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1. Introduction
Singular boundary value problems for ordinary differential equation appear very commonly
in the field of science and Engineering specially in electrically conducting solids, electrical
potential theory, circular membrane theory, membrane response of a spherical cap, plasma
physics, theory of colloids and flow and heat transfer over a stretching sheet etc. These also
arise in physiology as well e.g. in the study of various tumor growth problem, steady state
oxygen diffusion in a spherical cell with Michaelis-Menton uptake kinetics.

Consider the class of singular two-points boundary value problems [7,8,10]

x−c(xc y′)′ = f (x, y), 0< x ≤ 1 , (1.1)

y′(0)= 0 and y(1)=β , (1.2)

where β is a finite constant and c ≥ 1. In order to make sure the existence and uniqueness of
the solution of above problems, suppose that f (x, y) is continuous, ∂ f

∂y exists and is continuous

and ∂ f
∂y ≥ 0 [8,10,15].

Second-order singular boundary value problems have been investigated by many authors
[7,8,10,13,17,18,23]. Several methods have been elaborated for the solution of these kinds of
problems and were discussed in [14,21]. Bickley [6] Pioneered the use of cubic splines rather
than a global high-order approximation to enhance accuracy for the approximated solution of
linear ordinary differential equation. Albasiny and Hoskins [5] obtained spline solutions by
solving a tri-diagonal matrix system. Fyfe [9] studied the method introduced by Bickley [6]
and carried out an error analysis. It was found that the spline method is more effective than
the usual finite difference scheme [18,21] because it has the flexibility to obtain the solution
at any point in the domain with greater accuracy. Several authors [14, 15, 20] discussed the
second order singular boundary value problems via Chebyshev polynomial and B-spline methods
because of its better approximation than usual finite difference methods. Caglar and Caglar [7,8]
discussed the problem of second order singular ordinary differential equations by using B-spline
collocation methods because these methods provide the accurate results than the monomial
cubic splines. Continuing with this approach, Goh et al. [10] described and presented the quartic
B-spline collocation method for the solution of second order singular boundary value problems.
A quartic B-spline method was found to be more accurate than cubic B-spline scaling functions.

B-spline functions can be used for the numerical solution of linear and nonlinear differential
equations due to their important geometric properties and features. The trigonometric spline
function was first introduced by Schoenberg in 1964 [22]. Trigonometric B-spline is a non-
polynomial B-spline functions containing trigonometric terms. The derivation and properties of
Trigonometric B-spline were found in [16,25]. Cubic trigonometric B-spline has been used by
Hamid [12] for boundary value problem of order two involving ordinary differential equations.
The application of cubic trigonometric B-spline to the numerical solution of the hyperbolic
problems, generalized nonlinear Klien-Gordon equation and non-classical diffusion problems
have been carried out in [1–3,26,27]. These trigonometric B-spline methods provide the better
accuracy than the usual finite difference methods. Gupta and Kumar [11] solved a singular
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boundary value problem by using cubic trigonometric B-spline approach. Heilat et al. [13] solved
linear system of second order boundary value problems by using extended cubic B-spline. Suardi
et al. [24] derived a scheme based on cubic B-spline to solve two-point boundary value problems.

In this work, a new quartic trigonometric B-spline technique is described and presented for
solving a second order singular boundary value problems. The technique is based on the
quartic trigonometric B-spline functions. Some researchers have considered the ordinary
B-spline collocation method for solving the proposed problem but, so far as we are aware,
not with the quartic trigonometric B-spline collocation method. The values of unknown
coefficients Ci , i = −4,−3, . . . ,n−1 are found via optimization. The order of convergence can
be calculated numerically and found to be fourth order. A quartic trigonometric B-spline is
used as an interpolating function in the space dimension. The efficiency and applicability of the
technique are demonstrated by applying the scheme to several examples. The numerical results
demonstrate that this method is superior as it yields more accurate solutions than ordinary
cubic B-spline collocation methods [7,8] and quartic B-spline collocation approach [10].

This paper is organized as follows: Quartic trigonometric B-spline collocation method is
described in Section 2. A numerical method of solving second order boundary value problem is
presented in Section 3. In Section 4, the values of unknown coefficients Ci , i =−4,−3, . . . ,n−1
are obtained via optimization. Numerical examples and discussions are considered in Section 5.
Finally, the concluded remarks are presented in Section 6.

2. Description of Quartic Trigonometric B-spline Collocation Method

The trigonometric B-spline basis of order 1 can be obtained by following formula [27]

TB1
i (x)=

{
1 x ∈ [xi, xi+1),
0 otherwise.

(2.1)

The trigonometric B-spline basis of order k > 1 can be calculated from the following recursive
formula [27]

TBk
i =

sin
( x−xi

2

)
sin

( xi+k−1−xi
2

)TBk−1
i (x)+ sin

( xi+k−x
2

)
sin

( xi+k−xi+1
2

)TBk−1
i+1 (x). (2.2)

For k = 5 calculating degree upto 4, the resulting basis TB5
i (x) is

TB5
i (x)= 1

ω



p4(xi), [xi, xi+1]

p2(xi)(p(xi)q(xi+2)+ p(xi+1)q(xi+3))+ p(xi)p2(xi+1)q(xi+4)
+p3(xi+1)q(xi+5), [xi+1, xi+2]

p2(xi)q2(xi+3)+ p(xi)q(xi+4)(p(xi+1)q(xi+3)+ q(xi+4)p(xi+2))
+q(xi+5)(p2(xi+1)q(xi+3)+ q(xi+4)p(xi+1)p(xi+2)
+q(xi+5)p2(xi+2)), [xi+2, xi+3]

p(xi)q3(xi+4)+ q2(xi+5)(p(xi+2)q(xi+4)+ p(xi+3)q(xi+5))
+p(xi+1)q2(xi+4)q(xi+5), [xi+3, xi+4]

q4(xi+5), [xi+4, xi+5]

(2.3)
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where

p(xi)= sin
( x− xi

2

)
, q(xi)= sin

( xi − x
2

)
, ω= sin

(
h
2

)
sin(h)sin

(
3h
2

)
sin(2h)

and where h = (b−a)/n and TB5
i (x) is piecewise trigonometric function of degree 4 with C3

continuity, non-negativity and partitioning of unity. A quartic trigonometric B-spline treated
as a approximation solution of proposed problem, ST(x) which is a linear combination of the
quartic trigonometric B-spline basis over the subinterval [xi, xi+1] can be defined as

ST(x)=
n−1∑
i=−4

CiTB5
i (x) , (2.4)

where Ci are the real non-zero coefficients. Equation (2.4) can be simplified to

ST(xi)= Ci−4TB5
i−4(xi)+Ci−3TB5

i−3(xi)+Ci−2TB5
i−2(xi)+Ci−1TB5

i−1(xi) , (2.5)

ST(xi)= Ci−4

[
sin3

(
h
2

)
csc(h)csc

(
3h
2

)
csc(2h)

]
+Ci−3

[
sin2

(
h
2

)
csc(h)csc(2h)+2sin

(
h
2

)
sin(h)csc

(
3h
2

)
csc(2h)

]
+Ci−2

[
sin2

(
h
2

)
csc(h)csc(2h)+2sin

(
h
2

)
sin(h)csc

(
3h
2

)
csc(2h)

]
+Ci−1

[
sin3

(
h
2

)
csc(h)csc

(
3h
2

)
csc(2h)

]
. (2.6)

Here, we only need values up to second derivative to solve the second order boundary value
problem. Now, taking the first and second derivative of equation (2.4) and evaluating at xi , we
have

S′
T(xi)= Ci−4

[−csc(h)sec(h)
2+4cos(h)

]
+Ci−3[−csc(2h)]+Ci−2[csc(2h)]+Ci−1

[
csc(h)sec(h)
2+4cos(h)

]
, (2.7)

S′′
T(xi)= Ci−4[csc(h)csc(2h)]+Ci−3[−csc(h)csc(2h)]+Ci−2[−csc(h)csc(2h)]+Ci−1[csc(h)csc(2h)].

(2.8)

3. Numerical Solution of Second Order Singular Boundary
Value Problems

For the linear case, the equation (1.1) and (1.2) can be written as [10,15]

y′′(x)+ c
x

y′(x)+ g(x)y(x)= f (x), 0< x ≤ 1 (3.1)

with the boundary conditions

y′(0)= 0, y(0)=β. (3.2)

The above differential equation has a singularity at x = 0. L’Hospital rule is applied to remove
the singularity. Hence the boundary value problem can be changed into the following form{

(c+1)y′′(x)+ g(0)y(x)= f (0), x = 0,
y′′(x)+ c

x y′(x)+ g(x)y(x)= f (x), 0< x ≤ 1.
(3.3)
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In order to solve the problem, a quartic trigonometric B-spline ST(xi), i = 0,1,2, . . . ,n is
considered to be the solution of above differential equation at x = xi and we substitute equations
(2.6)-(2.8) into equation (3.3), this leads to{

(c+1)S′′
T(xi)+ g(xi)ST(xi)= f (xi), i = 0 ,

S′′
T(xi)+ c

xi
S′

T(xi)+ g(xi)ST(xi)= f (xi), i = 1,2, . . . ,n ,
(3.4)

S′
T(xi)= 0, i = 0 , (3.5)

ST(xi)=β, i = n . (3.6)

Consider

Cn−1 =λ . (3.7)

A system of (n+3) linear equations with (n+4) unknown C−4,C−3, . . . ,Cn−1 is obtained. This
system can be written in matrix equation of the form as

AC = F , (3.8)

where A is an (n+3)× (n+4) matrix which can be defined in equation, C = [C−4,C−3, . . . ,Cn−1]T

and F = [0, f (x0), . . . , f (xn),β]T . This system of equations has infinitely many solutions.

A =



−a1 −a2 a2 a1 0 0 . . . . . . 0
a3 a4 a4 a3 0 0 . . . . . . 0
p1 q1 r1 s1 0 0 . . . . . . 0

0 p2 q2 r2 s2 0 . . . . . .
...

... . . . . . . . . . . . . . . . . . . . . . ...
0 . . . . . . . . . 0 pn qn rn sn
0 . . . . . . . . . 0 x y y x
0 . . . . . . . . . 0 0 0 0 1


where

a1 =
(
csc(h)sec(h)

2+cos(h)

)
, a2 = csc(2h),

a3 = (c+1)(csc(h)csc(2h))+ g(x0)
(
sin3

(
h
2

)
csc(h)csc

(
3h
2

)
csc(2h)

)
,

a4 = (c+1)(−csc(h)csc(2h))+ g(x0)
(
sin2

(
h
2

)
csc(h)csc(2h)+2sin

(
h
2

)
sin(h)csc

(
3h
2

)
csc(2h)

)
,

pi = csc(h)csc(2h)− c
xi

(
csc(h)sec(h)

2+cos(h)

)
+ g(xi)

(
sin3

(
h
2

)
csc(h)csc

(
3h
2

)
csc(2h)

)
, i = 1,2,3, . . . ,n

qi =−csc(h)csc(2h)− c
xi

(csc(2h))+ g(xi)
(
sin2

(
h
2

)
csc(h)csc(2h)+2sin

(
h
2

)
sin(h)csc

(
3h
2

)
csc(2h)

)
,

i = 1,2,3, . . . ,n,

r i =−csc(h)csc(2h)− c
xi

(csc(2h))+ g(xi)
(
sin2

(
h
2

)
csc(h)csc(2h)+2sin

(
h
2

)
sin(h)csc

(
3h
2

)
csc(2h)

)
,

i = 1,2,3, . . . ,n
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si = csc(h)csc(2h)− c
xi

(
csc(h)sec(h)

2+cos(h)

)
+ g(xi)

(
sin3

(
h
2

)
csc(h)csc

(
3h
2

)
csc(2h)

)
, i = 1,2,3, . . . ,n,

x = sin3
(

h
2

)
csc(h)csc

(
3h
2

)
csc(2h),

y= sin2
(

h
2

)
csc(h)csc(2h)+2sin

(
h
2

)
sin(h)csc

(
3h
2

)
csc(2h).

4. Optimization

In this section, we find the value of λ by minimizing the L2-norm error. By applying the linear
solve built in MATHEMATICA 9 to above linear matrix system (3.8) for the solution of proposed
problem. All Ci , i = −4,−3, . . . ,n−2 can be written in the form of λ. Thus, for each interval
[xi, xi+1], i = 0,1, . . . ,n−1, we obtain

ST(x,λ)= Ci−4(λ)TB5
i−4(x)+Ci−3(λ)TB5

i−3(x)+Ci−2(λ)TB5
i−2(x)+Ci−1(λ)TB5

i−1(x). (4.1)

Suppose our assumption is very close to the exact solution y(x). Thus equation (3.3) can be
changed as [4]

S′′
T(x,λ)+ c

x
S′

T(x,λ)+ g(x)ST(x,λ)≈ f (x). (4.2)

Therefore, we can find the error as

ET(x,λ)= S′′
T(x,λ)+ c

x
S′

T(x,λ)+ g(x)ST(x,λ)− f (x). (4.3)

The largest error to be found at the midpoint x∗i = xi+xi+1
2 of each interval [xi, xi+1], i = 1, . . . ,n,

so approximated error ET(x∗,λ) can be written as

ET(x∗i ,λ)= S′′
T(x∗i ,λ)+ c

x∗i
S′

T(x∗i ,λ)+ g(x∗i )ST(x∗i ,λ)− f (x∗i ). (4.4)

The above equation contains only one variable λ. Now, we crave to reduce the error norm L2,
such that

L2 =
√

n∑
i=1

ET(x∗i ,λ)= 0. (4.5)

From the equation (4.5), we have the values of λ and all the other unknowns C−4,C−3, . . . ,Cn−2.
Thus, the solution at each knots xi can be approximated from equation (2.4).

5. Numerical Results and Discussions
In this section, several numerical examples are considered to demonstrate the competency of
the proposed quartic trigonometric spline collocation approach. Numerical results obtained
by the proposed method are compared with existing techniques in the literature such as Ravi
Kanth and Reddy [20,21], Caglar and Caglar [7,8], Joan Goh et al. [10], Gupta and Kumar [11]
and with the analytical solution at knots x = xi using different values of n. It was establish that
proposed technique in contrast with these methods is more accurate.

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 433–445, 2018



The Application of Quartic Trigonometric B-spline for Solving Second Order Singular . . . : T. Akram et al. 439

Problem 1. Consider the Bessel’s equation of order 0 [10]

y′′(x)+ 1
x y′(x)+ y(x)= 0, y′(0)= 0, y(1)= 1.

The analytic solution of the problem is J0(x)
J0(1) .

The maximum norm(L∞) and Euclidean norm(L2) are calculated using the following formula

L∞ = ‖ST(xi)− y(xi)‖∞ =max |ST(xi)− y(xi)| ,
L2 = ‖ST(xi)− y(xi)‖2 =

√∑
i

[ST(xi)− y(xi)]2 , respectively.

The numerical order of convergence, R of the present method, is calculated by following
formula [1,3]

R = log(L∞(ni))− log(L∞(ni+1))
log(ni+1)− log(ni)

.

Table 1 shows the maximum norm and Euclidean norm at different step size h. It concluded
that the results obtained by proposed method is more accurate than the the cubic-B-spline
method [7] and quartic B-spline method [10]. The order of convergence is found to be fourth.
Figure 1 depicts the comparison of approximated solution with analytical solution at h = 0.05.

Table 1. Maximum errors (L∞) and norm errors (L2) for Problem 1 at different h.

h Cubic B-spline [7] Quartic B-spline [10] Present method Order of Convergence

L∞ L2 L∞ L2 L∞ L2 R

0.2 . . . . . . . . . . . . 7.34E-07 1.24E-06 . . .

0.1 1.14E-04 2.68E-04 1.67E-06 1.89E-06 5.43E-08 1.09E-07 3.756169

0.05 2.82E-05 9.20E-05 2.04E-07 2.34E-07 2.99E-09 9.22E-09 4.181910

0.025 . . . . . . . . . . . . 1.79E-10 8.03E-10 4.063657

0.0125 . . . . . . . . . . . . 1.12E-11 7.12E-11 3.999537

0.02 4.49E-06 2.29E-05 1.42E-08 1.62E-08 7.29E-11 3.67E-10 . . .

0.01 1.12E-06 8.05E-06 1.44E-09 1.64E-09 4.90E-12 3.56E-11 . . .

Table 2. Comparison of the approximated solutions with the exact solutions for Problem 2 when h = 0.05
at different knots.

x Exact Cubic B-spline [7] HFDM [21] Cubic spline [20] Quartic B-spline [10] Present method

0.0 3.257206 3.256908 3.257208 3.256912 3.257206 3.257205

0.2 3.331322 3.331030 3.331323 3.331033 3.331321 3.331321

0.4 3.560864 3.560589 3.560864 3.560592 3.560863 3.560863

0.6 3.968246 3.968011 3.968247 3.968013 3.968246 3.968246

0.8 4.593706 4.593551 4.593706 4.593551 4.593706 4.593706

1.0 5.500000 5.500000 5.50000 5.500000 5.500000 5.500000
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Exact solution

Approximated Solution

0.2 0.4 0.6 0.8 1.0
x

1.00

1.05

1.10

1.15

1.20

1.25

yHxL

Figure 1. Comparison graph of approximated solution and exact solution for Problem 1 when h = 0.05.

Problem 2. Consider the second order singular differential equation [7,10]

y′′(x)+ 2
x

y′(x)−4y(x)=−2, 0< x ≤ 1

with boundary conditions

y′(0)= 0, y(1)= 5.5.

The analytical solution is y(x)= 0.5+ 5sinh2x
xsinh2 . The numerical approximations calculated for each

knot xi , when n = 20 are tabulated in Table 2 and compared the results with methods developed
in [7,10,20,21]. The order of convergence can be calculated to be fourth numerically which is
tabulated in Table 3. The comparison of approximated solutions with analytical solutions at
different knots when n = 20 is displayed in Figure 2.

Table 3. The maximum norm errors, Euclidean norm and order of convergence at different step size h
for Problem 2.

h Present method Order of Convergence

L∞ L2 R

0.2 5.61E-05 9.08E-05 . . .

0.1 2.79E-06 6.97E-06 4.331805

0.05 1.68E-07 6.30E-07 4.049642

0.025 1.04E-08 5.57E-08 4.013696

0.0125 6.49E-10 4.91E-09 4.003998
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Exact solution

ApproximatedSolution

0.2 0.4 0.6 0.8 1.0
x

3.5

4.0

4.5

5.0

5.5

yHxL

Figure 2. Comparison graph of approximated solution and exact solution for Problem 2 when h = 0.05.

Problem 3. Consider the second order singular boundary value problem [7,10]

y′′(x)+ 1
x

y′(x)=
(

8
8− x2

)2
, 0< x ≤ 1

y′(0)= 0, y(1)= 0 .

The analytical solution is y(x)= log
(

7
8−x2

)
. The comparison of approximated solution of second

order singular boundary value problem with exact solution at different knots and the maximum
errors, norm errors and order of convergence of the proposed method is tabulated in Table 3.
Figure 3 shows the numerical solution and exact solution at n = 20.

Table 4. Comparison of approximate solution with the exact solutions for Problem 3 when h = 0.05 and
order of convergence at different h.

x Exact Present method Error h Present method Order of convergence

L∞ L2 R

0.0 –0.267063 –0.267063 3.46E-08 0.2 8.46E-06 1.45E-05 . . .

0.25 –0.251376 –0.251376 2.98E-08 0.1 6.55E-07 1.32E-06 3.691739

0.50 –0.203565 –0.203565 2.59E-08 0.05 3.46E-08 1.11E-07 4.241060

0.75 –0.121249 –0.121249 1.66E-08 0.025 2.04E-09 9.71E-09 4.086573

1.00 0 6.51E-19 –6.51E-19 0.0125 1.25E-10 8.53E-10 4.031099
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Exact solution

ApproximatedSolution

0.2 0.4 0.6 0.8 1.0
x

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

yHxL

Figure 3. Comparison graph of approximated solution and exact solution for Problem 3 when h = 0.05.

Problem 4.

y′′(x)+ 1
x

y′(x)= π

2x

(
sin

πx
2

+ πx
2

cos
πx
2

)
,

with boundary conditions

y′(0)= y(1)= 0.

The analytical solution is y(x)=−cos πx
2 . Table 5 shows the maximum error norm (L∞) which is

calculated at different values of step size h and compared the results with modified hierarchy
basis method [19] and cubic trigonometric B-spline method [11]. Figure 4 depicts the comparison
of numerical solutions with analytical solutions at h = 1/32. It is concluded that the present
quartic trigonometric B-Spline method is more accurate than the methods developed in [11,19].

Table 5. The maximum error norm (L∞) for Problem 4 at different values of h.

h Modified hierarchy basis method [19] Cubic TB-spline [11] Present method Order of convergence

L∞ L∞ L∞ R

1/16 . . . . . . 4.09E-08 . . .

1/32 3.07E-02 2.88E-06 2.39E-09 4.099220

1/64 1.34E-02 4.96E-07 1.46E-10 4.034051

1/128 6.20E-03 9.30E-08 9.00E-12 4.018103
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Exact solution

ApproximatedSolution

0.2 0.4 0.6 0.8 1.0
x

-0.8

-0.6

-0.4

-0.2

0.0

yHxL

Figure 4. A approximated solution and exact solution for Problem 4 when h = 1/32.

6. Concluding Remarks

In this paper a numerical approach grounded on quartic trigonometric B-spline functions
has been utilized to solve the second order singular boundary value problems. The quartic
trigonometric B-spline method used in this paper is simple and straight forward to apply.
The numerical results reported in the Tables 1 – 5 and depicted in the graphs illustrated the
applicability and accuracy of the method when compared with other available methods like
finite difference method [21], cubic spline methods [20], cubic and quartic B-spline collocation
methods [7,8,10] and cubic trigonometric B-spline method [11] or compare favorably with them
to say the least.
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