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1. Introduction
Most of our real life-problems are associated with non-linear models occurring in various fields
of science and engineering, specially in plasma physics, fluid mechanics, plasma wave, chemical
physics and solid state physics etc. To calculate a numerical or theoretical solution of such
structures is a challenging assignment. In the previous decades, to evaluate the exact and
numerical solutions of such structures both physicists as well as mathematicians have dedicated
their significant determination by employing various dominant strategies.

Non-linear equations also cover the cases named surface waves in compressible fluids,
acoustic waves in an harmonic crystal, hydromagnetic waves in cold plasma, etc. The core
motivation for searching numerical solutions of non-linear equations is their extensive
application in various physical models. A significant physical model known as b-equation
can be stated as follows:

ut +2νux −uxxt + (b+1)u2ux = buxuxx +uuxxx , L1 ≤ x ≤ L2 , 0≤ t ≤ T , (1.1)

where u = u(x, t) with the initial condition,

u(x,0)= h(x), L1 ≤ x ≤ L2, (1.2)

and the boundary conditions,

u(L1, t)= g1(t), u(L2, t)= g2(t), ux(L1, t)= g3(t), 0≤ t ≤ T. (1.3)

1.1 Modified Camassa-Holm Equation
When b = 2, equation (1.1) becomes Camassa-Holm (CH) equation and substituting b = 2, ν= 0,
we obtain an equation of the following form

ut −uxxt +3u2ux = 2uxuxx +uuxxx , L1 ≤ x ≤ L2 , 0≤ t ≤ T , (1.4)

which is known as Modified Camassa-Holm (MCH) equation. The non-linear Camassa-Holm
equation arises in fluid dynamics which is dimensionless and integrable equation. It was
introduced by Camassa and Holm as a bi-Hamiltonian model for waves in shallow water for the
paramter ν> 0 and the solitary wave solutions were smooth solitons. When ν= 0, this equation
has the peakon solutions i.e. solitons with a sharp peak so with a discontinuity at the peak in
the wave slope. The shallow water waves and the interaction of two peakons are displayed in
Figure 1.1. Wazwaz [13] applied the sine-cosine as well as tanh methods to investigate the exact
solitary wave solutions of MCH equation. The exact solution of MCH equation is

u(x, t)=−2
2

sech
( x
2
− t

)
. (1.5)

1.2 Modified Degaperis-Procesi Equation
The equation (1.1) becomes Degaperis-Procesi equation by setting b = 3. The equation (1.1)
takes the following form when b = 3, ν= 0

ut −uxxt +4u2ux = 3uxuxx +uuxxx , L1 ≤ x ≤ L2 , 0≤ t ≤ T , (1.6)

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 393–409, 2018



Numerical Solution of Modified Forms of Camassa-Holm and Degasperis-Procesi Equations. . . : I. Wasim et al. 395

Figure 1.1. Interaction of two peakons and shallow water waves.

which is known as modified Degaperis-Procesi (MDP) equation. In mathematical physics, it
is a non-linear partial differential equation (PDE) which models the propagation of nonlinear
dispersive waves. It was discovered by Degasperis and Procesi in search for integrable equations
that Camassa-Holm and Degaperis-Procesi (DP) equations are the only integrable cases of
equation (1.1) has been confirmed utilizing various integrability tests. It was later discovered
that (with ν> 0) the DP equation plays a similar role in water wave theory as the CH equation
due to its mathematical properties, for instance, the wind waves that arise on the free surface of
bodies of water and ocean waves as shown in Figure 1.2. Wazwaz [14] investigated the solutions
of both MCH and MDP equations by implementing extended tanh method. The exact solution of
MDP equation is

u(x, t)= −15
8

sech2
(

x
2
− 5t

4

)
. (1.7)

Figure 1.2. Wind waves and ocean waves.
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Various dominant techniques have been developed in literature for solving such non-linear
structures. Yildirim [16] applied the variational iteration method to solve both MCH and MDP
equations. Ganji et al. [7] implemented Adomian Decomposition Method (ADM) to obtain the
solitary wave type solutions of both the equations. Abbasbandy [4] utilized Homotopy Analysis
Method (HAM) for the solution of MCH equation. Yusufoglu [18] computed solitary solutions of
MCH and MDP equations by implementing Exp-function method. Zhang et al. [21] exploited
auxiliary equation method to compute the solution of both MCH and MDP equations. Zhang et al.
[19] applied Homotopy Perturbation Method (HPM) to compute the solutions of MCH and MDP
equations. Yousif et al. [17] applied Homotopy Perturbation Method (HPM) for solving the MCH
and MDP equations. Manafian et al. [9] computed solitary wave solutions of both the equations
using (G′/G) expansion method. Zhang et al. [20] wrote a note on solitary wave solutions of the
non-linear generalized Camassa-Holm equation. There are various approximation techniques
which have been examined by many researchers such as finite element, finite difference, spline
interpolation etc. Spline interpolation method is one of the most effective approximation method
on account of its simplicity. The main advantage of using the proposed Quartic B-Spline Method
(QuBSM) is that it is able to approximate the analytical curve up to certain smoothness.
Therefore, it has the flexibility to get the approximation at any point in the domain with more
accurate results as compared to the usual finite difference method.

In this study, a collocation finite difference approach based on quartic B-spline is presented
for the numerical solution of MCH and MDP equations with initial and boundary conditions.
A usual finite difference scheme is formulated to discretize the time derivative. Quartic B-spline
is taken as an interpolation function in the space dimension. Some researchers have utilized
the methods named Variational Iteration method (VIM) [16], Adomain Decomposition Method
(ADM) [7], Homotopy Perturbation Method (HPM) [19] to solve the MCH and MDP equations
but so far as we are aware not with quartic B-spline collocation method. The convergence of
the proposed method is established. The feasibility of the proposed method is verified by test
problems and the approximated solutions are found to be in good agreement with the exact
solutions. It can be concluded that our method furnishes more accurate results as compared to
the existing techniques.

The current study is systemized as follows: In Section 2, QuBSM is formulated and
implemented to non-linear MCH and MDP equations. In Section 3, convergence of the method
is established. In Section 4, two numerical cases of MCH and MDP equations are considered to
demonstrate the accuracy and feasibility of the method. In Section 5, concluding remarks of the
whole picture are presented.

2. Materials and Methods
This section presents Quartic B-Spline Basis Function (QuBSBF) and execution of QuBSM to
solve the MCH and MDP equations.
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2.1 Quartic B-Spline basis Functions
The grid region [L1,L2]× [0,T] is discretized in such a way that we achieve equally divided
mesh with grid points (xm, tk) where xm = a+mh, tk = k∆t and m = 0,1, . . . ,n, k = 0,1, . . . , N .
Here h and ∆t denote spatial size and time step, respectively. The QuBSBF can be stated as:

B4
m (x)= 1

h4



(x− xm−2)4 x ∈ [xm−2, xm−1](
(x− xm−2)4 −5(x− xm−1)4) x ∈ [xm−1, xm](
(x− xm−2)4 −5(x− xm−1)4 +10(x− xm)4) x ∈ [xm, xm+1](
(xm+3 − x)4 −5(xm+2 − x)4) x ∈ [xm+1, xm+2]

(xm+3 − x)4 x ∈ [xm+2, xm+3]
0 otherwise

(2.1)

where Bm−1(x)= B0(x− (m−1)h) and m = 2,3 . . . . The quartic B-spline basis function is depicted
in Figure 2.1.

xm-2 xm-1 xm xm+1 xm+2 xm+3

Figure 2.1. Quartic B-spline basis

Our approach for one-dimensional MCH and MDP equations utilizing collocation method
with QuBSBF is to find an approximate solution as [1–4,10,15,17,22]:

Uk
m(x, t)=

n+1∑
m=−2

Dk
m(t)B4

m(x), (2.2)

where Dk
m(t) are to be determined for the approximation Uk

m(x, t) to the exact solution u(x, t) at
the point (xm, tk).

Utilizing equations (2.1) and (2.2), the values of Uk
m and its derivatives at the nodes x = xm

can be written as:

Uk
m = Dk

m−2 +11Dk
m−1 +11Dk

m +Dk
m+1

(Ux)k
m = −4

h Dk
m−2 − 12

h Dk
m−1 + 12

h Dk
m + 4

h Dk
m+1

(Uxx)k
m = 12

h2 Dk
m−2 − 12

h2 Dk
m−1 − 12

h2 Dk
m + 12

h2 Dk
m+1

(Uxxx)k
m = 24

h3 Dk
m−2 − 72

h3 Dk
m−1 + 72

h3 Dk
m − 24

h3 Dk
m+1 .

(2.3)
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The equation (2.2) and boundary conditions given in equation (1.3) are used to obtain the
approximate solution at end points as:

U(x0, tk+1)= Dk
−2 +11Dk

−1 +11Dk
0 +Dk

1 = g1(tk+1)

Ux(x0, tk+1)= −4
h Dk

−2 + −12
h Dk

−1 + 12
h Dk

0 + 4
h Dk

1 = g3(tk+1)

U(xn, tk+1)= Dk
n−2 +11Dk

n−1 +11Dk
n +Dk

n+1 = g2(tk+1) .

(2.4)

2.2 Implementation of the Method to MCH and MDP Equations
By using finite difference scheme for time derivative and temporal discretization, the equation
(1.1) for ν= 0 can be written as:

Uk+1
m −Uk

m

∆t
− (Uxx)k+1

m − (Uxx)k
m

∆t
+ ϕk+1

m +ϕk
m

2
= 0 , (2.5)

where k and k+1 describe successive time levels and

ϕk
m = (ϕ(xm, tk,Uk

m, (Ux)k
m, (Uxx)k

m, (Uxxx)k
m))= (b+1)(U2Ux)k

m −b(UxUxx)k
m − (UUxxx)k

m .

A slight simplification implies

2Uk+1
m −2(Uxx)k+1

m +∆tϕk+1
m = (ψ(x))k

m , (2.6)

where

(ψ(x))k
m = 2Uk

m − (Uxx)k
m −2(Uxx)k

m −∆tϕk
m .

Since the initial condition is known so we may construct second order approximation at the first
time level [10] by applying taylor series as follows:

u1
m = u0

m +∆t(ut)0
m + (∆t)2

2!
(utt)0

m +O(∆t)3 . (2.7)

By using initial condition and equation (1.1) for ν = 0, the values of (ut)0
m and (utt)0

m are
computed as under:

(ut)0
m = [uxxt −ϕ(u)]0

m, (utt)0
m = [uxxtt − (ϕ(u))t]0

m ,

where

ϕ(u)0
m = (b+1)(U2Ux)0

m −b(UxUxx)0
m − (UUxxx)0

m .

Substituting these two values into equation (2.7), we obtain

u1
m = u0

m +∆t[uxxt −ϕ(u)]0
m + (∆t)2

2!
[uxxtt − (ϕ(u))t]0

m +O(∆t)3 , (2.8)

which gives the first order approximation.

Theorem 2.1. The current procedure to discretize equation (1.1) is of first order convergence in
time direction.

Proof. Suppose Uk
m be the approximate solution of the exact solution u(xm, tk) at time t = tk

and local truncation error in equation (2.6) is ek =Uk
m −u(xm, tk). By applying Lemma [5], we

have

eN+1 ≤µk(∆t)2 , k ≥ 2 . (2.9)
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By utilizing equation (2.7) for k = 1, we obtain

e1 ≤µ1(∆t)3 . (2.10)

Choosing µ= max{µ1,µ2, . . . ,µN } and taking global error EN+1 =
N∑

k=1
ek at (N +1)th time level,

we obtain the following expression:

|EN+1| = |EN+1| =
∣∣∣∣∣ N∑
k=1

ek

∣∣∣∣∣≤ N∑
k=1

|ek|

≤µ1(∆t)3 +
N∑

k=2
µk(∆t)2

≤ Nµ(∆t)2

≤ Nµ(T/N)∆t)

= C∆t ,

where ∆t ≤ (T/N) and C =µT which implies first order convergence in time direction.

Equation (2.5) becomes MCH and MDP equation when b = 2 and b = 3 are taken, respectively.
Using equation (2.3) into equation (2.6), we obtain

pDk+1
m−2 + qDk+1

m−1 + qDk+1
m + pDk+1

m+1 +h2ϕ(uk+1
m )= h2ψk(xm) , (2.11)

where

p = 2h2 −24
∆t

, q = 22h2 +24
∆t

.

The above relation generates n+1 non-linear equations in n+4 unknowns Dk+1
m at the time

level tk+1 i.e. Dk+1
m = (

Dk+1
−2 ,Dk+1

−1 ,Dk+1
0 ,Dk+1

1 , . . . ,Dk+1
n+1

)
. Eliminate the unknowns Dk+1

−2 ,Dk+1
−1

and Dk+1
n+1 by using the boundary conditions given in equations (2.4) and (2.11). Thus, a system

of order (n+1)× (n+1) can be written as follows:

LDk+1
m +h2Mk+1

m = h2Rk
m , (2.12)

where

L =



864
7∆t 0 0 0

x∗ y x 0

x y y x
0

0
x y y x

0 0 288
∆t

288
∆t

, Dk+1
m =


Dk+1

0

Dk+1
1
...

Dk+1
n

, Mk+1
m =


ϕk+1

0

ϕk+1
1
...

ϕk+1
n

, Rk
m =



ψ∗
0

ψ∗
1

ψk
2
...

ψk
n−1

ψ∗
n


and

η= hg2(tk+1)y
56

− g1(tk+1)y
14

− 11g2(tk+1)hx
56

− 3g1(tk+1)x
8

,

τ= hg2(tk+1)x
56

− xg1(tk+1)
14

,
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x∗ = 264+66h2

7∆t
,

ψ∗
0 =ψk

0 +
η

h2 , ψ∗
1 =ψk

1 +
τ

h2 , ψ∗
n =ψk

n −
g3(tk+1)

h2 .

3. Convergence of the Method

Suppose Uk
m(x)=

n+1∑
m=−2

Dk
m(t)B4

m(x) be the quartic B-spline approximation to the exact solution

uk
m(x). Due to computational round off error assume that U∗k

m (x) =
n+1∑

m=−2
D∗k

m (t)B4
m(x) be the

computed spline approximation to Uk
m(x) where D∗k

m = (
D∗k

0 ,D∗k
1 , . . . ,D∗k

n
)T . Therefore, we must

estimate the errors ‖uk
m(x)−U∗k

m (x)‖∞ and ‖U∗k
m (x)−Uk

m(x)‖∞ separately to estimate the error
‖uk

m(x)−Uk
m(x)‖∞. Putting U∗k

m (x) into equation (2.12), we obtain

LD∗k+1
m +h2M∗k+1

m = h2R∗k
m . (3.1)

Subtracting equation (2.12) and equation (3.1), we have

L(D∗−D)k+1
m +h2(M∗−M)k+1

m = h2(R∗−R)k
m. (3.2)

First we need to recall the following theorem.

Theorem 3.1. Suppose that g(x) ∈ C4[L1,L2] and g(4)(x) < l∗ with equally space partition of
[L1,L2] and step size h. If S(x) be the unique spline function interpolate g(x) at the knots then
∃ a constant δ j such that

‖g j −S j‖∞ ≤ δ j l∗h4− j, j = 0,1,2,3.

Proof. See [6] and [8].

Applying triangular inequality and Theorem 3.1, the equation (2.6) yields

|φ∗k(xm)−φk(xm)|

=
∣∣∣∣−2
∆t

U∗k
xx (xm)+ 2

∆t
U∗k(xm)+ϕ(U∗k(xm))−

(−2
∆t

Uk
xx(xm)+ 2

∆t
Uk(xm)+ϕ(Uk(xm))

)∣∣∣∣
=

∣∣∣∣−2
∆t

(
U∗k

xx (xm)−Uk
xx(xm)

)
+ 2
∆t

(
U∗k(xm)−Uk(xm)

)
+

(
ϕk

m(U∗)−ϕk
m(U)

)∣∣∣∣
≤ 2
∆t

|U∗k
xx (xm)−Uk

xx(xm)|+ 2
∆t

|U∗k(xm)−Uk(xm)|+ |ϕk(xm,U∗(xm))−ϕk(xm,U(xm))| .
Finally, we are able to write

‖(R∗−R)k
m‖ ≤ 2

∆t
δ2l∗h2 + 2

∆t
δ0l∗h4 +β(|U∗k(xm)−Uk(xm)|) ,

where ‖ϕ′(z)‖ ≤β, z ∈ R3 ([12, p. 218]).

The above expression can also be written as

‖(R∗−R)k
m‖ ≤ 2δ2l∗h2

∆t
+ 2δ0l∗h4

∆t
+βδ0l∗h4 (3.3)
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or

‖(R∗−R)k
m‖ ≤β1h2, (3.4)

where β1 = 2δ2l∗
∆t + 2δ0l∗h2

∆t +βδ0l∗h2 .

Now, applying Jacobian to the non-linear term on L.H.S of equation (2.12), we obtain

h2‖(M∗−M)k+1
m ‖ = h2

(
∂ϕ(ξ1)
∂u

J(D∗−D)k+1
m

)
, (3.5)

where ξ1 ∈ (0,1) and J is Jacobian given as:

J =



0 0 0 0
1 11 11 1
· · · · · · · · · · · ·

0

0
· · · · · · · · ·
1 11 11 1
0 0 0 0

 .

Substituting equation (3.5) into equation (3.2), the following expression yields

W(D∗−D)k+1
m = h2(R∗−R)k

m , (3.6)

where W = L+h2 ∂ϕ(ξ1)
∂u J .

Since matrix W is strictly diagonally dominant so non-singular, W−1 exists, hence
equation (3.6) implies

(D∗−D)k+1
m = h2W−1(R∗−R)k

m . (3.7)

Taking norm on both sides and using equation (3.4),

‖(D∗−D)k+1
m ‖∞ ≤ h2‖W−1‖β1h2 (3.8)

or

‖(D∗−D)k+1
m ‖∞ ≤ ‖W−1‖β1h4 . (3.9)

Suppose that γm is the sum of mth row of matrix W = [νm,i], then we have

γ0 = 864
7∆t , if m = 0

γ1 = 264+66h2

7∆t , if m = 1

γm = 24h2( 2
∆t +

∂ϕ

∂u ), if 2≤ m ≤ n−1

γn = 576
∆t , if m = n .

(3.10)

From the literature of matrices, we have
n∑

m=0
ν−1

i,mγm = 1 ,

where ν−1
i,m are the elements of W−1 for i = 0,1, . . . ,n. Therefore,

‖W−1‖ =
n∑

m=0
|ν−1

i,m| ≤ 1
min(γm)

= 1
h2υl

≤ 1
h2|υl |

, (3.11)

where l is some index between 0 and n. Substituting equation (3.11) into equation (3.9) implies
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the relation

‖(D∗−D)k+1
m ‖∞ ≤β1h4 1

h2υl
=β2h2, (3.12)

where β2 = β1
υl

is some finite constant.

Lemma 3.2. The quartic B-spline satisfy∣∣∣∣∣ n+1∑
m=−2

Bm(x)

∣∣∣∣∣≤ 34, 0≤ x ≤ 1. (3.13)

Proof. We know that∣∣∣∣∣ n+1∑
m=−2

Bm(x)

∣∣∣∣∣≤ n+1∑
m=−2

|Bm(x)|. (3.14)

At any knot xm, we have
n+1∑

m=−2
|Bm(x)| = |Bm−2(x)|+ |Bm−1(x)|+ |Bm(x)|+ |Bm+1(x)|

= 1+11+11+1≤ 24. (3.15)

Also in each subinterval xm−1 ≤ x ≤ xm,

Bm(xm)= 11, Bm−1(xm−1)= 11, Bm+1(xm)= 1, Bm−2(xm−1)= 11.

Hence in each subinterval xm−1 ≤ x ≤ xm,
n+1∑

m=−2
|Bm(x)| = |Bm−2(x)|+ |Bm−1(x)|+ |Bm(x)|+ |Bm+1(x)|

≤ 11+11+11+1= 34, (3.16)

which completes the proof.

Since

U∗(k+1)
m (x)−Uk+1

m (x)=
n+1∑

m=−2
(D∗−D)k+1

m Bm(x) . (3.17)

Applying norm on both sides and using equations (3.12) and (3.13), we have

‖U∗(k+1)
m (x)−Uk+1

m (x)‖ ≤
n+1∑

m=−2
|Bm(x)|‖(D∗−D)k+1

m ‖ ≤ 34β2h2 . (3.18)

Theorem 3.3. Let uk+1(xm) be the exact solution of equation (1.1) with the boundary conditions
equation (1.3) and let U∗(k+1)(xm) be the B-spline approximation to uk+1(xm) then the method
has second order convergence and we have

‖uk+1
m (x)−Uk+1

m (x)‖ ≤ εh2, (3.19)

where ε= δ0l∗h2 +34β2 is finite.

Proof. From Theorem 3.1, we have:

‖uk+1
m (x)−U∗(k+1)

m (x)‖ ≤ δ0l∗h4. (3.20)

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 393–409, 2018



Numerical Solution of Modified Forms of Camassa-Holm and Degasperis-Procesi Equations. . . : I. Wasim et al. 403

By using equation (3.19), equation (3.20) and triangular inequality, we obtain the following
relation

‖uk+1
m (x)−Uk+1

m (x)‖ = ‖uk+1
m (x)−U∗(k+1)

m (x)+U∗(k+1)
m (x)−Uk+1

m (x)‖
≤ ‖uk+1

m (x)−U∗(k+1)
m (x)‖+‖U∗(k+1)

m (x)−Uk+1
m (x)‖

≤ δ0l∗h4 +34β2h2

= εh2 ,

where ε= δ0l∗h2 +34β2 .

Now if Uk+1(x, t) be the approximate solution by our numerical process to the exact solution
uk+1(x, t) then

‖uk+1
m (x, t)−Uk+1

m (x, t)‖ ≤ ρ(∆t+h2) , (3.21)

where ρ is constant which demonstrate convergence of order (∆t+ h2) in time and spatial
direction.

4. Numerical Results and Discussion
In this section, the quartic B-spline method is implemented for solving both MCH and MDP
equations with an initial and boundary conditions given in equations (1.2)-(1.3). We carry out
from equation (2.12) by QuBSM and intel®Core™i7-3520M CPU @ 2.90 GHz with 4GB RAM
with operating system (WINDOWS 10). The numerical implementaion is performed in MATLAB

R2015b. Some numerical examples are presented to verify the accuracy, capability and efficiency
of QuBSM. The approximate results are compared with the exact solution and some methods
existing in literature at (xm, tk) taking particular step sizes h and ∆t. Exact and numerical
solutions are displayed in different figures at various time levels which shows that our results
are in good agreement with the exact solution. Absolute errors can be calculated by

Absolute Error= |Um −uexcm| . (4.1)

4.1 Numerical Test Cases
Example 4.1. Consider MCH equation (1.4) and exact solution (1.5) with constraints given in
equations (1.2) and (1.3) in the domain [−15,15].

We compare the numerical results computed by QuBSM with the methods named Variational
Iteration Method (VIM) [16], Adomain Decomposition Method (ADM) [7], Homotopy Perturbation
Method (HPM) [19] at various nodal points and time levels which are tabulated in Table 4.1.
Moreover, the absolute errors computed by the proposed method are given in Table 4.1 and
a comparison shows that our method provides more accurate results as compared to others.
Figures 4.1 and 4.2 illustrate the graphs of exact and approximate solutions at various time
levels. It can be concluded that our results are in good agreement with the exact solution and
more accurate as compare to the methods given in [16], [7], [19].
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Figure 4.1. Space-time graphs of exact and approximate solutions of MCH equation for t ∈ [0,0.3].
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Figure 4.2. Exact and approximate solutions of MCH equation for various values of t.
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Table 4.1. Comparison of absolute errors of MCH equation computed by QuBSM with existing methods
at different time levels.

x t Exact solution Approximate solution QuBSM VIM[16] ADM[7] HPM[19]

6 0.05 −0.02179598 −0.02213088 3.349E-04 2.005E-03 — —

8 −0.00296375 −0.00300734 4.359E-05 2.807E-04 3.332E-04 3.332E-04

9 −0.00109081 −0.00110677 1.596E-05 — 1.229E-04 1.230E-04

10 −0.00040136 −0.00040721 5.860E-06 3.817E-05 4.521E-05 4.530E-05

12 −0.00005432 −0.00005511 7.900E-07 5.170E-06 — —

6 0.10 −0.02407444 −0.02495921 8.847E-04 4.226E-03 — —

8 −0.00327520 −0.00339113 1.159E-04 5.911E-04 7.108E-04 7.109E-04

9 −0.00120550 −0.00124798 4.248E-05 — 2.623E-04 2.624E-04

10 −0.00044356 −0.00045916 1.560E-05 8.035E-05 9.659E-05 9.664E-05

12 −0.00006004 −0.00006214 2.100E-06 1.088E-05 — —

8 0.15 −0.00361934 −0.00384320 2.238E-04 — 1.139E-03 1.139E-03

9 −0.00133224 −0.00141432 8.208E-05 — 4.203E-04 4.203E-04

10 −0.00049020 −0.00052035 3.014E-05 — 1.547E-04 1.548E-04

8 0.20 −0.00399961 −0.00437611 3.765E-04 — 1.624E-03 1.624E-03

9 −0.00147230 −0.00161041 1.381E-04 — 5.992E-04 5.993E-04

10 −0.00054175 −0.00059249 5.073E-05 — 2.207E-04 2.207E-04

Example 4.2. Consider MDP equation (1.6) and exact solution (1.7) with conditions given in
equations (1.2) and (1.3) in the domain [−15,15].

We compare the numerical results computed by QuBSM with the methods introduced in
[16], [7] and [19] at various knots and time levels given in Table 4.2. For comparison purpose,
the absolute errors obtained by the proposed QuBSM are listed in Table 4.2. The graphical
representation of exact and approximate solutions is given in Figures 4.3 and 4.4. It can be
concluded that our technique furnishes more accurate and improved results as compared to the
methods given in [16], [7] and [19].
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Figure 4.3. Space-time graphs of exact and approximate solutions of MDP equation for t ∈ [0,0.3].

-8 -6 -4 -2 0 2 4 6 8
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Solution at t=0.05

exact solution
approximate solution

(a) at time t = 0.05.

-8 -6 -4 -2 0 2 4 6 8
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Solution at t=0.1

exact solution
approximate solution

(b) at time t = 0.1.

-8 -6 -4 -2 0 2 4 6 8
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Solution at t=0.2

exact solution
approximate solution

(c) at time t = 0.2.
Figure 4.4. Exact and approximate solutions of MDP equation for various values of t.
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Table 4.2. Comparison of absolute errors of MDP equation computed by QuBSM method with existing
methods at different time levels.

x t Exact solution Approximate solution QuBSM VIM[16] ADM[7] HPM[19]

6 0.05 −0.02094811 −0.02049908 4.490E-04 2.005E-03 — —

8 −0.00284880 −0.00278568 6.312E-05 2.807E-04 3.332E-04 3.332E-04

9 −0.0010485 −0.00102520 2.332E-05 — 1.229E-04 1.230E-04

10 −0.00038580 −0.00037720 8.590E-06 3.817E-05 4.521E-05 4.530E-05

12 −0.00005222 −0.00005105 1.160E-06 5.169E-05 — —

6 0.10 −0.02371963 −0.02281592 9.037E-04 4.226E-03 — —

8 −0.00322779 −0.00310009 1.276E-04 5.911E-04 7.108E-04 7.109E-04

9 −0.0011880 −0.00114089 4.720E-05 — 2.623E-04 2.624E-04

10 −0.00043716 −0.00041976 1.740E-05 8.036E-05 9.659E-05 9.664E-05

12 −0.00005917 −0.00005682 2.350E-06 1.088E-05 — —

8 0.15 −0.0036571 −0.00346392 1.932E-04 — 1.139E-03 1.139E-03

9 −0.0013462 −0.00127476 1.461E-05 — 4.203E-04 4.203E-04

10 −0.0004953 −0.00046901 2.635E-05 — 1.547E-04 1.548E-04

8 0.20 −0.0041435 −0.00388505 2.585E-04 — 1.624E-03 1.624E-03

9 −0.0015253 −0.00142971 9.568E-05 — 5.992E-04 5.993E-04

10 −0.0005613 −0.00052601 3.529E-05 — 2.207E-04 2.207E-04

5. Concluding Remarks

In this study, we implement quartic B-spline method for solving non-linear MCH and MDP
equations with initial and boundary conditions given in equations (1.2)-(1.3). The time derivative
is replaced by finite difference approach and quartic B-spline is used to interpolate the space
derivatives. It can be observed that sometimes the accuracy of solution may reduce due to
time truncation errors of time derivative term. The obtained results given in Tables 4.1–4.2
and Figures 1.1–4.4 are more accurate and reliable. A comparison between the absolute errors
at various time levels and knots shows that our method is competent and more accurate as
compared to other researchers. The order of convergence is established both in time and space
direction. An advantage of using QuBSM mentioned in this paper is that it has the ability
to provide the accurate solutions at any intermediate point in space direction. Moreover, it is
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straightforward and simple to apply with smaller storage. It can be concluded that QuBSM
provides more accurate results as compares to the methods named Variational Iteration
Method (VIM) [16], Adomain Decomposition Method (ADM) [7], Homotopy Perturbation Method
(HPM) [19].
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