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procedure the nonlinear term of the problem can be decompose as a series of polynomials to overcomes
the difficulty arising in calculating complicated integrals. A comparative study between AHAM and
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1. Introduction
In this work, we consider the non-dimensional equation of motion for a mass attached to a
stretched elastic wire is [7]

d2x
dt2 + x− λxp

1+ x2
= 0, 0≤λ≤ 1, (1.1)

subject to the initial conditions

x(0)= A,
dx
dt

(0)= 0. (1.2)

Assume that the solutions (1.1) are periodic with the period T = 2π
Ω , where Ω is the frequency of

oscillation. Substituting τ=Ωt, and x(t)= X (τ) in to (1.1), then we have

Ω2 d2X
dτ2 + X − λXp

1+ X2
= 0, 0≤λ≤ 1, (1.3)

X (0)= A,
dX
dτ

(0)= 0. (1.4)

Note that for both the small and large X respectively, (1.3) becomes [21]

Ω≈
p

1−λ for A¿ 1, and Ω≈ 1 for AÀ 1. (1.5)

Problems of form (1.1)-(1.2) are encountered in the field of engineering because many practical
engineering components consist of vibrating systems that can be modeled using oscillator
systems. Exact/approximate solutions of these problems are of great importance due to its wide
application in scientific research. Strongly nonlinear systems have been studied by several
authors. J.H. He [5–7] used the modified Lindstedt–Poincare method and homotopy perturbation
method (HPM) to search for approximate solutions of a certain class of Strongly nonlinear
systems. L. Xu [22, 23] used parameter-expanding method. A. Belendez et al. [1] provided
modified homotopy perturbation method (MHPM) to the solution of the above problems. Recently,
some authors used energy balance method to obtain higher-order approximations for strongly
nonlinear oscillators [2,3,8,20].

The aim of this paper is to apply for the first time the adaptation of homotopy analysis
method (AHAM), proposed by Odabit and Bataineh [19] to obtain the approximate solutions of
the strongly nonlinear systems (1.3)–(1.4). The AHAM can decompose the nonlinear term of the
problem as a series of polynomials to overcome the difficulty arising in calculating complected
integrals.

2. The Adaptation of HAM

In this section, we will briefly describe the use of the MHAM for differential equation

N[X (τ)]= 0, (2.1)

where N is nonlinear operator, τ denotes the independent variable, X (τ) is an unknown function
to be determined.
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By means of generalizing the standard HAM, Liao [10] constructs the so-called zeroth-order
deformation equation

(1− q)L[Φ(τ; q)− X0(τ)]= q~H(τ) {N[Φ(τ; q)]} , (2.2)

such that

Φ(τ; q)=
∞∑

m=0
qm Xm(τ), (2.3)

where q ∈ [0,1] is the embedding parameter, ~ 6= 0 is a non zero auxiliary parameter, H(τ) 6= 0
is an auxiliary function, X0 is an initial guess of X (τ) and L is an auxiliary linear operator.
Differentiating (2.2) m times with respect to the embedding parameter q and then setting q = 0
and finally dividing them by m!, we have the so-called mth-order deformation equation

L[Xm(τ)−χmXm−1(τ)]= ~H(τ)Rm(~Xm−1(τ)), (2.4)

where

χm =
{

0, m ≤ 1,
1, m > 1,

~Xm−1(τ)= {X0(τ), X1(τ), . . . , Xm−1(τ)} ,

and

Rm(~Xm−1)= 1
(m−1)!

∂m−1 {
N

[
φ(τ; q)

]}
∂qm−1

∣∣∣∣∣
q=0

. (2.5)

Respectively, for more details about HAM please refer to [9–16] and others related works.

Now, the AHAM suggest that the nonlinear operator N can be expressed in Taylor series
expansion as

N(X )=
∞∑

n=0
anX n, (2.6)

where a′
ns ∈ R. In view to construct the new zeroth-order deformation equation, define the

homotopy map as Φ(τ; q) :R× [0,1]−→R, so, (2.2) becomes as

(1− q)L[Φ(τ; q)− X0(τ)]= q~H(τ)N[qΦ(τ; q)]. (2.7)

That is

(1− q)L[Φ(τ; q)− X0(τ)]= q~H(τ)
∞∑

n=0
an

(
Φ(τ; q)

)n qn. (2.8)

Obviously, when q = 0 and q = 1 both Φ(τ;0)= X0(τ) and Φ(τ;1)= X (τ) hold. Thus as q increases
from 0 to 1, the solutions Φ(τ;0) vary from the initial guesses X0(τ) to the solution X (τ).
Differentiating (2.8) m times with respect to the embedding parameter q and then setting q = 0
and finally dividing them by m!, we have the so-called new mth-order deformation equations

L[Xm(τ)−χmXm−1(τ)]= ~H(τ)Rm(~Xm−1), (2.9)
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where

Rm(~Xm−1)= 1
(m−1)!

∂m−1 {
N

[
qφ(τ; q)

]}
∂qm−1

∣∣∣∣∣
q=0

. (2.10)

Therefor, the solution of the strongly nonlinear problem N(X (τ))= 0, can be easily obtained as

X (τ)=
∞∑

m=0
Xm(τ). (2.11)

3. Solution Procedure by AHAM

To find the periodic motions Ω of (1.3) subject to initial conditions (1.4) by means of AHAM [19],
we choose the initial approximation

X0(τ)= Acos(τ), (3.1)

and the linear operator

L[Φ(τ; q)]= ∂2Φ(τ; q)
∂τ2 +Φ(t; q), (3.2)

with the property

L[c1 cos(τ)+ c2 sin(τ)]= 0, (3.3)

where ci (i = 1,2) are constants of integration. Eq. (1.3) suggests that we define a nonlinear
operator

N[qΦ(τ; q),Ω(A; q)]= (Ω(A; q))2 d2Φ(τ; q)
dτ2 +Φ(τ; q)

−λ
(
Φ(τ; q)+

∞∑
j=1

(−1) j (2 j−1)!Φ(τ, q)2 j+1

22 j−1 j!( j−1)!
q2 j+1

)
, (3.4)

where Ω(A; q)=
∞∑

m=0
Ωmqm and Φ(t; q)=

∞∑
m=0

Xm(τ)qm.

Using the above definition, we construct the zeroth-order deformation equation as in (2.8)
and the mth-order deformation equation for m ≥ 1 is as in (2.9) with ci (i = 1,2) are zero, where

R1(X0)=−λX0 +Ω2
0X ′′

0 + X0,

R2(X1)=−λX1 +Ω2
0X ′′

1 + X1 +2Ω1Ω0X ′′
0 ,

R3(X2)=−λX2 +Ω2
0X ′′

2 + X2 +2Ω1Ω0X ′′
1 +2Ω2Ω0X ′′

0 +Ω2
1X ′′

0 ,

Rm(X3)=−λX3 +Ω2
0X ′′

3 + X3 +2Ω1Ω0X ′′
2 +2Ω2Ω0X ′′

1 +Ω2
1X ′′

1

+2Ω1Ω2X ′′
0 +2Ω0Ω3X ′′

0 + 1
2 X0

3

...

(3.5)

Now, the solution of (2.9) for m ≥ 1 becomes

Xm(τ)= χmXm−1(τ)+~L−1Rm(~Xm−1(τ)). (3.6)
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We now successively obtain for τ= π
2 , Xm(τ)= 0 and 0<λ< 1

X1(τ)=−1
4
πA~

(
λ+Ω2

0 −1
)
, ⇒ Ω0 =

p
1−λ,

X2(τ)= 1
2
πA~

p
1−λ Ω1, ⇒ Ω1 = 0,

X3(τ)= 1
2
πA~

p
1−λ Ω2, ⇒ Ω2 = 0,

X4(τ)= 1
32
πA~

(
3A2λ+16

p
1−λΩ3

)
, ⇒ Ω3 =− 3λ

16
p

1−λ
A2,

X5(τ)= 1
2
πA~

p
1−λΩ4, ⇒ Ω4 = 0, etc.

Then the series solutions expression by AHAM is

X (τ)=
∞∑

m=0
Xm(τ)= Acos(τ)= Acos(Ωt), (3.7)

where the approximate frequencies Ω(A) is

Ω(A)=
∞∑

m=0
Ωm(A)

=
p

1−λ+ 3λ

16
p

1−λ
A2 + 3λ(17λ−20)

512(1−λ)3/2 A4 + λ
(
547λ2 −1220λ+700

)
8192(1−λ)5/2 A6

+ 15λ
(
1741λ3 −5672λ2 +6256λ−2352

)
524288(1−λ)7/2 A8 − 21λ(821λ−1386)

524288(1−λ)3/2 A10 +·· · . (3.8)

Eq. (3.8) can be written as a closed form of complete elliptic integrals of the first and second
kind E(−A2) and K(−A), respectively as

Ω(A)=
√

1− 4λ
πA2 [E(−A2)−K(−A2)] . (3.9)

For more details about the complete elliptic integrals of the first and second kind, K(m) and
E(m) (see [18]). The exact angular frequency, Ωe(A), of Eq. (1.3) subject to (1.4) was found
in [1] as

Ωe(A)= π

2A

∫ 1

0

du√
A2(1−u2)−2λ(

p
A2 +1−

p
A2u2 +1 )


−1

. (3.10)

Moreover, the approximate frequencies Ω(A) for λ= 1 obtained by AHAM is

Ω(A)=
∞∑

m=0
Ωm(A)

= 1
2

√
3
2

A− 5
8

√
3
2

A3 − 25
64

√
3
2

A5 +·· · . (3.11)
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4. Results and Discussions
To check the accuracy of the present method, we plot the approximate frequency obtained by
AHAM Eq. (3.9) with the corresponding exact frequency Eq. (3.10) for different values of λ in
the interval [0,100], it is clear that the result agree very well withe exact frequency (considered
to be exact). Tables 1–2 shows in details the comparison of the approximate frequencies obtained
by the present method Eq. (3.9) with the exact frequency Ωe(A) and other existing frequencies
that are obtained by [4,17,24] for λ= 0.5,0.95. The results of these tables are demonstrated that
the approximate frequencies given by AHAM agree very well with withe exact frequency which
is better result than those obtained in [4,17,24]. The comparison of the approximate solution
obtained by the present method (Eq. (3.5)) with the numerical solution obtained by the classical
fourth-order Runge-Kutta method (RK4) at the stepsize ∆t = 0.001 and other existing solutions
that are obtained by [4,17,24] for λ= 0.95 and A = 10 are show in Table 3. The approximate
solution given by AHAM agree very well with RK4 better than those obtained in [4,17,24].
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Figure 1. Comparison of the approximate frequencies Ω(A) with the corresponding exact frequency
Ωe(A) for different values of λ.
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Table 1. Comparison of the approximate frequencies obtained by the present method Eq. (3.9) with the
exact frequency Ωe(A) and other existing frequencies that are obtained by [4,17,24] for λ= 0.5.

A Ωe(A) Mickens [17] Ganji et al. [4] Zhao [24] Present study

0.01 0.707120 0.707116 0.707120 0.866037 0.707120

0.1 0.708423 0.707987 0.708424 0.867170 0.708423

0.2 0.712259 0.710582 0.712271 0.870489 0.712262

0.4 0.726126 0.720330 0.726271 0.882252 0.726162

0.6 0.745140 0.734651 0.745683 0.897720 0.745269

0.8 0.765907 0.751536 0.767072 0.913595 0.766147

1 0.786171 0.769254 0.788075 0.927961 0.786524

2 0.860447 0.843401 0.864865 0.969782 0.860963

3 0.899904 0.887017 0.904671 0.984638 0.900303

4 0.922727 0.912871 0.927153 0.990901 0.923016

5 0.937317 0.929471 0.941285 0.994030 0.937529

10 0.968102 0.964358 0.970480 0.998456 0.968168

100 0.996812 0.996459 0.997067 0.999984 0.996813

500 0.999363 0.999293 0.999414 0.999999 0.999363

1000 0.999682 0.999646 0.999707 0.999999 0.999682

Table 2. Comparison of the approximate frequencies obtained by the present method Eq. (3.9) with the
exact frequencyΩe(A) and other existing frequencies that are obtained by [4,17,24] for λ= 0.95.

A Ωe(A) Mickens [17] Ganji et al. [4] Zhao [24] Present study

0.01 0.223686 0.223660 0.223686 0.312365 0.223686

0.1 0.231367 0.228836 0.231391 0.323516 0.231388

0.2 0.252549 0.243639 0.252836 0.354238 0.252792

0.4 0.317642 0.293022 0.319674 0.447114 0.319204

0.6 0.391035 0.354195 0.395577 0.547084 0.394094

0.8 0.459947 0.416090 0.46686 0.634908 0.463965

1 0.520335 0.473633 0.529168 0.706124 0.524765

2 0.709629 0.671950 0.721931 0.886069 0.713013

3 0.797913 0.771310 0.809330 0.943366 0.800024

4 0.846399 0.826640 0.856307 0.966748 0.847774

5 0.876561 0.861071 0.885117 0.978276 0.87751

10 0.938333 0.931114 0.943122 0.994413 0.938597

100 0.993933 0.993260 0.994420 0.999944 0.993935

500 0.998790 0.998656 0.998886 0.999998 0.998790

1000 0.999395 0.999328 0.999443 0.999999 0.999395
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Table 3. Comparison of the approximate solution obtained by the present method Eq. (3.7) with the
numerical solution obtained by fourth-order Runge–Kutta method (RK4) and other existing solutions
that are obtained by [4,17,24] for λ= 0.95 and A = 10.

t xRK4 Mickens [17] Ganji et al. [4] Present study

0.00 10.000000 1.0000000 1.0000000 1.0000000

0.25 9.718510 9.730290 9.723320 9.72596

0.50 8.891522 8.935720 8.908602 8.91886

0.75 7.570393 7.659130 7.600920 7.62293

1.00 5.837117 5.969410 5.872640 5.9092

1.25 3.799078 3.957680 3.819390 3.8716

1.50 1.581589 1.732470 1.554800 1.62181

1.75 −0.691240 −0.586197 −0.795828 −0.716875

2.00 −0.2943400 −2.873240 −2.102420 −3.01627

2.25 −5.067420 −5.005300 −5.237340 −5.15034

5. Conclusions
In this paper, the adaption homotopy analysis methods (AHAM) was applied to determine the
second-order approximation of strongly nonlinear oscillator systems. The AHAM Firstly, modify
the standard HAM in order to reduce the required computational work and to overcome the
difficulty arising in calculating complected integrals. Secondly, decompose the nonlinear term of
the problem as a series of polynomials. The computation of the homotopy polynomials is a key
procedure for the presented method. We conclude that the present technique is very effective
and convenient for solving strongly nonlinear oscillator problems.
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