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Abstract. In this paper, we prove that every n-bi-Jordan homomorphism between commutative
algebras is an n-bi-ring homomorphism, and then we employ this result to show that to each
approximate n-bi-Jordan homomorphism ϕ between commutative Banach algebras there corresponds
a unique n-bi-ring homomorphism near to ϕ.
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1. Introduction
Let A and B be complex Banach algebras and ϕ : A →B be a linear map. Then ϕ is called
n-homomorphism if for all a1,a2, . . . ,an ∈A ,

ϕ(a1a2 . . .an)=ϕ(a1)ϕ(a2) . . .ϕ(an).

The concept of n-homomorphism was studied for complex algebras by Hejazian et al. in [5].
A 2-homomorphism is then just a homomorphism, in the usual sense. One may refer to [1], for
certain properties of 3-homomorphisms.

In [6], Herstein introduced the concept of an n-Jordan homomorphism. A linear map ϕ

between Banach algebras A and B is called an n-Jordan homomorphism if

ϕ(an)=ϕ(a)n, a ∈A .
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A 2-Jordan homomorphism is called simply a Jordan homomorphism. For characterization
of Jordan and 3-Jordan homomorphism the reader is referred to [12], [13] and [14] and the
references therein.

From the above definitions it follows that every n-homomorphism is an n-Jordan
homomorphism, but in general the converse is false. The converse statement may be true
under certain conditions. For example, Herstein in [6] proved the following theorem.

Theorem 1.1. If ϕ is a Jordan homomorphism of a ring R onto a prime ring R′ of characteristic
deferent from 2 and 3, then either ϕ is a homomorphism or an anti-homomorphism.

The next theorem is due to Zelazko [12]. Also, see [13] for another approach to the same
result.

Theorem 1.2. Suppose that A is a Banach algebra, which need not be commutative, and
suppose that B is a semisimple commutative Banach algebra. Then each Jordan homomorphism
ϕ : A →B is a homomorphism.

Also it is shown in [2] that every n-Jordan homomorphism between two commutative Banach
algebras is an n-homomorphism for n ∈ {2,3,4} and this result is extended to the case n = 5
in [3]. Lee in [8] generalized this result and proved it for all n ∈N. See also [4] for another proof
of Lee’s Theorem.

A classical question in the theory of functional equations is that “When is it true that a
mapping which approximately satisfies a functional equation E must be somehow close to an
exact solution of E ?” Such a problem was formulated by Ulam [11] in 1940 and solved in the
next year for the Cauchy functional equation by Hyers [7]. It gave rise to the stability theory for
functional equations.

Th. M. Rassias [10] considered a generalized version of the Hyers’s result which permitted
the Cauchy difference to become unbounded.

In [9], Miura et al. investigated the Hyers-Ulam-Rassias stability of Jordan homomorphisms,
and it is extended to n-Jordan homomorphisms in [3] and [8].

Let A and B be a two normed (Banach) algebra and set U =A ×B. Then U is a normed
(Banach) algebra for the multiplication

(a,b)(x, y)= (ax,by), (a,b), (x, y) ∈U ,

and with norm

‖(a,b)‖ = ‖a‖+‖b‖.

Let D be a normed (Banach) algebra and let ϕ : U →D be a map. Then we say that ϕ is
bi-additive, if

ϕ(a+ x,b+ y)=ϕ(a,b)+ϕ(x, y), (a,b), (x, y) ∈U ,

and it is called n-bi-multiplicative, if

ϕ(x1x2 . . . xn, y1 y2 . . . yn)=ϕ(x1, y1)ϕ(x2, y2) . . .ϕ(xn, yn),

for all (xi, yi) ∈ U . If ϕ is bi-additive and n-bi-multiplicative, then it is called n-bi-
ring homomorphism. We say that a bi-additive mapping ϕ : U → D is an n-bi-Jordan
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homomorphisms if ϕ satisfies

ϕ(xn, yn)=ϕ(x, y)n, (x, y) ∈U .

We remark that in case n = 2 we speak about bi-ring homomorphism and bi-Jordan
homomorphism, respectively. It is obvious that each n-bi-ring homomorphism is an n-bi-Jordan
homomorphism, but in general the converse is false.

For bi-Jordan homomorphism the next result obtained by the author in [15].

Theorem 1.3. Suppose that U is a Banach algebra, which need not be commutative, and
suppose D is a commutative semisimple Banach algebra. Then each bi-Jordan homomorphism
ϕ : U →D is a bi-ring homomorphism.

In this paper, we first prove that each n-bi-Jordan homomorphism ϕ : U → D , between
commutative algebras, is an n-bi-ring homomorphism and then we applying this fact to prove
that to each approximate n-bi-Jordan homomorphism ϕ there corresponds a unique n-bi-ring
homomorphism near to ϕ.

In the next section we present basic concepts and some needed results to construct
Hyers-Ulam-Rassias stability of n-bi-Jordan homomorphism between commutative algebras.
The conclusion will be presented at the end.

2. Main Results
Let G, H be two abelian groups, X be a complex linear space and f : G×H → X a function. For
all (a,b) ∈G×H, we define the difference operator ∆(a,b) on f by

∆(a,b) f (x, y)= f (a+ x,b+ y)− f (x, y),

whenever (x, y) ∈G×H. Further for all positive integer n and for (ai,bi) ∈G×H, with 1≤ i ≤ n,
let

∆(a1,b1),...,(an,bn) f =∆(a1,b1) . . .∆(an,bn) f .

The function F : (G×H)n → X is called n-bi-additive if F is bi-additive in each of its variables.

For the sake of brevity we use the notation (G×H)0 =G×H and we call constant functions
from G×H to X , 0-bi-additive.

Suppose that F : (G×H)n → X is an arbitrary function. By the trace of F we understand the
function Φ : G×H → X arising from F by putting all the variables from G×H equal, that is,

Φ(x, y)= F[(x, y), . . . , (x, y)], (x, y) ∈G×H.

The function f : G ×H → X is called bi-polynomial function of degree at most n, if for all
(x, y), (ai,bi) ∈G×H, with 1≤ i ≤ n+1, the equation

∆(a1,b1),...,(an+1,bn+1) f (x, y)= 0,

is satisfied. For example, the function f :R×R→R by f (x, y)= x+ y is a bi-polynomial function
of degree at most one.
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Lemma 2.1. Let F : (G×H)n → X be a symmetric and n-biadditive function. Then

∆(a1,b1),...,(ak,bk)Φ(x, y)=
{

n!F[(a1,b1), . . . , (an,bn)] for k = n,
0 for k > n,

whenever (x, y), (a1,b1), . . . , (an,bn) ∈G×H and Φ : G×H → X denotes the trace of F .

Proof. The proof is straightforward.

Now we give a characterization of n-bi-Jordan homomorphism.

Theorem 2.2. Suppose that U and D are two commutative algebra. Then each n-bi-Jordan
homomorphism ϕ : U →D is a n-bi-ring homomorphism.

Proof. Define F : U 2 →D by

F[(a,b), (x, y)]=ϕ(ax,by)−ϕ(a,b)ϕ(x, y),

and let Φ be a trace of F . Since ϕ is bi-additive, the function F is bi-additive and symmetric,
therefore by Lemma 2.1,

∆(a,b),(x,y)Φ(u,v)= 2F[(a,b), (x, y)],

for all (a,b), (x, y), (u,v) ∈U .

Now suppose that ϕ is bi-Jordan homomorphism. Then Φ(u,v)= 0, and so

2F[(a,b), (x, y)]=∆(a,b),(x,y)Φ(u,v)= 0,

which proves that F[(a,b), (x, y)]= 0 for all (a,b), (x, y) ∈U . Hence

ϕ(ax,by)=ϕ(a,b)ϕ(x, y),

for all (a,b), (x, y) ∈U . Thus, the result is valid for n = 2. A similar discussion reveals that the
result will be established for n > 2.

The following result is Theorem 2.5 and Theorem 2.6 of [15].

Theorem 2.3. Let U be a normed algebra, let D be a Banach algebra, let δ and ε be nonnegative
real numbers, and let p, q be a real numbers such that (p−1)(q−1)> 0, q ≥ 0, or (p−1)(q−1)> 0,
q < 0 and ϕ(0,0)= 0. Assume that ϕ : U →D satisfies

‖ϕ(a+ x,b+ y)−ϕ(a,b)−ϕ(x, y)‖ ≤ ε(‖(a,b)‖p +‖(x, y)‖p)
, (2.1)

‖ϕ(xn, yn)−ϕ(x, y)n‖ ≤ δ‖(x, y)‖nq, (2.2)

for all (a,b), (x, y) ∈U . Then, there exists a unique n-bi-Jordan homomorphism F : U →D such
that

‖F(x, y)−ϕ(x, y)‖ ≤ 2ε
|2−2p|‖(x, y)‖p, (2.3)

for all (x, y) ∈U .

As a consequence of Theorem 2.2 and 2.3, we have the following.

Corollary 2.4. By hypotheses of above Theorem, if U and D are commutative, then there exists
a unique n-bi-ring homomorphism F : U →D such that satisfies (2.3).
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By a same method of [4, Theorem 1.4], we get the following result.

Theorem 2.5. The function P : G×H → X is a bi-polynomial of degree at most n if and only if
there exist symmetric, k-bi-additive functions Fk : (G×H)k → X , k = 0,1, . . . ,n such that

P(x, y)=
n∑

k=0
Φk(x, y),

where Φk : G×H → X denotes the trace of the function Fk.

Theorem 2.6. Let G and H be two abelian groups and let X be a locally convex topological
linear space. If a bi-polynomial P : G×H → X is bounded on G×H, then it is constant.

Proof. By Theorem 2.5,

P(x, y)=
n∑

k=0
Φk(x, y),

where Φk : G×H → X denotes the trace of symmetric, k-bi-additive function Fk : (G×H)k → X .
That is, for k = 0,1, . . . ,n,

Φk(x, y)= Fk[(x, y), . . . , (x, y)].

Obviously, it is enough to prove that Φk(x, y) = 0, for all 0 ≤ k ≤ n. It follows from Lemma 2.1
that

Fn[(x1, y1), . . . , (xn, yn)]= 1
n!
∆(x1,y1),...,(xn,yn)P(x, y). (2.4)

Since the right hand of the equality (2.4) is of the form∑
(−1)n−kP(x+ xi1 + . . .+ x jk , y+ yj1 + . . .+ yjk ),

where

0≤ i1 < . . .< ik < n and 0≤ j1 < . . .< jk < n,

so Fn is bounded.

On the other hand, for k > 0 the k-bi-additivity of Fk implies that

Φk(mx,my)= mkΦk(x, y),

for all (x, y) ∈G×H, and for all m ∈N. Now assume that Φk(x0, y0) 6= 0 for some (x0, y0) ∈G×H.
Choose a balanced and absorbing neighborhood U ⊂ X of the zero such that Φk(x0, y0) ∉U . As
Φk is bounded, there is a real λ for which

mkΦk(x0, y0)=Φk(mx0,my0) ∈λU ,

for all positive integers m. Then λm−k < 1 for some m, and we have

Φk(x0, y0)= m−kΦk(mx0,my0) ∈λm−kU ⊂U ,

which is a contradiction. Thus, Φk(x, y)= 0 for all (x, y) ∈G×H and 0≤ k ≤ n.

Theorem 2.7. Let ϕ : U → D be a bi-additive function between normed algebras U and D .
Suppose that

‖ϕ(xn, yn)−ϕ(x, y)n‖ ≤ δ‖(x, y)‖,

for some δ> 0 and for all (x, y) ∈U . Then ϕ is an n-bi-Jordan homomorphism.
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Proof. With the help of the function ϕ we define the mapping F on U n by

F[(x1, y1), . . . , (xn, yn)]= ∑
σ∈Sn

ϕ[(x1, y1)σ(1) . . . (xn, yn)σ(n)]−ϕ[(x1, y1)σ(1)] . . .ϕ[(xn, yn)σ(n)],

where Sn denotes the symmetric group of {1,2, . . . ,n}. Clearly, the function F is symmetric under
all permutations of its variables. Due to the bi-additivity of the function ϕ, the function F is
n-bi-additive. So its trace

Φ(x, y)= F[(x, y), . . . , (x, y)]= n![ϕ(xn, yn)−ϕ(x, y)n], (x, y) ∈U .

is a bi-polynomial function of degree at most n. On the other hand, from the assumption of the
theorem, the function Φ is bounded on U , therefore by Theorem 2.6 we get Φ(x, y)= c, where c
is the constant element. Since ϕ is bi-additive we have ϕ(0,0)= 0, hence

c =Φ(0,0)= n![ϕ(0,0)−ϕ(0,0)n]= 0.

Therefore, Φ(x, y)= 0 for all (x, y) ∈U . That is,

ϕ(xn, yn)=ϕ(x, y)n,

holds for all (x, y) ∈U . This complete the proof.

As a consequence of Theorems 2.2 and 2.7 we deduce the next result.

Corollary 2.8. By hypotheses of Theorem 2.7, if U and D are commutative, then ϕ is a n-bi-ring
homomorphism.

3. Conclusion
This paper characterize of n-bi-Jordan homomorphism, and then generalize some well-known
results in the area of Hyers-Ulam-Rassias stability of n-bi-Jordan homomorphism between
commutative algebras. On the other word, the paper prove that to each approximate n-bi-Jordan
homomorphism ϕ : U → D there corresponds a unique n-bi-ring homomorphism near to ϕ.
Concluding remarks, the superstability of n-bi-Jordan homomorphism is also obtained.
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