
Communications in Mathematics and Applications
Vol. 10, No. 4, pp. 673–679, 2019
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v10i4.804

Research Article

Gaussian Pell-Lucas Polynomials
Tülay Yaǧmur1,2,
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1. Introduction
In 1963, the complex Fibonacci numbers are introduced by Horadam [6]. After this seminal
paper, Gaussian Fibonacci, Lucas, Pell and Pell-Lucas numbers are studied by many authors
[2,3,5,8]. The Gaussian Fibonacci and Lucas numbers are defined recursively by the relations
GFn+1 = GFn +GFn−1, where GF0 = i, GF1 = 1, and GLn+1 = GLn +GLn−1 with initial
conditions GL0 = 2− i, GL1 = 1+2i, respectively. Also, the Gaussian Pell numbers are defined
recursively by GPn+1 = 2GPn+GPn−1 with initial conditions GP0 = i, GP1 = 1, and the Gaussian
Pell-Lucas numbers are defined as GQn+1 = 2GQn +GQn−1, where GQ0 = 2−2i, GQ1 = 2+2i.

On the other hand, the Pell polynomial sequence is defined by the recurrence relation
Pn+1(x) = 2xPn(x)+Pn−1(x), where P0(x) = 0, P1(x) = 1. Similarly, the Pell-Lucas polynomial
sequence is defined as Q0(x)= 2, Q1(x)= 2x, and Qn+1(x)= 2xQn(x)+Qn−1(x). Moreover, some
properties related with these sequences are studied by Horadam and Mahon [7].
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In [4], Halici and Oz introduced the Gaussian Pell polynomials satisfied the recurrence
relation GPn+1(x) = 2xGPn(x)+GPn−1(x), where GP0(x) = i and GP1(x) = 1. In a similar way,
the Gaussian Jacobsthal and Jacobsthal-Lucas polynomials are studied in [1] by Asci and Gurel.

The main objective of this paper is to define the Gaussian Pell-Lucas polynomials, and to
investigate some properties of these polynomials.

In Section 2, we define the Gaussian Pell-Lucas polynomial sequence that generalize the
Gaussian Pell-Lucas number sequence given in [3]. Moreover, we give the generating function
and Binet formula for the Gaussian Pell-Lucas polynomial sequence. We also obtain summation
formula and determinantal representation of this sequence. In the rest of Section 2, by using
Binet formula, we give well-known identities such as Catalan’s and d’Ocagne’s identities
involving the Gaussian Pell-Lucas polynomial sequence.

2. Main Results

In this section, we first define the Gaussian Pell-Lucas polynomial sequence. Then we give
generating function, Binet formula, determinantal representation and some properties of this
sequence.

Definition 2.1. The Gaussian Pell-Lucas polynomial sequence {GQn(x)}∞n=0 is defined, for n ≥ 1,
recursively by

GQn+1(x)= 2xGQn(x)+GQn−1(x)

with initial conditions GQ0(x)= 2−2xi and GQ1(x)= 2x+2i.
Clearly, if we take x = 1, we obtain the Gaussian Pell-Lucas numbers. Also, it is easy to see

that

GQn(x)=Qn(x)+ iQn−1(x),

where Qn(x) is the nth Pell-Lucas polynomial.

The first few terms of the Gaussian Pell-Lucas polynomials are: 2−2xi, 2x+2i, 4x2+2+2xi,
8x3 +6x+ (4x2 +2)i, 16x4 +16x2 +2+ (8x3 +6x)i.

We now give the generating function for the Gaussian Pell-Lucas polynomials by the
following:

Theorem 2.2. The generating function of the Gaussian Pell-Lucas polynomial sequence
{GQn(x)}∞n=0 denoted by g(t, x) is

g(t, x)= 2−2xt+ (4x2t+2t−2x)i
1−2xt− t2 .

Proof. The generating function for the sequence {GQn(x)}∞n=0 can be written in power series.
Then, we have

g(t, x)=
∞∑

n=0
GQn(x)tn =GQ0(x)+GQ1(x)t+GQ2(x)t2 +GQ3(x)t3 +GQ4(x)t4 . . . ,

Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 673–679, 2019



Gaussian Pell-Lucas Polynomials: T. Yaǧmur 675

2xtg(t, x)= 2xGQ0(x)t+2xGQ1(x)t2 +2xGQ2(x)t3 +2xGQ3(x)t4 + . . . ,

and

t2 g(t, x)=GQ0(x)t2 +GQ1(x)t3 +GQ2(x)t4 + . . . .

Hence, we obtain

(1−2xt− t2)g(t, x)= 2−2xi+4x2ti−2xt+2ti.

Thus, we get

g(t, x)= 2−2xt+ (4x2t+2t−2x)i
1−2xt− t2 .

This completes the proof.

The next theorem gives us the Binet formula for the sequence {GQn(x)}∞n=0.

Theorem 2.3. The nth term of the Gaussian Pell-Lucas polynomial sequence is given by

GQn(x)=αn(x)+βn(x)− [β(x)αn(x)+α(x)βn(x)]i,

where α(x)= x+
p

1+ x2 and β(x)= x−
p

1+ x2 are the roots of the equation r2 −2xr−1= 0.

Proof. It is known that the general solution for the recurrence relation is given by GQn(x) =
c1α

n(x)+ c2β
n(x), where c1 and c2 are any constants.

Plugging the general solution in the initial conditions gives the system

c1 + c2 = 2−2xi, c1(x+
√

1+ x2)+ c2(x−
√

1+ x2)= 2x+2i .

Then we obtain c1 = 1−β(x)i and c2 = 1−α(x)i. Therefore, we get

GQn(x)=αn(x)+βn(x)−β(x)αn(x)i−α(x)βn(x)i

which completes the proof.

Theorem 2.4. For n ≥ 1, the sum of the Gausian Pell-Lucas polynomials is
n∑

k=1
GQk(x)= 1

2x
[GQn+1(x)+GQn(x)−2x−2+ (2x−2)i].

Proof. From the recurrence relation of the Gaussian Pell-Lucas polynomial sequence, we have

GQn(x)= 1
2x

(GQn+1(x)−GQn−1(x)).

Then, we get

GQ1(x)= 1
2x

(GQ2(x)−GQ0(x))

GQ2(x)= 1
2x

(GQ3(x)−GQ1(x))

GQ3(x)= 1
2x

(GQ4(x)−GQ2(x))

...

GQn−1(x)= 1
2x

(GQn(x)−GQn−2(x))
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GQn(x)= 1
2x

(GQn+1(x)−GQn−1(x))

Thus, we obtain
n∑

k=1
GQk(x)= 1

2x
[GQn+1(x)+GQn(x)−GQ1(x)−GQ0(x)]

= 1
2x

[GQn+1(x)+GQn(x)−2x−2+ (2x−2)i].

This completes the proof.

The following corollary follows from the above theorem.

Theorem 2.5. For n ≥ 1, we have

(i)
n∑

k=1
GQ2k(x)= 1

2x
(GQ2n+1(x)−2x−2i),

(ii)
n∑

k=1
GQ2k−1(x)= 1

2x
(GQ2n(x)−2+2xi).

Theorem 2.6. For n ≥ 1, let Ln(x) be an n×n tridiagonal matrix defined by

Ln(x)=



2x+2i 1 0 0 · · · 0
−2+2xi 2x 1 0 · · · 0

0 −1 2x 1 . . . 0

0 0 −1 2x . . . 0
... . . . . . . . . . . . . 1
0 . . . . . . . . 0 −1 2x


and let L0(x)= 2−2xi. Then

detLn(x)=GQn(x).

Proof. For the proof we use the mathematical induction on n. For n = 1 and n = 2, we get

detL1(x)= 2x+2i =GQ1(x) and detL2(x)= 4x2 +2+2xi =GQ2(x).

Let us assume that the equality holds for n−1 and n−2, that is,

detLn−1(x)=GQn−1(x) and detLn−2(x)=GQn−2(x) .

Finally, for n, we get

detLn(x)= 2xdetLn−1(x)+detLn−2(x)= 2xGQn−1(x)+GQn−2(x)

which completes the proof.

Now, we define the matrices Q and P as followings:

Q=
(
2x 1
1 0

)
and P=

(
4x2 +2+2xi 2x+2i

2x+2i 2−2xi

)
.

Theorem 2.7. For n ≥ 1, we have

QnP=
(
GQn+2(x) GQn+1(x)
GQn+1(x) GQn(x)

)
.

Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 673–679, 2019



Gaussian Pell-Lucas Polynomials: T. Yaǧmur 677

Proof. The proof can be done easily by using the mathematical induction on n.

The consequence of Theorem 2.7 which gives the Cassini’s identity for the Gaussian Pell-
Lucas polynomial sequence is the following:

Theorem 2.8 (Cassini’s Identity). For positive integer n, we have

GQn−1(x)GQn+1(x)−GQ2
n(x)= 8(−1)n−1(1+ x2)(1− xi).

Proof. It is obvious that detQn−1 = (−1)n−1 and detP= 8(1+ x2)(1− xi). By taking determinant
of the matrix

Qn−1P=
(
GQn+1(x) GQn(x)
GQn(x) GQn−1(x)

)
,

we get

GQn−1(x)GQn+1(x)−GQ2
n(x)= 8(−1)n−1(1+ x2)(1− xi).

Now, Catalan’s and d’Ocagne’s identities for the Gaussian Pell-Lucas polynomial sequence
are given in the following theorems, respectively.

Theorem 2.9 (Catalan’s Identity). For positive integers n and r, we have

GQn−r(x)GQn+r(x)−GQ2
n(x)= 2(−1)n−r(1− xi)(αr(x)−βr(x))2.

Proof. From the Binet formula of the sequence {GQn(x)}∞n=0, we get

GQn−r(x)GQn+r(x)−GQ2
n(x)= {αn−r(x)+βn−r(x)− [β(x)αn−r(x)+α(x)βn−r(x)]i}

× {αn+r(x)+βn+r(x)− [β(x)αn+r(x)+α(x)βn+r(x)]i}

− {αn(x)+βn(x)− [β(x)αn(x)+α(x)βn(x)]i}2

= (α(x)β(x))n−r[α2r(x)+β2r(x)−2αr(x)βr(x)](1− (α(x)β(x)))

− i(α(x)β(x))n−r(α(x)+β(x))[α2r(x)+β2r(x)−2αr(x)βr(x)]

= (α(x)β(x))n−r(αr(x)−βr(x))2[1− (α(x)β(x))− i(α(x)+β(x))].

Since α(x)β(x)=−1 and α(x)+β(x)= 2x, we obtain

GQn−r(x)GQn+r(x)−GQ2
n(x)= (−1)n−r(αr(x)−βr(x))2(2−2xi)

which completes the proof.

Note that if we set r = 1 in Theorem 2.9, Cassini’s identity of the Gaussian Pell-Lucas
polynomial sequence, which is given in Theorem 2.8, can be obtained again.

Theorem 2.10 (d’Ocagne’s Identity). Let m and n be any positive integers. Then,

GQm(x)GQn+1(x)−GQn(x)GQm+1(x)= 4(−1)n+1
√

1+ x2(1− xi)(αm−n(x)−βm−n(x)).

Proof. By using the Binet formula of the sequence {GQn(x)}∞n=0, we get

GQm(x)GQn+1(x)−GQn(x)GQm+1(x)

= {αm(x)+βm(x)− [β(x)αm(x)+α(x)βm(x)]i}{αn+1(x)+βn+1(x)− [β(x)αn+1(x)+α(x)βn+1(x)]i}
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− {αn(x)+βn(x)− [β(x)αn(x)+α(x)βn(x)]i}{αm+1(x)+βm+1(x)− [β(x)αm+1(x)+α(x)βm+1(x)]i}

= (α(x)−β(x))[αn(x)βm(x)−αn+1(x)βm+1(x)−αm(x)βn(x)+αm+1(x)βn+1(x)]

+ i(α2(x)−β2(x))[αm(x)βn(x)−αn(x)βm(x)]

=−2(α(x)−β(x))[αm(x)βn(x)−αn(x)βm(x)]+ i(α2(x)−β2(x))[αm(x)βn(x)−αn(x)βm(x)]

= (α(x)−β(x))(α(x)β(x))n(αm−n(x)−βm−n(x))[−2+ i(α(x)+β(x))]

= 4(−1)n+1
√

1+ x2(1− xi)(αm−n(x)−βm−n(x)).

This completes the proof.

3. Conclusion

In this study, we introduce the concept of the Gaussian Pell-Lucas polynomials. We also
give some results including Binet formula, generating function, summation formula and
determinantal representation for these polynomials. Moreover, we obtain some well-known
identities, such as Catalan’s, Cassini’s and d’Ocagne’s identities, involving the Gaussian Pell-
Lucas polynomials. In future, we plan to investigate some others identities and properties for
these polynomials.
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