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1. Introduction
Many fluids at industry and engineering are non-Newtonian in nature. Different constitutive
equations for non-Newtonian fluids [12–14] have been proposed. Constitutive equations for
Casson fluid [21] are one of them. Casson fluid behaves like an elastic solid. Such kind of fluid
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exhibits simultaneous effects including shear thinning, yield stress and high shear viscosity [2].
Several investigators have studied the flow of Casson fluid over different geometries. For
example, Mustafa et al. [21] studied boundary layer Casson fluid flow induced by the impulsive
motion of flat plate. Analytic solution for magneto hydrodynamic flow of Casson fluid was
computed by Nadeem et al. [22]. Eldabe and Salwa [9] analyzed heat transfer characteristics in
the flow of Casson fluid between two rotating spheres.

The pioneering work on the flow of Newtonian fluid in a square cavity is investigated by
Ghia et al. [10]. This remarkable investigation, which is most referred source of results on the
lid driven cavity flow. Several studies on the flow of Newtonian fluid in a square cavity have been
conducted and almost, all studies have been validated by comparing the results with the results
computed by Ghia et al. [10]. For moderate Reynolds number, the boundary element analysis
was performed by Aydin and Fenner [3] to study the flow of Newtonian fluid in the cavity.
Barragy and Carey [4] used finite element method to solve the problem describing the flow in a
square cavity. They investigated vortex flow features and minimized the influence of the corner
singularities through graded meshing. The steady laminar flow for large Reynolds number
was discussed by Batchelor [5]. Benjamin and Denny [6] studied the effect of large Reynolds
number on the convergence of numerical solution for flow in a cavity. Gupta and Manohar [11]
discussed the accuracy of numerical solutions of viscous flow in a cavity. Simulations for the
flow in a cavity using lattice Boltzmann method are carried out by Hou et al. [15]. Li et al. [18]
developed a compact fourth order finite difference scheme for steady incompressible Navier-
Stokes equations. Liao [19] used higher resolution scheme for two-dimensional steady flow in a
square cavity. Nishida and Satofuka [23] derived higher order solutions for two dimensional flow
induced by the motion of lid moving with constant velocity. Peng et al. [24] studied transition in
two-dimensional flow in a cavity. Weinan and Liu [28] addressed the issues related to vortices
boundary conditions for finite difference schemes. Botella and Peyret [7] computed the numerical
solution of two dimensional Navier-Stokes equations describing the lid driven cavity flow by
the Chebyshev collocated method. They also validated their results by comparing them with
the results obtained by Ghia et al. [10]. Kumar et al. [17] presented the numerical solution
for two-dimensional flow using multigrid scheme in conjunction with finite volume SIMPLE
algorithm for different values of Reynolds number and validated their results by comparing
with the results of Ghia et al. [10]. Darwish et al. [8] implemented and tested a new numerical
algorithm similar to SIMPLE algorithm for two-dimensional Navier-Stokes equations. They
validated their algorithm by solving some test problems including lid driven cavity problem.
Kim et al. [16] implemented collocated finite volume scheme for two-dimensional Navier-Stokes
equations and tested the algorithm by solving benchmark problems including lid driven cavity
flow problem and the problem of natural convection between two eccentric cylinders. Three
dimensional lid driven cavity flow was simulated by Albensoeder and Kuhlmann [1] using
numerical algorithm with time advancement integration of Adams-Bashforth backward Euler
scheme. Marchi et al. [20] performed simulations for cavity flow with high order resolution.
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Sahin and Owens [25] introduced a novel finite volume method for cavity flow taking high
Reynolds number. Numerical study regarding three-dimensional flow in a cubic cavity was
conducted by Takami and Kuwahara [26]. Numerical solution for incompressible flow in a
square cavity was computed using method of discrete singular convolution by Wan et al. [27].

Literature survey reveals that the majority of investigations with respect to the cavity
flows examine Newtonian fluid flow a square cavity. No study with respect to Casson fluid
(non-Newtonian) flow in a cavity is examined yet. This paper is an attempt in this direction. This
manuscript is organized in six sections. In Section 2, mathematical formulation of governing
equations are presented. In Section 3, the finite volume method is presented. Discretization
procedure is given in Section 4. Section 5 is dedicated for results and discussion. Concluding
remarks are given in Section 6.

2. Mathematical Description

Initially, the non-Newtonian fluid (the Casson fluid) and the lid of the cavity are rest. Suddenly
the lid of the cavity is set into motion with constant speed U in the positive x-direction. Two
dimensional unsteady flow occurs with no thermal changes. During the flow physical properties
of the fluid remain constant. No slip assumption is valid. The coordinate configuration and
physical model is shown in Figure 1.

Figure 1. Geometry of physical happening and coordinate axes.

Continuity and momentum equations, for incompressible flow of Casson fluid are given

∇·V = 0, (2.1)

ρ
dV
dt

=−∇p+divτ. (2.2)
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In which ρ is the density, V is the velocity of the fluid, d/dt = ∂/∂t+V · ∇ , is the material
derivative, p is the pressure and τ is the stress tensor for Casson fluid [12–14] and is defined by

τi j =µB +
[( Pyp

2πc

) 1
n
]n

2e i j , (2.3)

where e i j is the deformation rate, µB is the dynamic viscosity and πc is the critical value
of π = e i j e i j . It is important to mention that the coming analysis will be perform n = 1. For
incompressible flow, τ given in eq. (2.3) can be written as

τ=−pI +
(
1+ 1

β

)[
gradV + (gradV )t] , (2.4)

where β= µB
p

2πc/Py , is the Casson fluid parameter. Here it is important to mention that if
β→∞ , eq. (2.4) reduces to the case of Newtonian fluid.

Unsteady two-dimensional flow is characterized by the velocity field

V ′ = [u(x′, y′, t),v(x′, y′, t),0]. (2.5)

Using the eq. (2.5) in eqs. (2.1)-(2.3), we get(
∂u′

∂x′

)
+

(
∂v′

∂y′

)
= 0, (2.6)(

∂u′

∂t′

)
+u′

(
∂u′

∂x′

)
+v′

(
∂v′

∂y′

)
=−

(
1
ρ

)(
∂p′

∂x′

)
+ν

(
1+ 1

β

)(
∂2u′

∂x′2

)
+

(
∂2u′

∂y′2

)
, (2.7)(

∂v′

∂t′

)
+u′

(
∂v′

∂x′

)
+v′

(
∂v′

∂y′

)
=−

(
1
ρ

)(
∂p′

∂y′

)
+ν

(
1+ 1

β

)(
∂2v′

∂x′2

)
+

(
∂2v′

∂y′2

)
. (2.8)

Here ν=µ/ρ is the kinematic viscosity.

Initial and boundary conditions are

u(x′, y′,0)= 0,v(x′, y′,0)= 0, t < 0, (2.9)
u(x′,0, t)=U , v(x′,0, t)= 0, 0< x′ < H, t > 0,

u(x′,H, t)= 0, v(x′,H, t)= 0, 0≤ x′ ≤ H, t > 0,

u(0, y′, t)= 0, v(0, y′, t)= 0, 0≤ y′ ≤ H, t > 0,

u(H, y′, t)= 0, v(H, y′, t)= 0, 0≤ y′ ≤ H, t > 0.

 (2.10)

where H is the dimension of the square cavity.

Following change of variables converts eqs. (2.6)-(2.10)

u = u′

U
, v = v′

U
, x = x′

H
, y= y′

H
, τ= tU

H
, p = p′

ρU2 , Re= UH
ν

.

Into following non-dimensional conservative initial boundary value problem
∂u
∂x

+ ∂v
∂y

= 0, (2.11)

∂u
∂τ

+ ∂

∂x
(u2)+ ∂

∂y
(uv)=−∂p

∂x
+ 1

Re

(
1+ 1

β

)(
∂

∂x

(
∂u
∂x

)
+ ∂

∂y

(
∂u
∂y

))
, (2.12)
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∂v
∂τ

+ ∂

∂x
(uv)+ ∂

∂y
(
v2)=−∂p

∂y
+ 1

Re

(
1+ 1

β

)(
∂

∂x

(
∂v
∂x

)
+ ∂

∂y

(
∂v
∂y

))
, (2.13)



u(x, y,0)= 0, v(x, y,0)= 0, τ< 0,

u(x,0,τ)= 0, v(x,0,τ)= 0, 0≤ x ≤ 1, τ> 0,

u(x,1,τ)= 1, v(x,1,τ)= 0, 0≤ x ≤ 1, τ> 0,

u(0, y,τ)= 0, v(0, y,τ)= 0, 0≤ y≤ 1, τ> 0,

u(1, y,τ)= 0, v(1, y,τ)= 0, 0≤ y≤ 1, τ> 0.


(2.14)

Here Re = UH/ν is the Reynolds number. It is important to note that as β→∞ the initial
boundary value problem given in eqs. (2.11)-(2.14) reduces to the Newtonian case.

3. Finite Volume Method
Two dimensional initial boundary value problems given in eqs. (2.11)-(2.14) are discretized by
the finite volume approach through the staggered grid. Control volumes for u -velocity, v -velocity
and p -pressure are given in Figure 2, where u -velocity is located midway on vertical faces of
the control volume and v -velocity is stored at midway on horizontal faces of the control volume.
Pressure-velocity coupling approach (pressure correction method) is applied.

Figure 2. Control volumes for staggered grid for velocities u (left), v (center) and pressure (right).

4. Discretization Procedure
Continuity equation

ui+1, j −ui, j

∆x
+O(∆x2)+ vi, j+1 −vi, j

∆y
+O(∆y2)= 0 . (4.1)

Correct the intermediate velocity values with the newly established pressure gradients.

un+1 = u∗−∆t∇p, vn+1 = v∗−∆t∇p .

The terms u∗ and v∗ are intermediate values.

un+1
i+1, j = u∗

i+1, j −∆t
pi+1, j−pi, j

∆x
, un+1

i, j = u∗
i, j −∆t

pi, j − pi−1, j

∆x
, (4.2)
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vn+1
i, j+1 = v∗i, j+1 −∆t

pi, j+1−pi, j

∆y
, vn+1

i, j = v∗i, j −∆t
pi, j − pi, j−1

∆y
. (4.3)

Using the eqs. (4.2), (4.3) in eq. (4.1), one obtains

ApPp +
∑
l

AlPl =Q i, j , (4.4)

where

AN = AS = ∆x
∆y

, AE = AW = ∆y
∆x

,

AP =−∑
l

Al =−2
(
∆x
∆y

+ ∆y
∆x

)
,

Q i, j = 1
∆τ

((u∗
i+1, j +u∗

i, j)∆y+ (v∗i, j+1 −v∗i, j)∆x).

Here u∗ and v∗ are intermediate velocity values.

x -momentum equation
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−
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n
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,(
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.
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y-momentum equation

∂v
∂τ

=
vn+1

i, j −vn
i, j

∆τ
+O(∆τ),

∂

∂y
(v2)= v2

n −v2
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2
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.

Boundary conditions

No slip assumption gives rise the boundary conditions which are given by eqs. (2.14).
The discretized form of boundary conditions are

u = v = 0, v1, j =−v2, ju2, j = 0 at west/left wall

u = v = 0, vn, j =−vn−1, jun, j = 0 at east/right wall

u = v = 0, vi,2 = 0, ui,1 =−ui,2 at south/bottom wall

u = 1, v = 0, vi,n = 0, ui,n = 2−ui,n−1 at north/top wall

5. Results and Discussions
Errors convergence history on grid size 128×128 for velocities and pressure are plotted in
Figure 3. The L2 norm of the change solution of u -velocity and p -pressure is plotted against
number of iteration using 0.000125 time step size. The large time step values require large
solution time to converge. Figure 4 represents that the u -velocity profile along a horizontal
line y = (1/2) passing through the centre of the cavity with different value of Casson fluid
parameter (β), Reynolds number (Re) 1000 and grid size 128×128. This figure shows that
u(x,0.5) increases in the region 0 < y < 0.95 whereas it decreases in the rest of the region.
However, u(x,0.5) for Newtonian fluid (β→∞) is higher than in the regions 0< y< 0.19 and
0.92< y≤ 1 while in case of Non-Newtonian (β→∞) it decreases in the region 0.19< y< 0.9.
Figure 5 shows the variation of vertical velocity along horizontal x = (1/2) for different value of
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Casson fluid parameter (β), Reynolds number (Re) 1000 and grid size 128×128. The present
results are validated by the comparing with already published work of Ghia et al. [10] when
Reynolds number Re= 1000. This comparison is recorded in Tables 1 and 2. Table 1. contains
the values of u -velocity when x = (1/2) at 128×128 grid resolution. Whereas, Table 2 contains
the values of v -velocity when y= (1/2) at grid resolution 128×128. These tables shows a good
agreement between the present results and the already published work of Ghia et al. [10]. The
streamlines are displayed in Figure 6 when β= 0.93 and Re = 1000 for 128×128 grid resolution.
In contrast to the results obtained in the stream function-vorticity formulation, the vortices are
noted in the bottom corners of the cavity. u -velocity contours are given in Figure 7 and Figure 8
whereas shows color map graph of u -velocity contours when Reynolds number Re = 1000 and
the Casson fluid parameter β= 0.93. v-velocity contours are sketched in Figure 9 Similarly,
Figure 10 show color map graph of v -velocity contours when Re = 1000 and β= 0.93. Extreme
values of velocity components are recorded in Table 3 when Reynolds number Re = 1000 at
different grid resolutions both for Newtonian and non-Newtonian cases.

Table 1. Results validation when Re= 1000 and β→∞ .

FVM Ghia et al. [10]

Y 129×129 129×129

1.0000 1.0000 1.0000

0.9766 0.6539 0.9766

0.9688 0.5723 0.9688

0.9609 0.5109 0.9609

0.9531 0.4653 0.9531

0.8516 0.3313 0.8516

0.7344 0.1847 0.7344

0.6172 0.05738 0.6172

0.5000 –0.06016 0.5000

0.4531 –0.1017 0.4531

0.2813 –0.2754 0.2813

0.1719 –0.3805 0.1719

0.1016 –0.2911 0.1016

0.0703 –0.2278 0.0703

0.0625 –0.2020 0.0625

0.0547 –0.1801 0.0547

0.0000 0.0000 0.0000
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Table 2. Results validation when Re= 1000 and β→∞ .

FVM Ghia et al. [10]

x 129×129 129×129

1.0000 0.0000 0.0000

0.9688 –0.2131 –0.21388

0.9609 –0.2756 –0.27669

0.9531 –0.3370 –0.33714

0.9453 –0.3912 –0.39188

0.9063 –0.5145 –0.51550

0.8594 –0.4263 –0.42665

0.8047 –0.3191 –0.31966

0.5000 0.02520 0.02526

0.2344 0.3220 0.32235

0.2266 0.3303 0.33075

0.1563 0.3711 0.37095

0.0938 0.3262 0.32627

0.0781 0.3032 0.30353

0.0703 0.2910 0.29012

0.0625 0.2742 0.27485

0.0000 0.0000 0.0000

Table 3. Extreme values of velocity components under the influence of β and Re .

Casson fluid parameter Reynolds number Velocities

B Re umin umax vmin vmax

0.47 (Non-Newtonian case) 1000 –0.3226 1.0000 –0.6284 0.3476

0.93 (Non-Newtonian case) 1000 –0.3477 1.0000 –0.6473 0.3821

∞ (Newtonian case) 1000 –0.3844 1.0000 –0.6681 0.4516

0.93 100 –0.2184 1.0000 –0.4642 0.3443

0.93 500 –0.3033 1.0000 –0.6116 0.3281

0.93 1000 –0.3477 1.0000 –0.6473 0.3821
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Figure 3. Error history when Re = 1000, β= 0.93 on 128×128 grids.

Figure 4. Behavior of u(x = 0.5, y) under the variation of Casson fluid parameter β .
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Figure 5. Behaviour of v(x, y= 0.5) for various values of Casson fluid parameter β .

Figure 6. Streamlines when β= 0.93, Re = 1000 on 128×128 grids.
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Figure 7. u -velocity contours when β= 0.93 and Re = 1000.

Figure 8. Color map graph for u -velocity contours when β= 0.93 and Re = 1000.
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Figure 9. v -velocity contours when β= 0.93 and Re = 1000.

Figure 10. Color map graph for v -velocity contours when β= 0.93 and Re = 1000.
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6. Concluding Remarks

Unsteady two-dimensional flow of problem Casson fluid in the square cavity are solved
numerically by finite volume approach with number of solvers (ADI with SOR) for linear system
of algebraic equations. For time advancement, second order Adams-Bashforth integration
scheme is used. The pressure Poisson equation is solved in conjunction with successive over
relaxation (SOR) method with the computational tolerance 10×8. Convergence of unknowns
(velocities and pressure) ensured through series of simulations for high values of Reynolds
number and β= 0.93 on 128×128 grids. Behaviour of streamlines, velocity and extreme values
of velocities under different values of Reynolds number (Re) and Casson fluid parameter (β) is
recorded. The present results are also validated through the comparison with Ghia et al. [10].
Which is special case of the present study. The behavior of streamlines also compared with
streamlines obtained by the method of vorticity stream function formulation. This comparison
shows that the finite volume method for velocity pressure coupling is capable of capturing
vortices.

Competing Interests

The author declares that he has no competing interests.

Authors’ Contributions

The author wrote, read and approved the final manuscript.

References
[1] S. Albensoeder and H.C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow, Journal of

Computational Physics 206 (2) (2005), 536 – 558.

[2] L. Animasaun, E.A. Adebile and A.I. Fagbade, Casson fluid flow with variable thermo-physical
property along exponentially stretching sheet with suction and exponentially decaying internal
heat generation using the homotopy analysis method, Journal of the Nigerian Mathematical Society
35 (2016), 1 – 17.

[3] M. Aydin and R.T. Fenner, Boundary element analysis of driven cavity flow for low and moderate
Reynolds number, International Journal for Numerical Methods in Fluids 37 (1) (2001), 45 – 64.

[4] E. Barragy and G.F. Carey, Stream function-vorticity driven cavity solution using p finite elements,
Computers and Fluids 26 (5) (1997), 453 – 468.

[5] G.K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, Journal
of Fluid Mechanics 1 (2) (1956), 177 – 190.

[6] A.S. Benjamin and V.E. Denny, On the convergence of numerical solutions for 2-D flows in a cavity
at large Re , Journal of Computational Physics 33 (3) (1979), 340 – 358.

[7] O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow Computers and
Fluids 27 (4) (1998), 421 – 433.

[8] M. Darwish, I. Sraj and F. Moukalled, A coupled incompressible flow solver on structured grids,
Numerical Heat Transfer, Part B: Fundamentals 52 (4) (2007), 353 – 371.

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 459–474, 2018



Finite Volume Solution of Non-Newtonian Casson Fluid Flow in A Square Cavity: S. Mehmood et al. 473

[9] N.T.M. Eldabe and M.G.E. Salwa, Heat transfer of MHD non-Newtonian Casson fluid flow between
two rotating cylinders, Journal of Physical Socity of Japan 64 (1995), 41 – 64.

[10] U.K. Ghia, K.N. Ghia and C.T. Shin, High-Re solutions for incompressible flow using the Naiver-
Stokes equations and multigrid method, Journal of Computational Physics 48 (3) (1982), 387 –
411.

[11] M.M. Gupta and R.P. Manohar, Boundary approximations and accuracy in viscous flow
computations, Journal of Computational Physics 31 (2) (1979) 265 – 288.

[12] T. Hayat and M. Nawaz, Soret and Dufour effects on the mixed convection flow of a second grade
fluid subject to Hall and ion-slip current, International Journal for Numerical Methods in Fluids
66 (9) (2011), 1073 – 1099.

[13] T. Hayat, M. Nawaz, M. Awais and S. Obaidat, Axisymmetric magneto hydrodynamic flow of Jeffrey
fluid over a rotating disk, International Journal for Numerical Methods in Fluids 70 (6) (2012), 764
– 774.

[14] T. Hayat, M. Nawaz, S. Asghar and S. Mesloub, Thermal-diffusion and diffusion-thermo effects
on axisymmetric flow of a second grade fluid, International Journal of Heat and Mass Transfer 54
(13-14) (2011), 3031 – 3041.

[15] S. Hou, Q. Zou, S. Chen, G. D. Doolen and A.C. Cogely, Simulation of cavity flow by the Lattice
Boltzmann method, Journal of Computational Physics 118 (1995), 329 – 347.

[16] J. Kim, I.K. Park, H.K. Cho, Y.H. Yoon and J.J. Jeong, Collocated scheme on an unstructured mesh
for two-phase flow analyses, Proceeding of Korean National Society Spring Meeting 40 (45) (2009),
659 – 650.

[17] D.S. Kumar, K.S. Kumar and M.D. Kumar, A fine grid solution for a lid-driven cavity flow using
multigrid method Engineering Applications of Computational Fluid Mechanics 3 (3) (2009), 336 –
354.

[18] M. Li, T. Tang and B. Fornberg, A compact fourth-order finite difference scheme for the steady
incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids
20 (10) (1995), 1137 – 1151.

[19] S.J. Liao, Higher-order streamfunction-vorticity formulation of 2D steady-state Navier-Stokes
equations, International Journal for Numerical Methods in Fluids 15 (5) (1992), 595 – 612.

[20] C.H. Marchi, R. Suero and L.K. Araki, The lid-driven square cavity flow: numerical solution with a
1024×1024 grid, Journal of the Brazilian Society of Mechanical Sciences and Engineering 31 (3)
(2009), 186 – 198.

[21] M. Mustafa, T. Hayat, I. Pop and A. Aziz, Unsteady boundary layer flow of a Casson fluid due to
an impulsively started moving flat plate, Heat Transfer – Asian Research 40 (6) (2011), 563 – 576,
DOI: 10.1002/htj.20358.

[22] S. Nadeem, Rizwan Ul Haq and C. Lee, MHD flow of a Casson fluid over an exponentially shrinking
sheet, Scientia Iranica 19 (6) (2012), 1550 – 1553.

[23] H. Nishida and N. Satofuka, Higher-order solutions of square driven cavity flow using a variable-
order multi-grid method, International Journal for Numerical Methods in Engineering 34 (2) (1992),
637 – 653.

[24] Y.F. Peng, Y.H. Shiau and R.R. Hwang, Transition in a 2-D lid-driven cavity flow, Computers &
Fluids 32 (3) (2003), 337 – 352.

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 459–474, 2018

http://dx.doi.org/10.1002/htj.20358


474 Finite Volume Solution of Non-Newtonian Casson Fluid Flow in A Square Cavity: S. Mehmood et al.

[25] M. Sahin and R.G. Owens, A novel fully implicit finite volume method applied to the lid-driven cavity
problem – Part I: High Reynolds number flow calculations, International Journal for Numerical
Methods in Fluids 42 (1) (2003), 57 – 77.

[26] H. Takami and K. Kuwahara, Numerical study of three-dimensional flow within a cubic cavity,
Journal of the Physics Society of Japan 37 (6) (1974), 1695 – 1698.

[27] D.C. Wan, Y.C. Zhou and G.W. Wei, Numerical solution of incompressible flows by discrete singular
convolution, International Journal for Numerical Methods in Fluids 38 (8) (2002), 789 – 810.

[28] E. Weinan and J.G. Liu, Vorticity boundary condition and related issues for finite difference
schemes, Journal of Computational Physics 124 (2) (1996), 368 – 382.

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 459–474, 2018


	Introduction
	Mathematical Description
	Finite Volume Method
	Discretization Procedure
	Results and Discussions
	Concluding Remarks
	References

