Research Article

Stability of n-bi-Jordan Homomorphisms on Commutative Algebras

A. Zivari-Kazempour
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran zivari6526@gmail.com

Abstract

In this paper, we prove that every n-bi-Jordan homomorphism between commutative algebras is an n-bi-ring homomorphism, and then we employ this result to show that to each approximate n-bi-Jordan homomorphism φ between commutative Banach algebras there corresponds a unique n-bi-ring homomorphism near to φ.

Keywords. bi-additive; n-bi-homomorphism; n-bi-Jordan homomorphism
MSC. Primary 47B48; Secondary 46L05, 46H25
Received: October 20, 2017 Accepted: June 2, 2018
Copyright © 2018 A. Zivari-Kazempour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \mathscr{A} and \mathscr{B} be complex Banach algebras and $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ be a linear map. Then φ is called n-homomorphism if for all $a_{1}, a_{2}, \ldots, a_{n} \in \mathscr{A}$,

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right) .
$$

The concept of n-homomorphism was studied for complex algebras by Hejazian et al. in [5]. A 2-homomorphism is then just a homomorphism, in the usual sense. One may refer to [1], for certain properties of 3 -homomorphisms.

In [6], Herstein introduced the concept of an n-Jordan homomorphism. A linear map φ between Banach algebras \mathscr{A} and \mathscr{B} is called an n-Jordan homomorphism if

$$
\varphi\left(a^{n}\right)=\varphi(a)^{n}, \quad a \in \mathscr{A} .
$$

A 2-Jordan homomorphism is called simply a Jordan homomorphism. For characterization of Jordan and 3-Jordan homomorphism the reader is referred to [12], [13] and [14] and the references therein.

From the above definitions it follows that every n-homomorphism is an n-Jordan homomorphism, but in general the converse is false. The converse statement may be true under certain conditions. For example, Herstein in [6] proved the following theorem.

Theorem 1.1. If φ is a Jordan homomorphism of a ring R onto a prime ring R^{\prime} of characteristic deferent from 2 and 3 , then either φ is a homomorphism or an anti-homomorphism.

The next theorem is due to Zelazko [12]. Also, see [13] for another approach to the same result.

Theorem 1.2. Suppose that \mathscr{A} is a Banach algebra, which need not be commutative, and suppose that \mathscr{B} is a semisimple commutative Banach algebra. Then each Jordan homomorphism $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ is a homomorphism.

Also it is shown in [2] that every n-Jordan homomorphism between two commutative Banach algebras is an n-homomorphism for $n \in\{2,3,4\}$ and this result is extended to the case $n=5$ in [3]. Lee in [8] generalized this result and proved it for all $n \in \mathbb{N}$. See also [4] for another proof of Lee's Theorem.

A classical question in the theory of functional equations is that "When is it true that a mapping which approximately satisfies a functional equation \mathscr{E} must be somehow close to an exact solution of $\mathscr{E} ? "$ Such a problem was formulated by Ulam [11] in 1940 and solved in the next year for the Cauchy functional equation by Hyers [7]. It gave rise to the stability theory for functional equations.

Th. M. Rassias [10] considered a generalized version of the Hyers's result which permitted the Cauchy difference to become unbounded.

In [9], Miura et al. investigated the Hyers-Ulam-Rassias stability of Jordan homomorphisms, and it is extended to n-Jordan homomorphisms in [3] and [8].

Let \mathscr{A} and \mathscr{B} be a two normed (Banach) algebra and set $\mathscr{U}=\mathscr{A} \times \mathscr{B}$. Then \mathscr{U} is a normed (Banach) algebra for the multiplication

$$
(a, b)(x, y)=(a x, b y), \quad(a, b),(x, y) \in \mathscr{U},
$$

and with norm

$$
\|(a, b)\|=\|a\|+\|b\| .
$$

Let \mathscr{D} be a normed (Banach) algebra and let $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ be a map. Then we say that φ is bi-additive, if

$$
\varphi(a+x, b+y)=\varphi(a, b)+\varphi(x, y), \quad(a, b),(x, y) \in \mathscr{U},
$$

and it is called n-bi-multiplicative, if

$$
\varphi\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)=\varphi\left(x_{1}, y_{1}\right) \varphi\left(x_{2}, y_{2}\right) \ldots \varphi\left(x_{n}, y_{n}\right)
$$

for all $\left(x_{i}, y_{i}\right) \in \mathscr{U}$. If φ is bi-additive and n-bi-multiplicative, then it is called n-biring homomorphism. We say that a bi-additive mapping $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ is an n-bi-Jordan
homomorphisms if φ satisfies

$$
\varphi\left(x^{n}, y^{n}\right)=\varphi(x, y)^{n}, \quad(x, y) \in \mathscr{U} .
$$

We remark that in case $n=2$ we speak about bi-ring homomorphism and bi-Jordan homomorphism, respectively. It is obvious that each n-bi-ring homomorphism is an n-bi-Jordan homomorphism, but in general the converse is false.

For bi-Jordan homomorphism the next result obtained by the author in [15].
Theorem 1.3. Suppose that \mathscr{U} is a Banach algebra, which need not be commutative, and suppose \mathscr{D} is a commutative semisimple Banach algebra. Then each bi-Jordan homomorphism $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ is a bi-ring homomorphism.

In this paper, we first prove that each n-bi-Jordan homomorphism $\varphi: \mathscr{U} \rightarrow \mathscr{D}$, between commutative algebras, is an n-bi-ring homomorphism and then we applying this fact to prove that to each approximate n-bi-Jordan homomorphism φ there corresponds a unique n-bi-ring homomorphism near to φ.

In the next section we present basic concepts and some needed results to construct Hyers-Ulam-Rassias stability of n-bi-Jordan homomorphism between commutative algebras. The conclusion will be presented at the end.

2. Main Results

Let G, H be two abelian groups, X be a complex linear space and $f: G \times H \rightarrow X$ a function. For all $(a, b) \in G \times H$, we define the difference operator $\Delta_{(a, b)}$ on f by

$$
\Delta_{(a, b)} f(x, y)=f(a+x, b+y)-f(x, y),
$$

whenever $(x, y) \in G \times H$. Further for all positive integer n and for $\left(a_{i}, b_{i}\right) \in G \times H$, with $1 \leq i \leq n$, let

$$
\Delta_{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)} f=\Delta_{\left(a_{1}, b_{1}\right)} \ldots \Delta_{\left(a_{n}, b_{n}\right)} f
$$

The function $F:(G \times H)^{n} \rightarrow X$ is called n-bi-additive if F is bi-additive in each of its variables.
For the sake of brevity we use the notation $(G \times H)^{0}=G \times H$ and we call constant functions from $G \times H$ to $X, 0$-bi-additive.

Suppose that $F:(G \times H)^{n} \rightarrow X$ is an arbitrary function. By the trace of F we understand the function $\Phi: G \times H \rightarrow X$ arising from F by putting all the variables from $G \times H$ equal, that is,

$$
\Phi(x, y)=F[(x, y), \ldots,(x, y)], \quad(x, y) \in G \times H
$$

The function $f: G \times H \rightarrow X$ is called bi-polynomial function of degree at most n, if for all $(x, y),\left(a_{i}, b_{i}\right) \in G \times H$, with $1 \leq i \leq n+1$, the equation

$$
\Delta_{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n+1}, b_{n+1}\right)} f(x, y)=0,
$$

is satisfied. For example, the function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $f(x, y)=x+y$ is a bi-polynomial function of degree at most one.

Lemma 2.1. Let $F:(G \times H)^{n} \rightarrow X$ be a symmetric and n-biadditive function. Then

$$
\Delta_{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)} \Phi(x, y)= \begin{cases}n!F\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right] & \text { for } k=n, \\ 0 & \text { for } k>n,\end{cases}
$$

whenever $(x, y),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in G \times H$ and $\Phi: G \times H \rightarrow X$ denotes the trace of F.
Proof. The proof is straightforward.
Now we give a characterization of n-bi-Jordan homomorphism.
Theorem 2.2. Suppose that \mathscr{U} and \mathscr{D} are two commutative algebra. Then each n-bi-Jordan homomorphism $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ is a n-bi-ring homomorphism.

Proof. Define $F: \mathscr{U}^{2} \rightarrow \mathscr{D}$ by

$$
F[(a, b),(x, y)]=\varphi(a x, b y)-\varphi(a, b) \varphi(x, y)
$$

and let Φ be a trace of F. Since φ is bi-additive, the function F is bi-additive and symmetric, therefore by Lemma 2.1,

$$
\Delta_{(a, b),(x, y)} \Phi(u, v)=2 F[(a, b),(x, y)],
$$

for all $(a, b),(x, y),(u, v) \in \mathscr{U}$.
Now suppose that φ is bi-Jordan homomorphism. Then $\Phi(u, v)=0$, and so

$$
2 F[(a, b),(x, y)]=\Delta_{(a, b),(x, y)} \Phi(u, v)=0,
$$

which proves that $F[(a, b),(x, y)]=0$ for all $(a, b),(x, y) \in \mathscr{U}$. Hence

$$
\varphi(a x, b y)=\varphi(a, b) \varphi(x, y),
$$

for all $(a, b),(x, y) \in \mathscr{U}$. Thus, the result is valid for $n=2$. A similar discussion reveals that the result will be established for $n>2$.

The following result is Theorem 2.5 and Theorem 2.6 of [15].
Theorem 2.3. Let \mathscr{U} be a normed algebra, let \mathscr{D} be a Banach algebra, let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1)>0, q \geq 0$, or $(p-1)(q-1)>0$, $q<0$ and $\varphi(0,0)=0$. Assume that $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ satisfies

$$
\begin{align*}
& \|\varphi(a+x, b+y)-\varphi(a, b)-\varphi(x, y)\| \leq \varepsilon\left(\|(a, b)\|^{p}+\|(x, y)\|^{p}\right), \tag{2.1}\\
& \left\|\varphi\left(x^{n}, y^{n}\right)-\varphi(x, y)^{n}\right\| \leq \delta\|(x, y)\|^{n q}, \tag{2.2}
\end{align*}
$$

for all $(a, b),(x, y) \in \mathscr{U}$. Then, there exists a unique n-bi-Jordan homomorphism $F: \mathscr{U} \rightarrow \mathscr{D}$ such that

$$
\begin{equation*}
\|F(x, y)-\varphi(x, y)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|(x, y)\|^{p} \tag{2.3}
\end{equation*}
$$

for all $(x, y) \in \mathscr{U}$.
As a consequence of Theorem 2.2 and 2.3, we have the following.
Corollary 2.4. By hypotheses of above Theorem, if \mathscr{U} and \mathscr{D} are commutative, then there exists a unique n-bi-ring homomorphism $F: \mathscr{U} \rightarrow \mathscr{D}$ such that satisfies (2.3).

By a same method of [4, Theorem 1.4], we get the following result.
Theorem 2.5. The function $P: G \times H \rightarrow X$ is a bi-polynomial of degree at most n if and only if there exist symmetric, k-bi-additive functions $F_{k}:(G \times H)^{k} \rightarrow X, k=0,1, \ldots, n$ such that

$$
P(x, y)=\sum_{k=0}^{n} \Phi_{k}(x, y)
$$

where $\Phi_{k}: G \times H \rightarrow X$ denotes the trace of the function F_{k}.
Theorem 2.6. Let G and H be two abelian groups and let X be a locally convex topological linear space. If a bi-polynomial $P: G \times H \rightarrow X$ is bounded on $G \times H$, then it is constant.

Proof. By Theorem 2.5,

$$
P(x, y)=\sum_{k=0}^{n} \Phi_{k}(x, y),
$$

where $\Phi_{k}: G \times H \rightarrow X$ denotes the trace of symmetric, k-bi-additive function $F_{k}:(G \times H)^{k} \rightarrow X$.
That is, for $k=0,1, \ldots, n$,

$$
\Phi_{k}(x, y)=F_{k}[(x, y), \ldots,(x, y)] .
$$

Obviously, it is enough to prove that $\Phi_{k}(x, y)=0$, for all $0 \leq k \leq n$. It follows from Lemma 2.1 that

$$
\begin{equation*}
F_{n}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]=\frac{1}{n!} \Delta_{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)} P(x, y) . \tag{2.4}
\end{equation*}
$$

Since the right hand of the equality (2.4) is of the form

$$
\sum(-1)^{n-k} P\left(x+x_{i_{1}}+\ldots+x_{j_{k}}, y+y_{j_{1}}+\ldots+y_{j_{k}}\right),
$$

where

$$
0 \leq i_{1}<\ldots<i_{k}<n \text { and } 0 \leq j_{1}<\ldots<j_{k}<n,
$$

so F_{n} is bounded.
On the other hand, for $k>0$ the k-bi-additivity of F_{k} implies that

$$
\Phi_{k}(m x, m y)=m^{k} \Phi_{k}(x, y),
$$

for all $(x, y) \in G \times H$, and for all $m \in \mathbb{N}$. Now assume that $\Phi_{k}\left(x_{0}, y_{0}\right) \neq 0$ for some ($\left.x_{0}, y_{0}\right) \in G \times H$. Choose a balanced and absorbing neighborhood $U \subset X$ of the zero such that $\Phi_{k}\left(x_{0}, y_{0}\right) \notin U$. As Φ_{k} is bounded, there is a real λ for which

$$
m^{k} \Phi_{k}\left(x_{0}, y_{0}\right)=\Phi_{k}\left(m x_{0}, m y_{0}\right) \in \lambda U
$$

for all positive integers m. Then $\lambda m^{-k}<1$ for some m, and we have

$$
\Phi_{k}\left(x_{0}, y_{0}\right)=m^{-k} \Phi_{k}\left(m x_{0}, m y_{0}\right) \in \lambda m^{-k} U \subset U
$$

which is a contradiction. Thus, $\Phi_{k}(x, y)=0$ for all $(x, y) \in G \times H$ and $0 \leq k \leq n$.
Theorem 2.7. Let $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ be a bi-additive function between normed algebras \mathscr{U} and \mathscr{D}. Suppose that

$$
\left\|\varphi\left(x^{n}, y^{n}\right)-\varphi(x, y)^{n}\right\| \leq \delta\|(x, y)\|
$$

for some $\delta>0$ and for all $(x, y) \in \mathscr{U}$. Then φ is an n-bi-Jordan homomorphism.

Proof. With the help of the function φ we define the mapping F on \mathscr{U}^{n} by

$$
F\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]=\sum_{\sigma \in S_{n}} \varphi\left[\left(x_{1}, y_{1}\right)_{\sigma(1)} \ldots\left(x_{n}, y_{n}\right)_{\sigma(n)}\right]-\varphi\left[\left(x_{1}, y_{1}\right)_{\sigma(1)}\right] \ldots \varphi\left[\left(x_{n}, y_{n}\right)_{\sigma(n)}\right],
$$

where S_{n} denotes the symmetric group of $\{1,2, \ldots, n\}$. Clearly, the function F is symmetric under all permutations of its variables. Due to the bi-additivity of the function φ, the function F is n-bi-additive. So its trace

$$
\Phi(x, y)=F[(x, y), \ldots,(x, y)]=n!\left[\varphi\left(x^{n}, y^{n}\right)-\varphi(x, y)^{n}\right], \quad(x, y) \in \mathscr{U} .
$$

is a bi-polynomial function of degree at most n. On the other hand, from the assumption of the theorem, the function Φ is bounded on \mathscr{U}, therefore by Theorem 2.6 we get $\Phi(x, y)=c$, where c is the constant element. Since φ is bi-additive we have $\varphi(0,0)=0$, hence

$$
c=\Phi(0,0)=n!\left[\varphi(0,0)-\varphi(0,0)^{n}\right]=0 .
$$

Therefore, $\Phi(x, y)=0$ for all $(x, y) \in \mathscr{U}$. That is,

$$
\varphi\left(x^{n}, y^{n}\right)=\varphi(x, y)^{n},
$$

holds for all $(x, y) \in \mathscr{U}$. This complete the proof.

As a consequence of Theorems 2.2 and 2.7 we deduce the next result.
Corollary 2.8. By hypotheses of Theorem 2.7. if \mathscr{U} and \mathscr{D} are commutative, then φ is a n-bi-ring homomorphism.

3. Conclusion

This paper characterize of n-bi-Jordan homomorphism, and then generalize some well-known results in the area of Hyers-Ulam-Rassias stability of n-bi-Jordan homomorphism between commutative algebras. On the other word, the paper prove that to each approximate n-bi-Jordan homomorphism $\varphi: \mathscr{U} \rightarrow \mathscr{D}$ there corresponds a unique n-bi-ring homomorphism near to φ. Concluding remarks, the superstability of n-bi-Jordan homomorphism is also obtained.

Acknowledgement

The author gratefully acknowledges the helpful comments of the anonymous referees. This research was partially supported by the grant from Ayatollah Borujerdi University with No. 15664-160464.

Competing Interests

The author declares that he has no competing interests.

Authors' Contributions

The author wrote, read and approved the final manuscript.

References

[1] J. Bračič and M. S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malaysian Math. Sci. Soc. 30(2) (2007), 195 - 200.
[2] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80(1) (2009), 159 - 164.
[3] M.E. Gordji, T. Karimi and S.K. Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appli. 2009 (2009), Article ID 870843, 8 pages.
[4] E. Gselmann, On approximate n-Jordan homomorphisms, Annales Math. Silesianae. 28 (2014), 47 -58 .
[5] Sh. Hejazian, M. Mirzavaziri and M.S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (1) (2005), $13-23$.
[6] I.N. Herstein, Jordan homomorphisms, Tran. Amer. Math. Soc. 81(1) (1956), $331-341$.
[7] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
[8] Y.H. Lee, Stability of n-Jordan homomorphisms from a Normed algebra to a Banach algebra, Abst. Appli. Anal. 2013 (2013), Article ID 691025, 5 pages.
[9] T. Miura, S.E. Takahasi and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl. 2005 (4) (2005), $435-441$.
[10] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), $297-300$.
[11] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley, New York (1960).
[12] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), $83-85$.
[13] A. Zivari-Kazempour, A characterization of Jordan homomorphism on Banach algebras, Chinese J. Math. 2014 (2014), 3 pages.
[14] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc. 93 (2) (2016), 301 - 306.
[15] A. Zivari-Kazempour, Stability of n-bi-Jordan homomorphisms on Banach algebras, J. Math. Anal. 8 (2) (2017), $73-79$.

