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1. Introduction
Fish could be one of the most important sources of food for mankind, if properly managed.
Now many fish stocks have been driven to low levels by overfishing, inadequate gear and
mismanagement [11,17,18]. Mathematical models could make a great deal to derive optimal
sustainable harvesting policies. An all encompassing model, which takes into account several
species and economic as well as political aspects would be too demanding and complex. For
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this reason we restrict ourselves to a simple but flexible model of a single fish stock. This is
analyzed numerically in particular for populations of cod. However, the model is so general as
to be applicable to other fish species. In [32] the authors have tested the model in extensive
calculations of other fish stocks and species.

Mathematical models of fish have a long tradition, ranging from simple biomass, to rather
detailed multi-class models [1,3,4,30,31,33,34]. Some of these papers study essentially only
the properties of the underlying dynamical system [21, 40, 41], while others concentrate on
harvesting and the maximum sustainable yield [14]. Excellent surveys can be found in the book
of Clark [3], or the articles by Tahvonen [36] or Wilen [42]. Here we will mostly refer to the
more recent papers by Li et al. [24], Diekert et al. [9,10,12] and by Tahvonen [38], Tahvonen et
al. [39], and Quaas et al. [29]. They have developed specific age class models. But these apply
only to the Norwegian or Baltic cod stocks.

The yearly cycle of marine fish suggests to describe such populations by a discrete time
Leslie type model. Such matrix models have always been used in describing biological systems.
See for example the books of Caswell [2] or Cushing [7] or the articles by Levin et al. [21] or
Tahvonen [37–39]. Our plan is to develop a flexible Leslie type matrix model, which depends
only on a few biological meaningful parameters. Even though it is applied to cod mostly, the
model can easily be adapted to other fish populations for example herring, plaice or haddock.
A key ingredient in this system is the recruitment function, which describes the development of
fish from an egg to a first year adult. The recruitment function is the only nonlinear component
of this model with profound effects on the dynamics and position of the equilibria. In the
literature the Beverton-Holt or Ricker recruitment function are commonly used because of their
mathematical simplicity. Other forms can easily be found.

This paper is designed as follows: In Section 2, the recruitment function is presented and
the model is formulated. In Section 3, the stability of the model is investigated. It is shown that
monotone increasing bounded recruitment functions give rise to a unique stable equilibrium. In
Section 4, harvesting is introduced as harvesting intensity, which is a measure for the number of
boats, size of gear and man hours which are employed in fishing. Thus, it can also be interpreted
as fishing mortality [3], so that the underlying structure of the model remains the same. Also
we discuss for the first time the impact of the recruitment function. A study of the equilibrium
model is necessary in order to investigate the impact, range and sensitivity of the parameters.

Here the costs are linear function of the harvesting intensity or effort h. Finally, the
numerical simulations for cod population illustrates our results.

2. The Recruitment Function and the Model
2.1 The Recruitment Function

The growth of fish is best described by the Bertalanffy growth equation, which gives the length
L(t) and by scaling the weight W(t) as a function of the age t,

L(t)= L∞(1− e−K(t−t1)), W(t)=W∞
(

L(t)
L∞

)3
. (2.1)
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Here t is measured in years. L∞, W∞ are the maximum length and weight of the fish respectively.
The parameters K and t1 depend on the particular species of fish. More details about K and t1

can be found in [1]. We assume that we have the age classes 1,2, . . . ,k, and that xi(t) gives the
number of fish in class i at time t. The parameter t will always be measured in years. While we
allow a juvenile period of T1 years, we will always assume the other age classes to be of one
year only. Thus the maximum age of the fish species is T1 +k−1. We assume that the fertility
begins with class 2. Then x(t)= (x1(t), x2(t), . . . , xk(t)) gives the age distribution of the population
at time t. For convenience we also assume that the sex ratio is 1 : 1 in the eggs. Thus, it was
focused on the females only. The number of eggs E(t) in year t is given by

E(t)=
k∑

i=2
Fixi(t) , (2.2)

where Fi denotes the average fecundity (number of eggs) per females of class i.

Fecundity is one of the most important aspect of fish reproductive biology. The number of
eggs produced by a mature female is most likely proportional to its weight, because the gonads
are heavily convoluted [1]. Thus we use proportionality to the weight as this is commonly done.
But actual data of the striped bass in paper of Levin et al. [21] and cod in Diekert et al. [9]
indicates that young fish are comparatively less fertile than their weight would indicate. This is
probably due to the fact that the gonads take time to develop or that eggs of the young fish are
less viable. We model this by the mitigating factors, pi with

pi =


i−1

s̃
: 2≤ i < s̃

1 : i ≥ s̃
(2.3)

where s̃ is about one quarter of the maximum age of the fish species, s̃ ≈ k+T1−1
4 . Where s̃ is

chosen ad hoc for convenience, but leads to an adequate fit with actual fecundity data. Thus if
there are no actual data on the fecundity available we write

Fi = c1 piWi, i = 2, . . . ,k, Wi =W(i+T1 −1) . (2.4)

Here c1 is a proportionality constant, which measures the number of viable eggs per unit weight
of fish. Wi is the average weight for fish of age i+T1 −1 as given by the Bertalanffy formula
(2.1) in class i. Of course if actual data on Wi or Fi are known, one should use these values.
The general conclusions of this paper, however, are not affected by this. With this the number
E(t) of eggs produced by the entire stock is

E(t)=
k∑

i=2
c1 piWixi(t) .

These eggs are put into the sea and fertilized. From the eggs larvae hatch, which metamorphose
into juvenile fish. Most of the eggs, larvae or young fish are eaten, die of starvation or sickness.
We express this through a factor c but also through the depensation function r, which measures
the decrease of the larval and juvenile population caused by competition, starvation and sickness

Communications in Mathematics and Applications, Vol. 8, No. 2, pp. 139–156, 2017



142 On the Harvesting of Age Structured of Fish Populations: H. Behncke and S. Al-Nassir

at higher densities. The number of recruits for the following year is thus given by
k∑

i=2
cc1 piWixi(t)r(E(t))= cE(t)r(E(t))= R(E(t)) . (2.5)

The function R is called the recruitment function, while r denotes its depensation part. It
describes the development process from egg to juvenile fish, and young adult fish, respectively.
Thus c can be interpreted as the probability of a viable egg to develop into young adult fish. Here
we will define recruitment as recruitment into the adult class when fertility begins. Despite its
importance the recruitment process is as yet poorly understood. So far it is generally described
by the recruitment function R(E), where R(E) gives the number of adult fish which develop out
of E eggs. The most commonly used forms are

R(E)= cE
(
1+ E

E0

)−1
(Beverton-Holt)

R(E)= cEe
−E
E0 (Ricker)

(2.6)

Other forms are also possible for e.g. [16,35]

R(E)= cE
(
1+

(
E
E0

)α)−1
, α≥ 1 (Shepherd)

R(E)= cE
(
1+ E

E0

)−α
, α≥ 1 (Hassell)

(2.7)

while many other versions have been proposed for a global description of this rather complicated
process. Here E0 is a scaling parameter, which measures the depensation at higher level
densities. Nevertheless a detailed analysis of the recruitment process is absolutely necessary.
This also means that stability is independent of E0. It has the dimension of population and
measures the onset of depensation. By scaling the dynamical properties of this model will
be independent of E0. Even though the recruitment process is the fundamental importance
for fish populations very little has been done yet to analyze it or to derive accurate forms of
the recruitment function. In fact this paper seems to be the first in which the impact of the
recruitment function on the equilibria, harvest etc is analyzed. A thorough understanding of R,
however, is necessary for any serious modeling of fish populations. At the moment there are
good indications that R is nearly linear for small E i.e. depensation at low population levels has
not been observed [26,27]. This is probably due to the fact that marine fish move in swarms or
schools. That there is a depensations at higher populations levels is likewise accepted generally.
This depensations is due competition among larvae, predation and to cannibalism against eggs
or larvae. Even though the study of Cushing and Horwood [5] gives good discussions for a dome
shaped curve, this is not conclusive yet, because there are too few high density catch data. In
addition these data are scattered seriously. For this see e.g. the book by Cushing [6] the article
by R. Myers in the Handbook of Fish Biology and Fisheries [19]. Note that the Ricker model
leads to a dome shaped recruitment functions. So do the Hassell or Shepherd functions for α> 1.
In addition climate variations, piracy and the bycatch make catch data difficult to analyze. Here
we shall mainly employ the Ricker version, because it is plausible and mathematically easy
to handle. This of course applies to the Beverton-Holt function likewise. In fact it is mainly
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their simplicity that leads to their general acceptance. As we will see later the choice of the
recruitment function has a considerable influence on the population dynamics, equilibria and
optimal harvesting. Nevertheless most modelers use either the Beverton-Holt form or Ricker
form without much comment or justification. The choice of a realistic recruitment function,
however, is impeded by a lack of high density data or realistic models of the recruitment process.

In order to complete the model we need to specify the mortality µ. Here µ is generally
considered constant in contrast to well known mortality laws, e.g. the Gompertz law, used in
biology elsewhere. Density dependence of µ has not been observed yet with marine fish, but
it could easily be incorporated into the modelİt is advantageous to express mortality in an
exponential form because this permits a better description of harvesting so the survival goes
through the factor e−µ = τ̃.

2.2 The Model

With these preparations the model can be specified by

x1(t+1)= τ̃
(
1− 1

T1

)
x1(t)+R(E(t)), τ̃= e−µ . (2.8)

Here the number of recruits R(E(t)) is given by (2.5) and T1 is the duration of juvenile stage.
The first term σ1 = τ̃

(
1− 1

T1

)
represents the young fish that survive and remain in class 1.

For class 2 we have

x2(t+1)= τ̃

T1
x1(t) (2.9)

because the part τ̃
T1

moves from class 1 to class 2.
For the remaining classes one has

xi(t+1)= τ̃xi−1(t) i = 3, . . . ,k (2.10)

because all surviving class i fish are in class i+1 after one year. This model is thus of the
generalized Leslie [20] form and can be written as

x(t+1)= A(x)x(t) (2.11)

with

A(x)=


σ1 r2(x) r3(x) · · · rk(x)
τ̃1 0 0 · · · 0

0 τ̃
. . . ... 0

... 0 . . . . . . ...
0 · · · 0 τ̃ 0

 . (2.12)

τ̃= e−µ, τ̃1 = τ̃
T1

and σ1 = τ̃
(
1− 1

T1

)
, r i+1 = cFi+1r(E), i = 1,2, . . . ,k−1. Models like (2.11), (2.12)

have be discussed in great details in [2, 7]. For the moment assume the r i to be constant i.e.
we are considering the population at low density. The matrix A is nonnegative, so that the
Perron Frobenius theory can be applied [23]. The matrix A is primitive [2,7]. In this case the
spectral radius λA of A is an eigenvalue, which dominates all other eigenvalues λ, λA > |λ|.
The associated eigenvector xA has positive components only. If the r i would not depend on E
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the population would eventually grow with the factor λA and the population profile would be
given by xA . The λA is difficult to compute. In [7] Cushing has introduced the concept of net
reproduction number n. To define it, one writes A = T̂ +F , where T̂ is the transition part and F
the fertility part, all r i ’s of the matrix. Then N = (1− T̂)−1F is well defined, because 0≤σ1 < 1.
It is nonnegative and of rank one and its Perron Frobenius eigenvalue is n. Cushing et al. [8]
have shown.

Lemma 1. The eigenvalue n of N = (I − T̂)−1F satisfies 1<λA < n iff n > 1, and λA = 1 iff n = 1.
For λA < 1 one has n <λA < 1.

Remark. The importance of the net reproduction value lies in the fact that it can be computed
directly. In fact

n = (1−σ1)−1
k∑

i=2
r iL i, r i = cFir(E), L i = τ̄i−1 . . . τ̄1 . (2.13)

Thus n represents the number of offspring an adult generates throughout its lifetime, because
L i gives the probability to reach the age i while the r i measures the number of eggs produced
by a female of age i. The notations n goes back to [7].

It is advantageous to replace the above model by an equivalent one, which is more
transparent and easier to handle. Let C denote the diagonal matrix

C = diag(1,L2,L3, . . .Lk) .

Then for y= C−1x we get

y(t+1)= C−1x(t+1)= C−1A(x)x(t)= C−1ACy(t)= Ã y(t) (2.14)

with

Ã =


σ1 r̃2 r̃3 · · · r̃k
1 0 0 · · · 0

0 1 . . . ... 0
... 0 . . . . . . ...
0 · · · 0 1 0

 (2.15)

and r̃ i = cFiL ir(E), i = 2,3, . . . ,k. Thus r̃ i is the expectation value of the number of eggs coming

from age class i. The following proposition summarizes the main properties of the above

Leslie-Usher model (2.11), (2.12). The model (2.14), (2.15) will be called the standardized model.

For the standard form(2.15) the equilibrium vector is given by ȳ = ȳ1(1, . . . ,1) so that

1=σ1 +
k∑

i=2
cFiL ir(Ē) where Ē =

k∑
i=2

FiL i ȳ1 with B1 =
k∑

i=2
cFiL i . This can be rewritten as

1=σ1 +B1r(Ē) and Ē = r−1
(
1−σ1

B1

)
= c−1B1 ȳ1. (2.16)

At this point one has to fix the recruitment function. In most cases we will use the Ricker

function with

r(E)= e−
E

E0 . (2.17)
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E0 appears as the maximum of R and in concrete cases this would be the means to determine it.

This form of the Ricker recruitment thus separates the two properties, fecundity at low density

as measured by the natural reproductive number (2.13) and depensation at high densities

expressed through E0, in a product form. This of course also holds for the other recruitment

functions likewise. With r as in (2.17) we get for the equilibrium values

Ē = E0 ln
(

B1

1−σ1

)
, ȳ1 =

(
cE0

B1

)
ln

(
B1

1−σ1

)
. (2.18)

It follows from (2.16) that depensation functions with a faster decay will result in smaller
equilibrium values Ē and ȳ. The corresponding values for the Beverton-Holt function are

ȳ1 = Ēc
B1

, Ē = E0

(
B1

1−σ1
−1

)
. A Beverton Holt model will thus always predict higher catches

than its Ricker counter part, if both are based on the same natural reproduction number n. For
this see also Figure 1. From work of R. Myers [27] n can be determined well. The high density
behaviour of R is extremely insecure as can be seen from the data of Cushing [6]or the article of
R. Myers [27]. Thus we are far from determining the recruitment function from actual data.
Even though E0 acts as a scaling parameter, it is an important invariant for the particular stock.
Whereas a large E0 describes favourable environmental condition for the larvae. In as much as
there is a large variation of n, we can also expect a similar large variation in E0. Ultimately E0

and more generally the recruitment function can only be determined from the actual catches.

3. Stability Analysis

The most important property for an equilibrium x̄ in a dynamical system is its stability. Natural
populations are always subject to external perturbations. Thus stability is important for concrete
applications. In particular stability is relevant if the analysis is mainly restricted to equilibrium
solutions. For local stability of the equilibrium one uses the Jacobi matrix at the equilibrium.
For this we refer to the book of Cushing [7]. The problem with the Jacobian’s is that they do not
permit to determine the domain of attraction. For this the method of the Lyapunov function
would be better suited. Here such functions, however, are difficult to come by with this model.
Local stability holds if the spectral radius of the Jacobian is strictly less than 1. The simplest
result for our model is

Lemma 2. Assume we have
dR
dE

(Ē)≤ 0, and
k∑

i=2
(2r(Ē)+ Ēr′(Ē))cFiL i > 0, then the equilibrium

value is locally stable.

Proof. Assume −
k∑

i=2

(
2r(Ē)+ Ē

dr(Ē)
dE

)
cFiL i < 0. Together with the equilibrium condition

1=σ1 +
k∑

i=2
cFiL ir(Ē) .
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This gives −
k∑

i=2
Ē

dr(Ē)
dE

)cFiL i < 2(1−σ1), and 2σ1 −
k∑

i=2
Ē

dr(Ē)
dE

cFiL i < 2. Then

σ1 −
k∑

i=2
cFiL ir(Ē)−

k∑
i=2

Ē
dr(Ē)

dE
cFiL i < 1

so that

σ1 −
(
r(Ē)+ Ē

dr(Ē)
dE

) k∑
i=2

cFiL i < 1

but
dR
dE

(Ē) = c
(
r(Ē)+ Ē

dr(Ē)
dE

)
≤ 0, hence σ1 +

k∑
i=2

|Vi| < 1, and the result follows because all

eigenvalues are strictly less than 1.

The next lemma on local stability can be found in [21].

Lemma 3. For the Ricker recruitment function the nontrivial equilibrium value is locally stable
if 0< ln(n)< 2.

We conjecture that these conditions for local stability also result in global stability. These
propositions underline again the importance of the recruitment function for the dynamics, and
the stability (2.16).

For n = 1, the following results are new and underlines again the importance of the
recruitment function.

Theorem 1. Assume the recruitment function R is bounded and continuous such that r(E)
decreases to 0 strictly monotonically. Then all solutions are bounded. If the net reproduction
number at zero density (2.13) satisfies n ≤ 1 the trivial equilibrium is globally stable. This holds
also for the model with density dependent transmission coefficients r̃ i , if ∂xi (r̃)≤ 0.

Proof. It follows from the first equation in (2.11) that x1(t) is uniformly bounded. Since the
transmission coefficients are bounded, all x j(t) are uniformly bounded.

Now use the standardized model. Assume the zero density natural reproductive number
n, which given by (2.13) with r(0) = 1, satisfies n ≤ 1. Then all rows in Ã have a sum less or
equal to 1. Let y(0) be in arbitrary initial state and let Ω be its ω-limit set. Ω is compact and
E(t) is a continuous function on Ω. Let E1 be its minimal value on Ω. E1 = 0 would imply
y2 = y3 = . . . = yk = 0. Such states, however, are not in the range of Ã. Thus E1 > 0 and the

sum of the first row in Ã, σ1 +
k∑

i=2
cFiL ir(E) < 1. Thus there exists a δ > 0 such that with

C = diag(1, (1+δ)−1, . . . , (1+δ)−(k−1)), the matrix CÃC−1 = B has a row sum of less than one
in each row. Thus there is a matrix norm ‖ · ‖ with ‖B‖ < 1. Hence Bn → 0 and Ãn → 0 and Ω
consists only the trivial solution, because Ω is Ã invariant.

Remark. Theorem 1 states the stability of the trivial equilibrium, xi = 0, also for n = 1, which
is plousible, but not obvious. It applies to all recruitment functions.
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Theorem 2. Consider a general fisheries model (2.8) with a smooth monotone increasing
bounded recruitment function R(E) = cEr(E) for which depensation part r converges
monotonically to 0. Assume the natural reproduction number n satisfies n > 1 then the unique
nontrivial equilibrium is globally asymptotically stable i.e. all nontrivial solutions in the positive
cone converge to this equilibrium.

The proof is based on a result of Hautus and Bolis as presented on the book of Elaydi
[13, Theorem 5.17].

We use the standard representation and have

x1(t+1)=σ1x1(t)+R(E(t)) with E(t)=
k∑

i=2
L iFixi(t)

and

xi(t+1)= xi−1(t), i = 2, . . . ,k .

For t > n this can be written as

xi(t+1)= xi−1(t)= . . .= x1(t− i+1)

and with y(t)= x1(t) this gives

y(t+1)= f (y(t), y(t−1), . . . , y(t−k+1))=σ1 y(t)+ cE(t)r(E(t)) , (3.1)

where y(t) = x1 and E(t) =
k∑

i=2
L iFi yi(t − i + 1). By assumption we have σ1 + c

k∑
i=2

L iFi > 1

and the equilibrium x̄ = x̄1(1,1, . . . ,1) is defined uniquely by 1 − σ1 = c
k∑

i=2
L iFir(Ē) with

Ē = x̄1
k∑

i=2
L iFi = ȳ

(
k∑

i=2
L iFi

)
. The function defined by (3.1) is monotone, because R(E(t)) is.

Now let u > ȳ then with Eu = u
k∑

i=2
L iFi we have

f (u,u, . . . ,u)−u = (σ1 −1)u+u

(
c

k∑
i=2

L iFi

)
r(Eu)

< (σ1 −1)u+ (1−σ1)u = 0 .

This shows(ii)in the theorem for u > ȳ. The same proof also works for u < ȳ. Now apply the
theorem.

Remark. By continuity one would expect global asymptotic stability also for recruitment
functions with a wide dome. This will be illustrated by Figure 1 where only the Ricker function
leads to periodic solutions [21]. Periodic solutions can only be expected for models in which high
fertility, large n, is combined with a high mortality large µ. Thus a Ricker model is globally stable
if ln(n)< 2. None-monotone recruitment functions, however, will lead to oscillatory convergence
to equilibrium. In [32], this has been checked with extensive numerical calculations. The present

Communications in Mathematics and Applications, Vol. 8, No. 2, pp. 139–156, 2017



148 On the Harvesting of Age Structured of Fish Populations: H. Behncke and S. Al-Nassir

cod model with µ≈ 0.2 for example is globally stable for Ricker recruitment even for n(0) as
larger as 20, otherwise, the plots look rather similar.
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Figure 1. The striped bass model for different recruitment functions which is based on model of Levin
and Goodyear [21]. n = 15. Hassell and Shepherd recruitment functions with α = 2. E0 = 400 (B.H),
E0 = 1000 (R.H.S). Note the fast convergence for Beverton-Holt systems and its size compared to the
other recruitment functions.
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Figure 2. Stability for cod population model based on model (2.11). The cod population model for different
recruitment functions. n = 15. Hassell and Shepherd recruitment functions with α = 2. All functions
have the same parameter Eo. Note that Ricker recruitment leads to a more oscillatory behavior and
a lower equilibrium level. This plot also indicates that Beverton-Holt recruitment leads to more rapid
convergence with larger equilibria.
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4. Harvesting

4.1 The Modeling of Harvesting

Harvesting can be represented as impulse harvesting at the end of the year with an escape
factor (1−h) as in [15]. Such an approach is unrealistic for several reasons such a description
makes it difficult to interpret h as a harvesting intensity and to assign costs to h. h = 1 would
imply that all fish are caught. This is unrealistic because fishing becomes more difficult as
the sea is depleted [5]. In addition it neglects the interaction of fishing mortality and natural
mortality. For these reasons we choose a description which has been employed in differential
equation models. The present form was introduced by Getz [14]. It is based on a no harvest
season [0, tc] just after spawning, and constant h harvesting thereafter. Here h stands for the
harvesting intensity or effort, for example the number of boats, people employed, etc. We will
usually take tc ≈ 0.3 to 0.4 year. If x(t) denotes the number of fish in a population class and if h
is the harvesting intensity, one has

dx(t)
dt

=
−µx : 0≤ t ≤ tc

−(µ+h)x : tc < t ≤ 1
(4.1)

This results in

x(t+1)= x(t)e−µ−h(1−tc) . (4.2)

This expression also shows, why it is advantageous to express survival in an exponential form.
Let hi denote the fishing effort in class i. Then the model becomes

x(t+1)= A(t)x(t) (4.3)

with

A(x)=



σ1 r2(x) r3(x) · · · rk(x)
τ̃1 0 0 · · · 0

0 τ̃2
. . . ... 0

... 0 . . . . . . ...
0 · · · 0 τ̃k−1 0

 .

τ̃i = e−µi−(1−tc)hi , i = 2, . . . ,k−1. The harvested amount in class i is then

Hi =
∫ 1

tc

xi(t)hiWidt = hiWixi(t)e−µi tc

µi +hi
(1− e−(µi+hi)(1−tc)).

This shows that in the model only the mortality has changed. In particular all previous results
on equilibria and stability carry over. For a given harvesting vector ~h = (0,h2,h3, . . . ,hk) we will
therefore write n(h), x̄(h), y(h), ȳ1(h) for the corresponding quantities. Fishing with seines has
the consequence that all fish of a size less than `1 (in length) escape, while all fish above the
size `2 are caught. Gear selectivity as described in [9,10] is based on the normal distribution
function of the length of fish in the various age classes. It can best be described by a linear
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interpolation of the harvesting intensities between the age class s1 with length `1 and class s2

with length `2.

Here we will only use the knife edge harvesting with

hi =
{

0 : i < s
h : i ≥ s

(4.4)

because gear selectivity with s = (`1 +`2)/2 does not alter all results seriously.

We shall speak of an (h, s) fishing strategy in this case. For an equilibrium value x̄
respectively ȳ= ȳ(h, s) this means for the harvested amount

H(h, s)=
k∑

i=s
(µi +h)−1WihL i(h, s) ȳe−µi tc (1− e−(µi+h)(1−tc)) . (4.5)

If the price of one unit fish in class i is qi , one will have to replace Wi above by qiWi . Older and
larger fish usually give a higher price because they have considerably more meat. Unfortunately
it is not so easy to get the price per kilogram of an ungutted fish. The following data have been
extracted from [9,28]. Regression gives in relative units that

qi =
{

0.18+0.09i : 2≤ i ≤ 9
1.08 : i ≥ 10

(4.6)

A higher price of large fish will clearly move the optimal mesh size s up and more young fish
will be saved.

4.2 The Effect of Costs

Harvesting incurs a considerable amount of costs. These are fixed costs in terms of boats, gear
and processing factories. The cost proportional to the harvesting intensity arises from fuel,
wages and depreciation of boats and gear. In addition there are costs arising from processing
the fish. These are proportional to the harvested amount and can be taken care of through the
price. Thus we write

C(h)= a+bh (4.7)

for the cost. This is slightly more general than the approach in the book of Clark [6]. Here
a describes the fixed cost and b is the cost parameter of the harvesting effort h. In order to
determine the parameters a and b, we assume that the cost amount to a fixed percentage of the
maximal yield. In general we would expect the cost to be to about 60% to 80% of the total yield.
This based on the paper of Froese [11]. It will be very difficult to determine the real cost because
of subsidies, taxation, different currencies and other economic factors, which even vary from
country to country. Further aspects are discussed in the book of Clark [6]. In [37] Tahvonen
chooses an even more general approach via a utility function. The cost analysis is even more
complicated because in reality fishing is not of the sole owner type as the model suggests. It
is obvious that for the optimization only the term bh is relevant. Since H(h, s) increases only
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little for larger h, the effect of harvesting cost amounts to a decrease of the optimal h. We
will always assume that the non fixed cost are proportional to the maximum yield and we
write bhmax = k1Hmax, with k1 = 0.3 or 0.4. For simplicity we will set a = bhmax. Thus k1 is the
appropriate factor to relate the maximal harvest Hmax with the cost. This restricts k1 to less
than 0.5. If bh amounts to fixed percentage of H(h, s), b is defined only implicity and has to be
determined by a fix-point algorithm. For the moment this seems the most reasonable way to fix
the cost parameters. The choice of a 30 to 40 percent gain based on the paper of Froese [11].
It seems to be a reasonable estimate of what could be attained. The results, however, would
not change dramatically with other values. This was checked for cost factors between 50 to 90
percent. The net gain as a function of h is then the difference between the yield H(h, s) and the
total cost C(h) i.e.

NH(h)= H(h, s)−C(h) . (4.8)

This also shows that subsidies for fuel or wages, which decrease b, will lead to a larger optimal
harvesting intensity. This has already been observed with single class model [3]. This effect is
stronger if the cost term bh is larger. The importance for this is that it keeps the harvested
populations more stable. Subsidies for fuel and wages will decrease b and thus increase the
optimal fishing mortality. Thus all in all subsidies have a detrimental effect on the stock in
particular on a severely depleted stock.

4.3 The Influence of the Recruitment Function

The Beverton-Holt recruitment function leads to higher equilibrium values than the Ricker
function. This is also hold for other recruitment functions. This will clearly hold for the harvested
amount and net profit likewise. Since the Beverton-Holt function describes less competition for
higher densities the optimal net parameters will be larger. This can be seen from the data in
Table 1. All in all the Beverton-Holt recruitment function leads to the higher equilibria and
harvests. Let us thus summarize the major results on the influence of the recruitment functions.
For simplicity we compare only the Beverton-Holt function and the Ricker model.

Beverton-Holt: Larger equilibrium values which are globally stable, fast convergence to the
equilibrium, and large harvests.

Ricker: For a high mortality µ and high fertility n periodic solutions are possible. Hardly for
realistic values though. Slow oscillatory convergence to the equilibrium, which is lower.

5. Numerical Results

These ideas will now be checked for a cod population. We emphasize again that calculations for
other marine fish give similar results. We use the standard parameters of Table 1.1 in [32], and
values from the paper of Law et al. [22].
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The values are: maximum age = 30, T1 = 3, W(t) = 17(1 − e(−0.12t))3, scaling parameter
E0 = 4.1× 1014, mortality µ ≈ 0.2 and tc = 0.25. In actual computations it turns out that
for small s, s = 2 or 3, the equilibrium value ȳ(h)= 0 is reached too quickly for rather moderate
harvesting intensities. So s = 2,3 will never be optimal and will therefore not be considered. If
we use prices increasing with weight in (4.6) this will be even more pronounced so that actually
only s > 3 will be relevant. Similarly net parameters s larger than 9 are inefficient, because
they spare too many fish of weight 9 or 10 kg.

As noted before gear selective harvesting has little effect. So it will not be considered any
more. In extensive calculations we have seen that different n leads to different equilibria,
however, the underlying dynamics is not changed seriously.

A typical plot for H(h, s) is shown in Figure 3.
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Figure 3. The total harvest as a function of h×10−2, n = 10.

For small s an increasing h will have a strong effect on n(h, s), ȳ1(h), and the the total
harvest H. The harvested amount will initially increase rapidly, until ȳ1(h) decreases. As ȳ1(h)
hits 0 the total harvest becomes 0 likewise because here we are dealing with an equilibrium
model. For large s the remaining small classes preserve ȳ1(h) and it may never tend 0. Thus
the total harvest may stay at a nonnegative level. Most likely such an increasing H(h, s) is
responsible for the optimal pulse fishing or periodic solutions if costs are neglected. Finally let
us stress again the importance of the recruitment function on the MSY. Depensation functions
with a slower decay will result in larger harvests. This effect is larger than a modified mortality
or different harvesting pattern. A typical plot for NH(h) is presented in Figure 4. For other
values of n or other fish species, the corresponding plots are rather similar.
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Figure 4. The net gain as a function of h×10−2. The cost parameters are a = 0.3H and bhop = 0.3H
with n = 10.

A larger cost parameter b will lead to a lower harvesting intensity. Typical optimal fishing
mortality will be about 0.4. The average fishing mortality, however, is (1− tc)hmopt. It is obvious
that a higher price for larger fish will shift the net parameter to higher values. Optimal
harvesting intensities have to be determined numerically.

Table 1 shows the influence of the recruitment function.

Table 1. The results of optimal harvesting based on cod population for different recruitment functions
with the same other parameters

n
Ricker function Beverton-Holt function

hopt so H NH(hopt) hopt so H NH(hopt)

5 0.391 8 1.78×108 7.13×107 0.314 9 3.03×108 1.21×108

7 0.395 7 2.48×108 9.91×107 0.345 9 4.87×108 1.95×108

10 0.401 6 3.32×108 1.33×108 0.309 8 7.66×108 3.065×108

15 0.421 5 4.46×108 1.78×108 0.326 8 1.24×109 4.96×108

6. Conclusion

In this paper it has been analyzed the impact of the recruitment function on the position and
stability of the equilibrium. It is obvious that monotone recruitment function lead to a globally
stable equilibrium. Monotone functions also lead to a faster decay will result in lower equilibria
and thus to lower harvests. The effects exceed 50% (Table 1) when comparing the Ricker and
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Beverton Holt model. Thus fishery scientists will need a much better understanding of the
recruitment process.
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