,q

m−1∑
v=1

ãα,v

∣∣∣∣∣ ,

together with
ãα,0 =

m∑
q=1

aα,q − α
n , α= 0,1, . . . ,n−1,

ãα,l =
m∑

q=l+1
aα,l , l ≥ 1

and

ϑq =max
i, j

‖∆0
i, j,q‖, q = 1,2,3

assuming 
∆0

i, j,1 = p0
i+1, j − p0

i, j ,

∆0
i, j,2 = p0

i, j+1 − p0
i, j ,

∆0
i, j,3 = p0

i+1, j+1 − p0
i, j .s

4.1 Error Bounds of (2N +4)-point n-ary Interpolating Subdivision Scheme
In this section we have presented error bounds computed by equation (4.1) between limit surface
and its control polygon after k-fold subdivision of 4-point binary, ternary, quaternary, quinary
and senary interpolating subdivision schemes. It can be seen from Table 1 that error bound of
4-point binary interpolating scheme is less than that of 4-point ternary interpolating scheme
and error bound of 4-point ternary interpolating scheme is less than that of 4-point quaternary
interpolating scheme and so on at each subdivision level.M̃oreover, we have also given the
graphical comparison of 4-points binary, ternary, quaternary, quinary and senary interpolating
schemes in Figure 2.

Table 1. Error bounds of 4-point n-ary interpolating schemes

n | k 1 2 3 4 5 6 7

2 0.0300000 0.0150000 0.0075000 0.0037500 0.0018750 0.0009375 0.0004688
3 0.0166667 0.0055556 0.0018523 0.0006172 0.0002053 0.0000683 0.0000233
4 0.0116667 0.0029173 0.0007291 0.0001823 0.0000456 0.0000111 0.0000021
5 0.0090000 0.0018000 0.0003600 0.0000720 0.0000144 0.0000029 0.0000058
6 0.0073333 0.0012222 0.0002037 0.0000340 0.0000056 0.0000009 0.0000001
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Figure 2. Comparison of the error bounds of 4-point binary, ternary, quaternary, quinary and senary
interpolating schemes (after k-fold subdivision)

5. Visual Performance
Here, the performance of some of the schemes which are determined from the proposed formulae
(3.2)-(3.8) are shown in Figure 4 and Figure 3.

(a) Initial polygon (b) 1st-level

(c) 2nd-level (d) Limit surface

Figure 3. Performance of 4-point binary interpolating subdivision surface scheme: (a), (b), (c) and
(d) show the initial polygon, 1st-, 2nd-subdivision levels and limit surface, respectively.
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(a) Initial polygon (b) 1st-level

(c) 2nd-level (d) Limit surface

Figure 4. Performance of 4-point ternary interpolating subdivision surface scheme: (a), (b), (c) and
(d) show the initial polygon, 1st-, 2nd-subdivision levels and limit surface, respectively.

6. Conclusion
In this paper, a general formula for subdivision surface scheme is formulated by using 2D
Lagrange interpolating polynomial. This paper presents a new and efficient approach to acquire
variety of subdivision schemes for surfaces. Most of the well-known subdivision schemes are
special cases of the proposed work. To test out any improvement in the proposed scheme,
error bound between the generalized subdivision surface and its control polygon after κ-fold
subdivision has been estimated. The bounds are expressed in the form of first order differences
of the initial control point sequence and constants.
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