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1. Introduction
For two measurable functions f , g : [a,b] → R, define the functional, which is known in the
literature as Chebychev’s functional

T( f , g;a,b)= 1
b−a

∫ b

a
f (x)g(x)dx− 1

(b−a)2

∫ b

a
f (x)dx

∫ b

a
g(x)dx, (1.1)
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provided that the involved integrals exist. There are many studies involving (1.1) in the
literature, see for example [2,6,20,24].

Grüss type Inequality due to Chebychev (see for example [21, p. 207]) is as follows.

If f , g are absolutely continuous on [a,b] and f ′, g′ ∈ L∞[a,b] and ‖ f ′‖∞ := esssup
t∈[a,b]

| f ′(t)|,
then

|T( f , g;a,b)| ≤ 1
12

‖ f ′‖∞‖g′‖∞(b−a)2 (1.2)

and the constant 1
12 is the best possible.

Further, a weighted version of the Chebyshev functional (see [3]) is defined as:

T( f , g, p)=
∫ b

a
p(t)dt

∫ b

a
f (t)g(t)p(t)dt−

∫ b

a
f (t)p(t)dt

∫ b

a
g(t)p(t)dt, (1.3)

where f and g are integrable functions on [a,b] and p(t) is a positive and integrable function on
[a,b]. In 2000, Dragomir [8] derived the following inequality, related to the weighted Chebyshev
functional (1.3):

2 |T( f , g, p)| ≤ ‖ f ′‖p‖g′‖q

[∫ b

a

∫ b

a
|x− y| p(x)p(y)dxdy

]
, (1.4)

where f , g are differentiable functions and f ′ ∈ Lp(a,b), g′ ∈ Lq(a,b), p > 1, 1
p + 1

q = 1. In
mathematical analysis, the fractional calculus is a very helpful tool to perform differentiation
and integration with the real number or complex number powers of the differential or integral
operators. This subject has earned the attention of many researchers and mathematicians
during last few decades (see [1, 3–5, 10, 22, 26, 28]). There is a large number of the fractional
integral operators discussed in literature but because of their applications in many fields of
sciences, the Riemann-Liouville fractional integral operator and Hadamard fractional integral
operator have been studied extensively.

The Hadamard fractional integral operator was introduced by Hadamard [9]. It can be
defined as follows:

Let f ∈ L[a,b], the left and right sided Hadamard fractional integrals of order α≥ 0 and a > 0
are defined respectively as

Hα
a+ f (t)= 1

Γ(α)

∫ t

a

(
ln

t
τ

)α−1
f (τ)

dτ
τ

, 0< a < t ≤ b (1.5)

and

Hα
b− f (t)= 1

Γ(α)

∫ b

t

(
ln

τ

t

)α−1
f (τ)

dτ
τ

, 0< a ≤ t < b . (1.6)

The theory of special k-functions was introduced about a decade ago when Diaz and
Pariguan [7] defined the generalization of the classical gamma and beta functions in terms of a
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new parameter k > 0, called gamma and beta k-functions, respectively

Γk(α)=
∫ ∞

0
tα−1e−

tk
k dt, Re(α)> 0

and

Bk(α,β)= 1
k

∫ 1

0
t
α
k −1(1− t)

β
k−1dt, Re(α)> 0, Re(β)> 0 . (1.7)

This idea of generalization of special functions in terms of some new parameter fascinated
many researchers and mathematicians. Several properties, identities and inequalities involving
special k-functions were proved during past several years (see for instance [11–15,28,29]).

The functions Γk defined on R+ and Bk(x, y) on (0,1) hold the following four properties:

(I) Γk(x+k)= xΓk(x);

(II) Γk(k)= 1;

(III) Γk(x) is logarithmically convex;

(IV) βk(x, y)= Γk(x)Γk(y)
Γk(x+y) .

For the first time, Mubeen and Habibullah [17] used this special k-functions theory in
fractional calculus and introduced the k-fractional integral of the Riemann-Liouville type as

Iαa,k f (t)= 1
kΓk(α)

∫ t

a
(t− x)

α
k −1 f (x)dx, t ∈ [a,b],

where Γk is the Euler gamma k-function.

Later, Romero et al. [25] introduced a new fractional operator called k-Riemann-Liouville
fractional derivative by using gamma k-function. They also proved some properties of this newly
defined fractional operator and found its relationship with Riemann-Liouville k-fractional
integral.

In new research paper, using Γk and new k parameter, Mubeen et al. [18] have introduced
left-sided and right-sided Hadamard k-fractional integrals as following:

Definition 1.1. For k > 0, let f ∈ L[a,b], the left and right sided k-fractional integrals of order
α≥ 0 and a > 0 are defined respectively as

H α
a+,k{ f }(t)= 1

kΓk(α)

∫ t

a

(
ln

t
τ

)α
k −1

f (τ)
dτ
τ

, 0< a < t ≤ b (1.8)

and

H α
b−,k{ f }(t)= 1

kΓk(α)

∫ b

t

(
ln

τ

t

)α
k −1

f (τ)
dτ
τ

, 0< a ≤ t < b . (1.9)

Corollary 1. Using definition of Hadamard k-fractional integral and relation (I), we have

H α
a+,k(1)= (ln(t/a))

α
k

Γk(α+k)
, α,k > 0 (1.10)

and

H α
1+,k(1)= (ln t)

α
k

Γk(α+k)
, α,k > 0 . (1.11)
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2. Hadamard k-Fractional Integral Inequalities

Throughout of this paper, we denote the Hadamard k-fractional integral of order α of a function
f which have limit zero by H α

0,k[ f (t)]=H α
k [ f (t)].

To use in next theorems, we want to define two functions as following:

A (τ,ρ)= (
f (τ)− f (ρ)

)(
g(τ)− g(ρ)

)
, τ,ρ ∈ (0, t), t > 0 (2.1)

and

Fα(t,τ)=
(
ln t

τ

)α
k −1

kΓk(α)τ
, t,k,α> 0, τ ∈ (0, t). (2.2)

Theorem 1. Suppose that p be a positive function, f and g be differentiable functions on [0,∞),
f ′ ∈ Ln([0,∞)), g′ ∈ Lm([0,∞)) such that 1

n + 1
m = 1 with n > 1. Then for all t > 0, α> 0, k > 0 and

2
∣∣H α

k [p(t)] H α
k [p(t) f (t)g(t)]− H α

k [p(t) f (t)] H α
k [p(t)g(t)]

∣∣
≤ ‖ f ‖n‖g‖m

k2Γ2
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ

≤ ‖ f ′‖n‖g′‖mt
(
H α

k [p(t)]
)2 . (2.3)

Proof. Provided that the conditions of the theorem and for all τ ∈ (0, t), we can easily see
Fα

s (t,τ)> 0. Multiplying with p(τ) both side of product A (τ,ρ)×Fα(t,τ) and taking the integral
with respect to τ on (0, t), we get

1
kΓk(α)

∫ t

0

[
ln

(
t
τ

)]α
k −1 p(τ)

τ
A (τ,ρ)dτ

= H α
k [p(t) f (t)g(t)]− f (ρ)H α

k [p(t)g(t)]− g(ρ)H α
k [p(t) f (t)]+ f (ρ)g(ρ)H α

k [p(t)] . (2.4)

Now, multiplying above identity (2.4) by Fα(t,ρ)p(ρ) and then integrating with respect to ρ

on (0, t), we obtain

1
k2Γ2

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

A (τ,ρ)dτdρ

= 2
(
H α

k [p(t)] H α
k [p(t) f (t)g(t)]−H α

k [p(t) f (t)] H α
k [p(t)g(t)]

)
. (2.5)

With the help of fundamental theorem of calculus, identity (2.1) can be written as

A (τ,ρ)=
∫ ρ

τ

∫ ρ

τ
f ′(y)g′(z)d ydz .

By using the Hölder’s inequality for double integrals, we get∣∣∣∣∫ ρ

τ

∫ ρ

τ
f (y)g(z)d ydz

∣∣∣∣≤ ∣∣∣∣∫ ρ

τ

∫ ρ

τ
| f (y)|n d ydz

∣∣∣∣ 1
n
∣∣∣∣∫ ρ

τ

∫ ρ

τ
|g(z)|m d ydz

∣∣∣∣ 1
m

,(
1
n
+ 1

m
= 1,n > 1

)
,
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then, we obtain

|A (τ,ρ)| ≤
∣∣∣∣∫ ρ

τ

∫ ρ

τ
| f ′(y)|nd ydz

∣∣∣∣ 1
n
∣∣∣∣∫ ρ

τ

∫ ρ

τ
|g′(z)|md ydz

∣∣∣∣ 1
m

. (2.6)

Since ∣∣∣∣∫ ρ

τ

∫ ρ

τ
| f ′(y)|nd ydz

∣∣∣∣ 1
n = |τ−ρ| 1

n

∣∣∣∣∫ ρ

τ
| f ′(y)|nd y

∣∣∣∣ 1
n

and ∣∣∣∣∫ ρ

τ

∫ ρ

τ
|g′(z)|md ydz

∣∣∣∣ 1
m = |τ−ρ| 1

m

∣∣∣∣∫ ρ

τ
|g′(z)|mdz

∣∣∣∣ 1
m

,

thus, from inequality (2.6) we get

|A (τ,ρ)| ≤ |τ−ρ|
∣∣∣∣∫ ρ

τ
| f ′(y)|nd y

∣∣∣∣ 1
n
∣∣∣∣∫ ρ

τ
|g′(z)|mdz

∣∣∣∣ 1
m

. (2.7)

As a result of (2.7) and from equality (2.5) can be written following inequality:

1
k2Γ2

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤ 1
kΓk(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

×|τ−ρ|
∣∣∣∣∫ ρ

τ
| f ′(y)|nd y

∣∣∣∣ 1
n
∣∣∣∣∫ ρ

τ
|g′(z)|mdz

∣∣∣∣ 1
m

dτdρ. (2.8)

Now again using weighted Hölder’s integral inequality, on the right-hand side of (2.8), we have

1
k2Γ2

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤
[

1
knΓn

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|
∣∣∣∣∫ ρ

τ

∣∣ f ′(y)
∣∣n d y

∣∣∣∣dτdρ
] 1

n

×
[

1
kmΓm

k (α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|
∣∣∣∣∫ ρ

τ

∣∣g′(z)
∣∣m dz

∣∣∣∣dτdρ
] 1

m
. (2.9)

Taking into account the fact that∣∣∣∣∫ ρ

τ
| f (y)|n dy

∣∣∣∣≤ ‖ f ‖n
n and

∣∣∣∣∫ ρ

τ
|g(z)|m dz

∣∣∣∣≤ ‖g‖m
m ,

we obtain
1

k2Γ2
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤
[ ‖ f ‖n

n

knΓn
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ
] 1

n

×
[ ‖g‖m

m

kmΓm
k (α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ
] 1

m . (2.10)
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Inequality (2.10) gives us following inequality:

1
k2Γ2

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤ ‖ f ‖n‖g‖m

k2Γ2
k(α)

[∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ

] 1
n

×
[∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ

] 1
m

. (2.11)

With the fact that 1
n + 1

m = 1, from (2.11) we get

1
k2Γ2

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤ ‖ f ‖n‖g‖m

k2Γ2
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ. (2.12)

On the other hand using equality (2.5) we can easily seen that

2
∣∣H α

k [p(t)] H α
k [p(t) f (t)g(t)]− H α

k [p(t) f (t)] H α
k [p(t)g(t)]

∣∣
≤ 1

k2Γ2
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

∣∣A (τ,ρ)
∣∣dτdρ . (2.13)

Taking into account the inequalities (2.12) and (2.13), we conclude the left-hand side of the
inequality (2.3).

Now, to obtain the right-hand side of the inequality (2.3), since 0 ≤ τ≤ t and 0 ≤ ρ ≤ t, we
will use the fact that

0≤ |τ−ρ| ≤ t .

Clearly, from (2.12), we obtain

1
k2Γ2

k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤ ‖ f ‖n‖g‖m

k2Γ2
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

|τ−ρ|dτdρ

≤ t‖ f ‖n‖g‖m

k2Γ2
k(α)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]α
k −1 p(τ)

τ

p(ρ)
ρ

dτdρ

= ‖ f ′‖n‖g′‖mt
(
H α

k [p(t)]
)2

which completes of the proof of Theorem 1.

The following theorem put forward a further generalization of Theorem 1 with α and β

positive parameters.
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Theorem 2. Suppose that p be a positive function, f and g be differentiable functions on [0,∞),
f ′ ∈ Ln([0,∞)), g′ ∈ Lm([0,∞)) such that 1

n + 1
m = 1 with n > 1. Then for t > 0 following inequality

holds: ∣∣H β

k [p(t)] H α
k [p(t) f (t)g(t)]− H

β

k [p(t) f (t)] H α
k [p(t)g(t)]

− H
β

k [p(t)g(t)] H α
k [p(t) f (t)]+ H

β

k [p(t) f (t)g(t)] H α
k [p(t)]

∣∣
≤ ‖ f ′‖n‖g′‖m

k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

|τ−ρ| dτdρ

≤ t‖ f ′‖n‖g′‖m H α
k [p(t)] H

β

k [p(t)] (2.14)

where α,β,k > 0.

Proof. To prove this theorem, we multiply (2.4) by Fβ(t,ρ) (ρ ∈ (0, t), t > 0) and take the integral
on (0, t) (with respect to ρ), to obtain

1
k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

A (τ,ρ)dτdρ

= H
β

k [p(t)] H α
k [p(t) f (t)g(t)]− H

β

k [p(t) f (t)] H α
k [p(t)g(t)]

− H
β

k [p(t)g(t)] H α
k [p(t) f (t)]+ H

β

k [p(t) f (t)g(t)] H α
k [p(t)] . (2.15)

Using our obtained previously inequality (2.7), we get

1
k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤ 1
k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1

× p(τ)
τ

p(ρ)
ρ

|τ−ρ|
∣∣∣∣∫ ρ

τ
| f ′(y)|ndy

∣∣∣∣ 1
n
∣∣∣∣∫ ρ

τ
|g′(z)|mdz

∣∣∣∣ 1
m

dτdρ. (2.16)

If we take Hölder’s integral inequality, we easily get following inequality:

1
k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ

≤ ‖ f ′‖n‖g′‖m

k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

|τ−ρ| dτdρ . (2.17)

The left-sided inequality of Theorem 2 can be easily seen from inequalities (2.15) and (2.17).
Furthermore, for 0≤ τ≤ t, 0≤ ρ ≤ t, we have

0≤ |τ−ρ| ≤ t.

Therefore, from (2.17), we obtain

1
k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

|A (τ,ρ)|dτdρ
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≤ t ‖ f ′‖p‖g′‖q

k2Γk(α)Γk(β)

∫ t

0

∫ t

0

[
ln

(
t
τ

)]α
k −1 [

ln
(

t
ρ

)]β
k−1 p(τ)

τ

p(ρ)
ρ

dτdρ

= ‖ f ′‖n‖g′‖m t H α
k [p(t)] H

β

k [p(t)]

which finish proof process of Theorem 2.

Remark 2.1. If it is taken as β=α in above theorem, Theorem 2 reduces to Theorem 1.

3. Conclusion
In this paper, we have done a considerable work associated with classical and variants of Grüss
type inequality, which actually connects the integral of the product of two functions with the
product of their integrals. We have also presented the Chebyshev-Grüss type inequalities for
Hadamard fractional integrals in the framework of parameter k > 0.
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