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1. Introduction
The well known Banach contraction principle [11] is one of the most useful tool in analysis.
Many authors generalized this classical result in many directions (see for example [16, 33]).
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The result was extended by S.B. Nadler [28] to the context of set valued contraction. Recently,
Samet et al. [33] introduced the notion of α-ψ-contraction and proved some fixed point theorems
for such mappings in the context of complete metric spaces. Karapinar et al. [25] generalized
the contractive condition of Samet et al. [33] and obtained fixed point results for such mappings.
Some interesting multivalued generalizations of α-ψ-contractive type mappings are given in
[2,4,7,8,27].

Let Y be a nonempty subset of a metric space (X ,d). A mapping T : Y → X is said to have
a fixed point in Y , if the fixed point equation Tx = x has at least one solution. That is, x ∈ Y
is a fixed point of T if d(x,Tx) = 0. The case when fixed point equation Tx = x does not have
a solution, then d(x,Tx) > 0 for all x ∈ Y . In such circumstances, we are in searching for an
element x ∈Y such that d(x,Tx) is minimum in some sense. The best approximation theory and
best proximity pair theorems are studied in this direction. Consider a pair of nonempty subsets
(A,B) of a metric space (X ,d). A mapping T : A → B is said to have a best proximity point if
d(x,Tx)= d(A,B). If d(A,B)= 0, best proximity point is nothing but a fixed point of T . Many
authors has explored the existence and convergence of best proximity points under different
contractive conditions in certain distance spaces (see e.g. [1,3,5,18,22,23,26] and references
therein).

Metric spaces have been generalized according to requirement and their applicability to
solve a particular problem. The problem of convergence of measurable functions with respect to
measure leaded to generalize the metric space in such a way that set considered in metric space
is replaced with the space and consequently the function d is replaced with the functional d.
The metric space defined in the above is called b-metric space. It was first introduced as quasi
metric in 1989 by Bakhtin [10]. Formally, in 1993, Czerwik [19, 20] introduced the notion of
b-metric space as a generalization of ordinary metric space and proved contraction mapping
principle in b-metric spaces. Later on Samet [32] introduced the notion of α-ψ-contraction and
prove some fixed point results in b-metric space. Bota et al. [15] established the existence of
fixed point theorems for α-ψ-contractive mapping of type-(b) in the framework of b-metric
spaces. Many authors showed their interest in investigating the existence and uniqueness of
certain fixed point as well as best proximity point results in b-metric space (see for example
[6,9] and references therein).

The purpose of this paper is to workout for the multivalued and single valued best proximity
point results for Ćirić type α∗-ψ-proximal contraction in the framework of b-metric spaces and
to apply the results obtained for the same results for partially ordered b-metric spaces. We will
also find some fixed point results for such mappings as an applications of our results.

The paper is arranged in the following way: In Section 2, some preliminaries and known
results are presented. In Section 3, we present best proximity point theorems for multivalued
mappings. In Section 4, some best proximity point results for single valued mappings are
presented. Section 5 is devoted to best proximity point theorems in partially ordered b-metric
spaces. In Section 6, we give some fixed point results in b-metric and partially ordered b-metric
spaces. In last section we give application to nonlinear integral equation.
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2. Preliminaries
Definition 2.1 ([10, 19]). Let X be a nonempty set, and let k ≥ 1 be a given real number.
A functional d : X × X → [0,∞) is said to be a b-metric if for all x, y, z ∈ X , the following
conditions are satisfied:

(1) d(x, y)= 0⇔ x = y;

(2) d(x, y)= d(y, x);

(3) d(x, y)≤ k(d(x, z)+d(z, y)).

In this case pair (X ,d) is called b-metric space with constant k.

Example 2.1 ([13]). The space Lp (0 < p < 1) of all real function x(t), t ∈ [0,1] such that∫ 1
0 |x(t)|pdt <∞, is b-metric space if we take

d(x, y)=
(∫ 1

0
|x(t)− y(t)|pdt

) 1
p

.

Definition 2.2 ([10, 19]). Let (X ,d) be a b-metric space, {xn} be a sequence in X and x ∈ X .
Then

(i) the sequence {xn} converges to a point x ∈ X if and only if for all ε> 0 there exists n(ε) ∈N
such that for all n ≥ n(ε) we have d(xn, x)< ε,

(ii) the sequence {xn} is Cauchy sequence iff for all ε> 0 there exists n(ε) ∈N such that for
each m,n ≥ n(ε) we have d(xn, xm)< ε,

(iii) (X ,d) is said to be a complete b-metric space if every Cauchy sequence in X converges to
some x ∈ X .

In the sequel, (X ,d) a b-metric space, CL(X ), CB(X ) and K(X ) by the families of all
nonempty closed subsets, closed and bounded subsets and compact subsets of (X ,d), respectively.
For any A,B ∈ CB(X ) and x ∈ X , define

d(A,B)= inf{d(a,b) : a ∈ A,b ∈ B} ,

A0 = {a ∈ A : there exists some b ∈ B such that d(a,b)= D(A,B)} ,

B0 = {b ∈ B : there exists some a ∈ A such that d(a,b)= D(A,B)} ,

D(x, A)= inf{d(x,a) : a ∈ A} ,

H(A,B)=max{δ(A,B),δ(B, A)} .

The above H is called the Pompeiu-Hausddroff metric.

Definition 2.3 ([21]). Let A and B be nonempty subsets of a b-metric space (X ,d). A point x is
called a best proximity point of mapping T : A → B if

d(x,Tx)= d(A,B).
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Lemma 2.1 ([2]). Let (X ,d) be a metric space and B ∈ CB(X ). Then for each x ∈ X with
D(x,B)> 0 and q > 1, there exists an element b ∈ B such that

d(x,b)< qD(x,B).

Lemma 2.2 ([14,20]). Let (X ,d) be a b-metric space with constant k. Then

D(x, A)≤ k[d(x, y)+D(y, A)], for all x, y ∈ X , A ⊆ X .

Lemma 2.3 ([18]). Let (X ,d) be a metric space and A,B ∈ CB(X ). Let q ≥ 1. Then for every x ∈ A,
there exists y ∈ B such that d(x, y)≤ qH(A,B).

Definition 2.4 ([4]). Let (A,B) be a pair of nonempty subsets of a b-metric space (X ,d) with
A0 6= ;. Then the pair (A,B) is said to have weak P-property if and only if for any x1, x2 ∈ A and
y1, y2 ∈ B,

d(x1, y1)=D(A,B)

d(x2, y2)=D(A,B)

}
⇒ d(x1, x2)≤ d(y1, y2).

Let us denote by Ψ the set of all nondecreasing functions ψ : [0,∞)→ [0,∞) such that
∞∑

n=1
ψn(t)<∞, for all t > 0,

where ψn is the nth iterate of ψ. These functions are known are comparison functions. Also
ψ(t)< t for all t > 0.

Usman et al. (see [3]) introduced the notions of α-ψ-proximal contraction and α-proximal
admissibility to multivalued maps and proved some best proximity point theorems for
multivalued mappings.

Definition 2.5 ([3]). Let A and B be two nonempty subsets of a metric space (X ,d). A mapping
T : A → CB(B) is said to be an α-ψ-proximal contraction, if there exists ψ ∈Ψ and α : A× A →
[0,∞) such that

α(x, y)H(Tx,T y)≤ψ(d(x, y)), for all x, y ∈ A. (2.1)

Theorem 2.1 ([3]). Let A and B be two nonempty closed subsets of a complete metric space
(X ,d) such that A0 is non-empty. Let α : A× A → [0,∞) and ψ ∈Ψ be a strictly increasing map.
Suppose that T : A → CB(B) is a mapping satisfying the following assertions:

(1) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;

(2) T is α-proximal admissible;

(3) there exists x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1)= dist(A,B), α(x0, x1)≥ 1;

(4) T is continuous α-ψ-proximal contraction.

Then there exists an element x∗ ∈ A0 such that D(x∗,Tx∗)= dist(A,B).
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3. Multivalued Best Proximity Point Results

We begin this section with the following definition:

Definition 3.1. Let A and B be two nonempty subsets of a b-metric space (X ,d). A mapping
T : A → CB(B) \ ; is called modified α∗-proximal admissible if there exists a mapping
α∗ : A× A → [0,∞) such that

α∗(Tx0,Tx1)≥ 1
D(x1,Tx0)= D(A,B)
D(x2,Tx1)= D(A,B)

⇒α∗(Tx1,Tx2)≥ 1,

where x0, x1, x2 ∈ A and α∗(A,B)= inf{α(x, y)|x ∈ A, y ∈ B}.

Example 3.1. Let X = N with metric d(x, y) = |x− y|2 for all x, y ∈ X . Let A = {0,2,4, . . .} and
B = {1,3,5, . . .} be two subsets of X , then D(A,B)= 1. Define a mapping T : A → CB(B) by

Tx = {1,3,5, . . . , x+1} for all x ∈ A. (3.1)

Also define α∗ : A× A → [0,∞) by

α∗(x, y)=
{

1 if x, y ∈ A
2 if x, y ∈ B .

Now α∗(Tx,T y)= inf{α(a,b)|a ∈ Tx,b ∈ T y}. For x0 = 4 ∈ A and x1 = 6 ∈ A, we have Tx0 = {1,3,5}
and Tx1 = {1,3,5,7}. Then α∗(Tx0,Tx1) = 2, let x2 = 8 ∈ A then D(x1,Tx0) = 1 = D(A,B) and
D(x2,Tx1)= 1= D(A,B). Now, we have

α∗(Tx0,Tx1)≥ 1
D(x1,Tx0)= D(A,B)
D(x2,Tx1)= D(A,B).


Now, α∗(Tx1,Tx2)= inf{d(x, y)|x ∈ Tx, y ∈ T y}= 2. So, we have

α∗(Tx1,Tx2)≥ 1.

Hence T is modified α∗-proximal admissible.

Definition 3.2. Let (X ,d) be a b-metric space, let A and B be two subsets of X , α∗ : A× A →
[0,∞) and T : A → CB(B) be given mappings. We say T is α∗-continuous multivalued mapping
on (CB(X ),H), if for all sequences {xn} with xn

d−→ x ∈ A as n →∞ and α∗(Txn,Txn+1)≥ 1 for all
n ∈N, we have Txn

H−→ Tx as n →∞.

Definition 3.3. Let A and B be two nonempty subsets of a b-metric space (X ,d). A multivalued
mapping T : A → CB(B) is said to be Ćirić type α∗-ψ-proximal contraction, if there exists ψ ∈Ψ
and α∗ : A× A → [0,∞) such that

α∗(Tx,T y)H(Tx,T y)≤ψ(M(x, y)), for all x, y ∈ A , (3.2)

where

M(x, y)=max
{

d(x, y),
1
k

D(x,Tx)−D(A,B),
1
k

D(y,T y)−D(A,B)
}

.
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Example 3.2. Consider X = R2 with b-metric d(x, y) = |x1 − x2|3 + |y1 − y2|3, for all (x1, x2),
(y1, y2) ∈R2 and k = 4. Suppose A = {(1, x) : 0≤ x ≤ 1} and B = {(0, x) : 0≤ x ≤ 1}, then D(A,B)= 1.
Define T : A → CB(B)\; by

T(1, x)=
{

{(0,1)} x = 1,{(
0, a

2

)
: 0≤ a ≤ x

}
otherwise,

α∗ : A× A → [0,∞) by

α∗((x1, y1), (x2, y2))=
{

1 x1, x2 ∈ {0,1}, y1, y2 ∈
[
0, 1

2

]
0 otherwise,

and ψ(t)= t
8 for all t. Now

α∗(A,B)= inf{α(a,b),a ∈ A,b ∈ B}= 1.

If z1 = (1, x1) and z2 = (1, x2) in A, for x1, x2 ∈
[
0, 1

2

]
. Then,

Tz1 =
{(

0,
a
2

)
: 0≤ a ≤ x1

}
and

Tz2 =
{(

0,
a
2

)
: 0≤ a ≤ x2

}
.

This shows that d(u1, y1)= 1=D(A,B) and d(u2, y2)= 1=D(A,B) for all y1 ∈ Tx1 and y2 ∈ Tx2

if and only if u1,u2 ∈
{(

1, x
2

)
: 0≤ x ≤ 1

2

}
. Now α∗(Tz1,Tz2)= 1 and

α∗(Tz1,Tz2)H(Tz1,Tz2)= |1−1|3 +
∣∣∣ x1

2
− x2

2

∣∣∣3
= 0+ 1

8
|x1 − x2|3

= 1
8
|x1 − x2|3. (3.3)

On the other hand

M(z1, z2)=max
{

d(z1, z2),
1
k

D(z1,Tz1)−D(A,B),
1
k

D(z2,Tz2)−D(A,B)
}

=max
{
|x1 − x2|3,

1
4

(
|1−0|3 +

∣∣∣x1 − x1

2

∣∣∣3)−1,
1
4

(
|1−0|3 +

∣∣∣x2 − x2

2

∣∣∣3 −1
)}

=max

{
|x1 − x2|3,

1
4

(
1+ x3

1

8

)
−1,

1
4

(
1+ x3

2

8

)
−1

}
= |x1 − x2|3. (3.4)

So by definition of ψ, we have

ψ(M(z1, z2))= 1
8
|x1 − x2|3. (3.5)

From (3.3) and (3.5), we get

α∗(Tz1,Tz2)H(Tz1,Tz2)=ψ(M(z1, z2)),

for all z1, z2 ∈ A.
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Theorem 3.1. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let α∗ : A × A → [0,∞), ψ ∈Ψ be a strictly increasing map and
T : A → CB(B) be continuous multivalued mapping satisfying the following assertions:

(1) T is Ćirić type α∗-ψ-proximal contraction;

(2) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;

(3) T is modified α∗-proximal admissible;

(4) there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0)= D(A,B) and α∗(Tx0,Tx1)≥ 1.

Then the mapping T has a best proximity point.

Proof. By assumption, there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that

D(x1, y0)= D(A,B) and α∗(Tx0,Tx1)≥ 1. (3.6)

By Lemma 2.3 corresponding to y0 ∈ Tx0, there exists y1 ∈ Tx1 such that

D(y0, y1)≤α∗(Tx0,Tx1)H(Tx0,Tx1)

since y1 ∈ Tx1 ⊆ B0, there exists x2 ∈ A0 such that D(x2, y1) = D(A,B). Now, x0, x1, x2 ∈ A0 ⊆ A
and y0 ∈ Tx0, y1 ∈ Tx1 such that α∗(Tx0,Tx1)≥ 1, D(x1, y0)= D(A,B), D(x2, y1)= D(A,B). Then
it follows from condition (4) that α∗(Tx1,Tx2)≥ 1. Thus, we have

d(x2, y1)= D(A,B) and α∗(Tx1,Tx2)≥ 1.

Again by Lemma 2.3, corresponding to y1 ∈ Tx1, there exists y2 ∈ Tx2 such that

D(y1, y2)≤α∗(Tx1,Tx2)H(Tx1,Tx2).

Continuing in this fashion we construct two sequences {xn} and {yn} respectively in A0 ⊆ A and
B0 ⊆ B such that for n = 0,1,2, . . .,

D(xn+1, yn)= D(A,B) and α∗(Txn,Txn+1)≥ 1, for all n ∈N∪ {0} (3.7)

and

D(yn, yn+1)≤α∗(Txn,Txn+1)H(Txn,Txn+1). (3.8)

Since, d(xn+1, yn) = D(A,B) and d(xn, yn−1) = D(A,B) for all n ≥ 1, it follows by the weak P-
property of the pair (A,B) that

d(xn, xn+1)≤ d(yn−1, yn). (3.9)

Since T is Ćirić type α∗-ψ proximal contraction, and by using (3.7), (3.8) and (3.9), we have

d(xn, xn+1)≤ d(yn−1, yn)

≤ H(Txn−1,Txn)

≤α∗(Txn−1,Txn)H(Txn−1,Txn)

≤ψ(M(xn−1, xn)) (3.10)
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where

M(xn−1, xn)=max
{

d(xn−1, xn),
1
k

D(xn−1,Txn−1)−D(A,B),
1
k

D(xn,Txn)−D(A,B)
}

. (3.11)

By Lemma 2.2, we derive

M(xn−1, xn)≤max
{

d(xn−1, xn),
1
k

[k(d(xn−1, xn)+D(xn,Txn−1)]−D(A,B),

1
k

[k(d(xn, xn+1)+D(xn+1,Txn)]−D(A,B)
}

=max{d(xn−1, xn),d(xn−1, xn)+D(A,B)−D(A,B),d(xn, xn+1)+D(A,B)−D(A,B)}

=max {d(xn−1, xn),d(xn−1, xn),d(xn, xn+1)}

=max {d(xn−1, xn),d(xn, xn+1)}.

This together with (3.10) gives

d(xn, xn+1)≤ψ (max {d(xn−1, xn),d(xn, xn+1)}) for all n ∈N. (3.12)

Suppose that

d(xn, xn+1)> 0 for all n ∈N∪ {0}. (3.13)

If

max{d(xn−1, xn),d(xn, xn+1)}= d(xn, xn+1). (3.14)

From (3.12), we get that

d(xn, xn+1)≤ψ(d(xn, xn+1))< d(xn, xn+1), (3.15)

which is not possible. Thus

max {d(xn−1, xn),d(xn, xn+1)}= d(xn−1, xn). (3.16)

From (3.12) we have

d(xn, xn+1)≤ψ(d(xn−1, xn)). (3.17)

Now

d(xn, xn+1)≤ψ(d(xn−1, xn))

≤ψ(ψ(d(xn−1, xn−2)))

=ψ2(d(xn−1, xn−2))
...

≤ψn(d(x0, x1))

for all n ∈N⋃
{0}. Then by Definition of ψ, we have∑

n
d(xn, xn+1)≤∑

n
ψn(d(x0, x1))<∞.
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This shows that {xn} and {yn} are Cauchy sequences in X . From the completeness of X , there
exist x∗, y∗ ∈ X such that

xn → x∗ and yn → y∗ as n →∞. (3.18)

Since A and B are closed and {xn} and {yn} are sequences in A and B, respectively, we have
x∗ ∈ A and y∗ ∈ B.

Now,

d(xn+1, yn)= d(A,B) for all n ∈N.

Taking limit as n →∞, we obtain

d(x∗, y∗)= d(A,B). (3.19)

Now , we claim that y∗ ∈ Tx∗.

Since yn ∈ Txn, we have

D(yn,Tx∗)≤ H(Txn,Tx∗).

Taking limit as n →∞ in above inequality, using (3.18) and the continuity of T , we have

D(y∗,Tx∗)= lim
n→∞D(yn,Tx∗)≤ lim

n→∞H(Txn,Tx∗)= 0.

Now, D(y∗,Tx∗)= 0 implies y∗ ∈ Tx∗
Now, using (3.19), we have

D(x∗,Tx∗)≤ d(x∗, y∗)= dist(A,B)≤ D(x∗,Tx∗),

which implies that D(x∗,Tx∗)= dist(A,B), that is, x∗ is a best proximity point of T in A.

Example 3.3. Let X = [0,∞) × [0,∞) with b-metric d(x, y) = |x1 − x2|2 + |y1 − y2|2 for all
x = (x1, x2), y = (y1, y2) ∈ X and k = 2. Suppose A = {(1

3 , x) : 0≤ x ≤∞} and B = {(0, x) : 0≤ x ≤∞}.
Define T : A → CB(B) by

T(
1
3

,a)=
{{(

0, x
3

)
: 0≤ x ≤ a

}
if a ≤ 1{(

0, x2) : 0≤ x ≤ a2} if a > 1,

and α∗ : A× A → [0,∞) by

α∗(x, y)=
{

1 i f x, y ∈ {(1
3 ,a

)
: 0≤ a ≤ 1

}
0 otherwise,

ψ(t) = t
9 for all t ≥ 0. Notice that A0 = A,B0 = B, and Tx ⊆ B0 for each x ∈ A0. Also the pair

(A,B) satisfies weak P−property. Let x0, x1 ∈ {(1
3 , x) : 0≤ x ≤ 1}, then Tx0,Tx1 ⊆ {(0, x

3 ) : 0≤ x ≤ 1}.
Consider y1 ∈ Tx0, y2 ∈ Tx1, and u1,u2 ∈ A such that d(u1, y1)= D(A,B) and d(u, y2)= D(A,B).
Then we have u1,u2 ∈ {(1

3 , x) : 0 ≤ x ≤ 1}. Hence T is modified α∗ admissible map. For
x0 = (1

3 ,1) ∈ A0 and y1 = (0, 1
3 ) ∈ Tx0 in B0, we have x1 = (1

3 , 1
3 ) ∈ A0 such that d(x1, y1)= D(A,B)

and α∗(x0, x1)= 1 implies α∗(Tx0,Tx1)= 1. If x = (1
3 , x1), y= (1

3 , y1) ∈ A where 0≤ x1, y1 ≤ 1, then
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we have

α∗(Tx,T y)H(Tx,T y)=
∣∣∣∣1
3
− 1

3

∣∣∣∣2 + ∣∣∣ x1

3
− y1

3

∣∣∣2
= |x1 − y1|2

9
and

M(x, y)=max
{
|x1 − y1|2,

1
2

(
|1
3
−0|2 +

∣∣∣x1 − x1

3

∣∣∣2)− 1
9

,
1
2

(∣∣∣∣1
3
−0

∣∣∣∣2 + ∣∣∣y1 − y1

3

∣∣∣2)− 1
9

}
=max

{
|x1 − y1|2,

1
2

(
1
9
+ 4x1

2

9

)
− 1

9
,
1
2

(
1
9
+ 4y1

2

9

)
− 1

9

}
= |x1 − y1|2.

So

ψ(M(x, y))= |x1 − y1|2
9

.

This implies

α∗(Tx,T y)H(Tx,T y)=ψ(M(x, y)) (3.20)

for otherwise

α∗(Tx,T y)H(Tx,T y)≤ψ(M(x, y)) . (3.21)

Hence, T is Ćirić type α∗-ψ-proximal contraction. Furthermore, T is continuous and the
hypothesis (4) of the Theorem 3.1 is verified. Indeed, for x0 = (1

3 ,1), x1 = (1
3 ,0) and y1 = (0,0), we

obtain

db(x1, y1)= db

((
1
3

,0
)
, (0,0)

)
= 1

9
= D(A,B) and α∗(x0, x1)= 1 .

Hence all the hypothesis of Theorem 3.1 are verified. Therefore, T has a best proximity point,
which is x∗ = (1

5 ,0).

Remark 3.1. If we remove the condition of continuity of T in Theorem 3.1 and replace it with
α∗-continuity of T , then we have following result:

Theorem 3.2. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let α∗ : A × A → [0,∞), ψ ∈Ψ be a strictly increasing map and
T : A → CB(B) be multivalued mapping satisfying the following assertions:

(1) T is Ćirić type α∗-ψ proximal contraction;

(2) Tz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

(3) T is modified α∗-proximal admissible;

(4) T is an α∗-continuous mapping;

(5) there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0)= D(A,B) and α∗(Tx0,Tx1)≥ 1.

Then the mapping T has a best proximity point.

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 293–313, 2018



Global Best Approximate Solutions for Set Valued Contraction. . . : A. Hussain et al. 303

Proof. Resuming the proof of Theorem 3.1 we have a Cauchy sequence {xn} converges to x∗ in
A. Then by α∗-continuity of T and (3.7), we get Txn

H−→ Tx∗ as n →∞, that is

lim
n→∞H(Txn,Tx∗)= 0. (3.22)

Then from (3.7)

D(A,B)= lim
n→∞D(xn+1,Txn)= D(x∗,Tx∗) .

Remark 3.2. Note that the uniqueness of the best proximity point of multivalued mapping T
is not given in Theorem 3.1 (and Theorem 3.2). Thus, we can propose the following problem:
Let (X ,d) be a complete b-metric space and T : A → CB(B) be continuous multivalued mapping
satisfying all assertions of Theorem 3.1 (Theorem 3.2).

Does T has a unique best proximity point?

By adding the following condition

H :α∗(x1, x2)≥ 1 for all best proximity points x1, x2 of T

and taking T : A → K(B), we are able to give a partial answer to the proposed problem as
follows:

Theorem 3.3. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty and T : A → K(B) be continuous multivalued mapping satisfying
all the assertions of Theorem 3.1 (similarly Theorem 3.2) along with condition H . Then the
mapping T has a unique best proximity point.

Proof. We will only prove the uniqueness part. Let x1, x2 be two best proximity points of T such
that x1 6= x2, then by hypothesis H we have α∗(x1, x2)≥ 1 and D(x1,Tx1)= D(A,B)= D(x2,Tx2).
Since Tx1 and Tx2 are compact, so there exist elements u1 ∈ Tx1 and u2 ∈ Tx2 such that

d(x1,u1)= d(x1,Tx1)

d(x2,u2)= d(x2,Tx2).

Since T satisfies the weak P-property, we have

d(x1, x2)≤ d(u1,u2).

Also T is Ćirić type α∗-ψ-contraction, by Lemma 2.1 there exists q > 1 such that

d(x1, x2)≤ d(u1,u2)

< qD(u1,Tx2)

≤ qH(Tx1,Tx2)

≤ qψ(M(x1, x2))

≤ qψ(d(x1, x2))

≤ qd(x1, x2),
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which is a contradiction. Hence d(x1, x2) = 0, consequently, T has a unique best proximity
point.

If we take M(x, y)= d(x, y) in Theorem 3.1, we have the following:

Corollary 3.1. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let α∗ : A × A → [0,∞), ψ ∈Ψ be a strictly increasing map and
T : A → CB(B) be continuous multivalued mapping satisfying the following assertions:

(1) α∗(Tx,T y)H(Tx,T y)≤ψ(d(x, y)), for all x, y ∈ A;

(2) Tz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

(3) T is modified α∗-proximal admissible;

(4) there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0)= D(A,B) and α∗(Tx0,Tx1)≥ 1.

Then the mapping T has a best proximity point.

If we take α∗(Tx,T y)= 1 for all x, y ∈ A in Theorem 3.1, we have following corollary:

Corollary 3.2. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty, ψ ∈Ψ a strictly increasing map and T : A → CB(B) be continuous
multivalued mapping satisfying the following assertions:

(1) H(Tx,T y)≤ψ(M(x, y)), for all x, y ∈ A;

(2) Tz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

(3) there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0)= D(A,B).

Then the mapping T has a best proximity point.

If we take M(x, y)= d(x, y) in Corollary 3.2, then

Corollary 3.3. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty, ψ ∈Ψ a strictly increasing map and T : A → CB(B) be continuous
multivalued mapping satisfying the following assertions:

(1) H(Tx,T y)≤ψ(d(x, y)), for all x, y ∈ A;

(2) Tz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

(3) there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0)= D(A,B).

Then the mapping T has a best proximity point.

4. Best Proximity Points for Single Valued Mapping

We begin this section with the following definition:
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Definition 4.1 ([24]). Let A and B be two nonempty subsets of b-metric space (X ,d). A mapping
T : A → B is called α-proximal admissible if there exists a mapping α : A× A → [0,∞) such that

α(x1, x2)≥ 1
d(u1,Tx1)= d(A,B)
d(u2,Tx2)= d(A,B)

⇒α(u1,u2)≥ 1,

where x1, x2,u1,u2 ∈ A.

Definition 4.2. Let A and B be two nonempty subsets of a b-metric space (X ,d). A mapping
T : A → B is said to be a Ćirić type α-ψ-proximal contraction, if there exists ψ ∈ Ψ and
α : A× A → [0,∞) such that

α(x, y)d(Tx,T y)≤ψ(m(x, y)), for all x, y ∈ A (4.1)

where m(x, y)=max
{
d(x, y), 1

k d(x,Tx)−D(A,B), 1
k d(y,T y)−D(A,B)

}
.

Theorem 4.1. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let α : A × A → [0,∞), ψ ∈ Ψ be a strictly increasing map and
T : A → B be continuous mapping satisfying the following assertions:

(1) T is Ćirić type α-ψ-proximal contraction;

(2) T(A0)⊆ B0 and (A,B) satisfies the weak P-property;

(3) T is α-proximal admissible;

(4) there exists x0, x1 ∈ A0 such that d(x1,Tx0)= d(A,B) and α(x0, x1)≥ 1.

Then the mapping T has a best proximity point.

Theorem 4.2. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let ψ ∈Ψ be a strictly increasing map and T : A → B be a mapping
satisfying the following assertions:

(1) T is Ćirić type α-ψ-proximal contraction;

(2) T(A0)⊆ B0 and (A,B) satisfies the weak P-property;

(3) T is α-proximal admissible;

(4) T is an α-continuous mapping;

(5) there exists x0, x1 ∈ A0 such that d(x1,Tx0)= d(A,B) and α(x0, x1)≥ 1.

Then the mapping T has a best proximity point

If we take m(x, y)= d(x, y) in Theorem 4.1, we have the following corollary:

Corollary 4.1. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let α : A × A → [0,∞), ψ ∈ Ψ be a strictly increasing map and
T : A → B be continuous mapping satisfying the following assertions:

(1) α(x, y)d(Tx,T y)≤ψ(d(x, y)), for all x, y ∈ A;
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(2) T(A0)⊆ B0 and (A,B) satisfies the weak P-property;

(3) T is α-proximal admissible;

(4) there exists x0, x1 ∈ A0 such that d(x1,Tx0)= D(A,B) and α(x0, x1)≥ 1.

Then the mapping T has a best proximity point.

If we take α(x, y)= 1 for all x, y ∈ A in Theorem 4.1, we have the following corollary:

Corollary 4.2. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let ψ ∈Ψ be strictly increasing map and T : A → B be continuous
mapping satisfying the following assertions:

(1) d(Tx,T y)≤ψ(m(x, y)), ∀ x, y ∈ A;

(2) T(A0)⊆ B0 and (A,B) satisfies the weak P-property;

(3) T is α-proximal admissible;

(4) there exists x0, x1 ∈ A0 such that d(x1,Tx0)= d(A,B);

Then the mapping T has a best proximity point.

If we take m(x, y)= d(x, y) in Corollary 4.2, we have the following:

Corollary 4.3. Let A and B be two nonempty closed subsets of a complete b-metric space (X ,d)
such that A0 is non-empty. Let α : A × A → [0,∞), ψ ∈ Ψ be a strictly increasing map and
T : A → B be continuous mapping satisfying the following assertions:

(1) d(Tx,T y)≤ψ(d(x, y)), for all x, y ∈ A;

(2) T(A0)⊆ B0 and (A,B) satisfies the weak P-property;

(3) T is α-proximal admissible;

(4) there exists x0, x1 ∈ A0 such that d(x1,Tx0)= d(A,B);

Then the mapping T has a best proximity point.

5. Best Proximity Point Results in Partially Ordered b-metric Spaces

Let (X ,d,¹) be a partially ordered metric space, A and B be two nonempty subsets of X . Many
authors proved the existence of best proximity point results in the context of partially order
metric spaces (see for example [12,29,30]). In this section, we derive new results in partially
order metric spaces, as an application of our results presented in previous section.

Definition 5.1 ([12]). A mapping T : A → B is said to proximally increasing if for z1, z2,u1,
u2 ∈ A

z1 ¹ z2
d(u1,Tz1)= d(A,B)
d(u2,Tz2)= d(A,B)

 ⇒ u1 ¹ u2.
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Very recently, Pragadeeswarar et al. [30] defined the notion of proximal relation between
two subsets of X as follows:

Definition 5.2 ([30]). Let A and B be two nonempty subsets of a partially ordered b-metric
space (X ,d,¹) such that A0 6= ;. Let B1 and B2 be two nonempty subsets of B0. The proximal
relation between B1 and B2 is denoted and defined by B1 ¹ B2, if for every b1 ∈ B1 with
d(a1,b1)= d(A,B), there exists b2 ∈ B2 with d(a2,b2)= d(A,B) such that a1 ¹ a2.

Theorem 5.1. Let A and B be two nonempty closed subsets of a complete partially ordered
b-metric space (X ,d,¹) such that A0 is non-empty. Let ψ ∈Ψ be strictly increasing map and
T : A → CB(B) be continuous multivalued mapping satisfying the following assertions:

(1) H(Tx,T y)≤ψ(M(x, y)), for all x ¹ y;

(2) Tz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

(3) for x1, x2 ∈ A0, x1 ¹ x2 implies Tx1 ¹ Tx2;

(4) T is proximally increasing.

(5) there exists x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0)= D(A,B) satisfies x0 ¹ x1 and
x1 ¹ y0.

Then the mapping T has a best proximity point.

Proof. Define α∗ : A× A → [0,∞) by

α∗(x, y)=
{

1 if x ¹ y
0 otherwise.

First we shaw that T is α∗-proximal admissible. For this, assume that

α∗(Tx0,Tx1)≥ 1
D(x1,Tx0)=D(A,B)
D(x2,Tx1)=D(A,B)

⇒ α∗(Tx1,Tx2)≥ 1 for x1 ¹ x2.

Since Tx1 ¹ Tx2, therefore for x1, x2, x3 ∈ X , with

x1 ¹ x2

D(x2,Tx1)=D(A,B)
D(x3,Tx2)=D(A,B)

 .

Since T is proximally increasing then x2 ¹ x3. This implies that α∗(Tx2,Tx3) ≥ 1 for x2 ¹ x3.
Thus, all the conditions of Theorem 3.1 are satisfied and hence mapping T has a best proximity
point.

H ′ : α(x1, x2)≥ 1 with x1 ¹ x2 for all best proximity points x1, x2 of T .

Theorem 5.2. Let A and B be two nonempty closed subsets of a complete partially ordered
b-metric space (X ,d,¹) such that A0 is non-empty and T : A → K(B) be continuous multivalued
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mapping satisfying all assertions of Theorem 5.1 along with H ′. Then T has a unique best
proximity point.

For single valued mapping we obtain the following results:

Theorem 5.3. Let A and B be two nonempty closed subsets of a partially ordered complete
b-metric space (X ,d,¹) such that A0 is nonempty. Let ψ ∈Ψ be strictly increasing map and
T : A → B be continuous mapping satisfying the following assertions for all z1, z2 ∈ A with
z1 ¹ z2:

(1) d(Tx,T y)≤ψ(M(x, y)), for all x ¹ y;

(2) Tz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

(3) z1, z2 ∈ A0, z1 ¹ z2 implies Tz1 ¹ Tz2;

(4) there exists z0, z1 ∈ A0 such that d(z1,Tz0)= d(A,B) satisfies z0 ¹ z1.

Then T has a best proximity point.

6. Applications to Fixed Point Results

As applications of our results, we deduce some new fixed point results for multivalued Ćirić
type α∗-ψ-contraction in the frame work of b-metric and partially ordered b-metric spaces. If
we take A = B = X in Theorem 3.1 (respectively in 3.2, 3.3), we obtain the following fixed point
results:

Theorem 6.1. Let (X ,d) be a complete b-metric space. Let α∗ : X × X → [0,∞), ψ ∈Ψ be strictly
increasing map and T : X → CB(X ) be continuous multivalued mapping satisfying the following
assertions:

(1) T is Ćirić type α∗-ψ-contraction;

(2) T is modified α∗-admissible;

(3) there exists x0, x1 ∈ X such that α∗(Tx0,Tx1)≥ 1.

Then the mapping T has a fixed point.

H ′′ : α(x1, x2)≥ 1 for all fixed points x1, x2 of T .

Theorem 6.2. Let (X ,d) be a complete b-metric space and T : X → K(X ) be continuous
multivalued mapping satisfying satisfying all assertions of Theorem 6.1 along with H ′′. Then T
has a unique fixed point.

In partially ordered b-metric spaces, the corresponding fixed point results are as follows:

Theorem 6.3. Let (X ,d,¹) be a complete partially ordered b-metric space. Let ψ ∈Ψ be strictly
increasing map and T : X → CB(X ) be continuous multivalued mapping satisfying the following
assertions:
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(1) H(Tx,T y)≤ψ(M(x, y)), for all x ¹ y;

(2) for x1, x2 ∈ X , x1 ¹ x2 implies Tx1 ¹ Tx2;

(3) there exists x0, x1 ∈ X , such that x0 ¹ x1 .

Then T has a fixed point.

H ′′′ : x1 ¹ x2 for all fixed points x1, x2 of T .

Theorem 6.4. Let (X ,d,¹) be a complete partially ordered b-metric space and T : X → K(X ) be
continuous multivalued mapping satisfying satisfying all assertions of Theorem 6.3 along with
H ′′′. Then T has a unique fixed point.

Theorem 6.5. Let (X ,d) be a complete b-metric space. Suppose that α : X × X → [0,∞) is a
function, ψ ∈Ψ be strictly increasing map and T : X → X be continuous mapping satisfying the
following assertions:

(1) T is Ćirić type α-ψ-proximal contraction;

(2) T is α-proximal admissible;

(3) there exists x0, x1 ∈ X such that α(Tx0,Tx1)≥ 1.

Then the mapping T has a fixed point.

7. Application to Integral Equation

Finally, we apply Theorem 6.5 to study the existence of solution to the nonlinear integral
equation.

Theorem 7.1. Let C[a,b] be the set of all continuous functions on [a,b], b-metric d with k = 2p−1

defined by

d(u,v)= sup
t∈[a,b]

|u(t)−v(t)|p

for all u,v ∈ C[a,b] and some p > 1. Consider the nonlinear integral equation

u(t)= g(t)+
∫ b

a
K(t, x,u(x))dx, (7.1)

where t ∈ [a,b], g : [a,b]→R, K : [a,b]× [a,b]×u[a,b]→R for each u ∈ C[a,b].

Suppose that the following statements hold.

(1) g is continuous on [a,b] and K(t, x,u(x)) is integral with respect to x on [a,b].

(2) Tu ∈ C[a,b] for all u ∈ [a,b], where Tu(t)= g(t)+∫ b
a K(t, x,u(x))dx for all t ∈ [a,b].

(3) For all u ∈ C[a,b] and u(x)≥ 0 for all x ∈ [a,b], we have Tu(x)≥ 0 for all x ∈ [a,b].

(4) For all x, t ∈ [a,b] and u,v ∈ C[a,b] such that u(x),v(x) ∈ [0,∞) for all x ∈ [a,b], we have

|K(t, x,u(x))−K(t, x,v(x))| ≤µ(t, x)ψ
(
max

{
|u(x)−v(x)|, |u(x)−Tu(x)|

21− 1
p

,
|v(x)−Tv(x)|

21− 1
p

})
,
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where µ : [a,b]× [a,b]→R is a continuous function satisfying

sup
t∈[a,b]

(∫ b

a
µp(t, x)dx

)
< 1

2p(b−a)p−1 .

(5) There exist u1 ∈ C[a,b] such that u1(t)≥ 0 and Tu1(t)≥ 0 for all t ∈ [a,b].

Then nonlinear integral equation (7.1) has a unique solution in C[a,b].

Proof. Define a mapping T : C[a,b]→ C[a,b] by

Tu(t)= g(t)+
∫ b

a
K(t, x,u(x))dx

for all u ∈ C[a,b] and for all t ∈ [a,b]. It follows from hypothesis (1) and (2) that T is well-defined.
Notice that the existence of solution to (7.1) is equivalent to the existence of fixed point of T .
Now, we will show that all hypothesis of Theorem 6.5 are satisfied.

Define a mapping α : C[a,b]×C[a,b]→R by

α(u,v)=
{

1 if u(x),v(x) ∈ [0,∞) for all x ∈ [a,b]
0 otherwise.

We shall show that T is α-proximal admissible mapping. Indeed, for u,v ∈ C[a,b] such
that α(u,v) ≥ 1, we have u(x),v(x) ≥ 0 for all x ∈ [a,b]. It follows from condition (3) that
Tu(x),Tv(x)≥ 0. Therefore α(Tu(x),Tv(x))≥ 1 and hence T is α-proximal admissible mapping.

We claim that T is Ćirić type α-ψ-proximal contraction. That is, there exist ψ ∈Ψ such that

α(x, y)d(Tx,T y)≤ψ(M(x, y)),

for each x, y ∈ C[a,b], where

M(x, y)=max
{

d(x, y),
1
k

d(x,Tx),
1
k

d(y,T y)
}

.

Indeed, let q > 1 such that 1
p + 1

q = 1. From condition (4), for all u,v ∈ C[a,b] such that
u(x),v(x) ∈ [0,∞) for all x ∈ [a,b], we have

2p−1α(u,v)|Tu(x)−Tv(x)|p = 2p−1|Tu(x)−Tv(x)|p

≤ 2p−1
∣∣∣∣∫ b

a
K(t, x,u(x))dx−

∫ b

a
K(t, x,v(x))dx

∣∣∣∣p

≤ 2p−1
∣∣∣∣∫ b

a
(K(t, x,u(x))−K(t, x,v(x)))dx

∣∣∣∣p

≤ 2p−1
(∫ b

a
|K(t, x,u(x))−K(t, x,v(x))|dx

)p

≤
[
2p−1

(∫ b

a
dx

) 1
q
(∫ b

a
|K(t, x,u(x))−K(t, x,v(x))|pdx

) 1
p
]p

≤ 2p−1(b−a)p−1
(∫ b

a
µp(t, x)dx

)
ψ

(
max

{
|u(x)−v(x)|p,
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|u(x)−Tu(x)|p
2p−1 ,

|v(x)−Tv(x)|p
2p−1

})
≤ 2p−1(b−a)p−1

(∫ b

a
µp(t, x)dx

)
ψ

(
max

{
sup

x∈[a,b]
|u(x)−v(x)|p,

sup
x∈[a,b]

|u(x)−Tu(x)|p
2p−1 , sup

x∈[a,b]

|v(x)−Tv(x)|p
2p−1

})

≤ 2p−1(b−a)p−1
(∫ b

a
µP (t, x)dx

)
ψ

(
max

{
d(u,v),

1
k

d(u,Tu),
1
k

d(v,Tv)
})

= 2p−1(b−a)p−1
(∫ b

a
µP (t, x)dx

)
ψ(M(u,v))

≤ 2p−1(b−a)p−1 sup
t∈[a,b]

(∫ b

a
µP (t, x)dx

)
ψ(M(u,v))

≤ψ(M(u,v)),

where 2p−1(b−a)p−1 sup
t∈[a,b]

(∫ b

a
µP (t, x)dx

)
< 1. This implies that

α(u,v)d(Tu,Tv)≤ 2p−1α(u,v)|Tu(x)−Tv(x)|p ≤ψ(M(u,v)).

Hence, T is Ćirić type α-ψ-proximal contraction.

Let {un}⊂ C[a,b] such that α(un,un+1)≥ 1 and lim
n→∞un = u ∈ C[a,b]. Then u(x),un(x) ∈ [0,∞)

for all x ∈ [a,b] and n ≥ 0. Therefore, α(un,u)≥ 1 for all n ≥ 1.

Therefore, we conclude all the hypothesis of Theorem 6.5 are satisfied. Thus, T has a fixed
point u ∈ C[a,b] and hence equation (7.1) has a solution u ∈ C[a,b].
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