
Communications in Mathematics and Applications
Vol. 8, No. 3, pp. 217–228, 2017
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

Research Article

Solving Differential Equations by
New Optimized MRA and Invariant Solutions
Hamid Reza Yazdani1,* and Mehdi Nadjafikhah2

1Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
2School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
*Corresponding author: yazdani@phd.pnu.ac.ir

Abstract. The powerful tools for analyzing problems and equations are offered by the wavelet theory
in the numerous scientific fields. In this paper, new father wavelets with two independent variables
according to the differential invariants are designed and the novel method based on those are proposed,
new father wavelets are produced, the multiresolution analysis (MRA) by these wavelets for solving
DEs applied on some examples. The approximate solutions in the form of linear combination of father
wavelets and corresponding mother wavelets are provided by this method.

Keywords. Father wavelet; Mother wavelet; Multiresolution analysis (MRA); Invariant solution;
Approximation subspace; Wavelet subspace

MSC. 42C40; 54H15; 65T60; 76M60

Received: June 14, 2017 Accepted: August 17, 2017

Copyright © 2017 Hamid Reza Yazdani and Mehdi Nadjafikhah. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. Introduction
So far, the numerous methods for solving the differential equations are proposed. Here, we
merge geometric methods to wavelet methods and propose the new method based on the
wavelets with two or more independent variables according to the differential invariants and
invariant solutions. Accordingly, we first remind the Lie symmetry method that will be applied
for obtaining the differential invariants and invariant solutions.
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Sophus Lie, the Norwegian mathematician who founded the theory of continuous groups
and their applications to the theory of differential equations. His investigations led to one of
the major branches of 20th-century mathematics, the theory of Lie groups and Lie algebras.
Lie’s principal tool and one of his greatest achievements was the discovery that continuous
transformation groups (now called, after him, Lie groups) could be better understood by
“linearizing” them, and studying the corresponding generating vector fields (the so-called
infinitesimal generators). The generators are subject to a linearized version of the group law,
now called the commutator bracket, and have the structure of what is today called a Lie algebra.
A German mathematician Hermann Weyl used Lie’s work on the group theory in his papers from
1922 and 1923, and Lie groups today play a role in quantum mechanics. However, the subject of
Lie groups as it is studied today is vastly different from what the research by Sophus Lie was
about and among the 19th-century masters, Lie’s work is in detail certainly the least known
today [9]. The symmetry group methods provide an ultimate arsenal for analysis of differential
equations and Several applications of Lie groups in the theory of differential equations (for
many other applications of Lie symmetries see [10], [11]).

From 1909 that Alphered Haar (Hungarian Mathematician) introduce the first wavelet. The
wavelets are considered as important function in the functional and harmonic analysis [7] and
they have found numerous applications in some fields of the science and technology: seismology,
image processing, signal processing, coding theory, biosciences, financial mathematics, fractals
and so on [1]. The main problem in constructing new wavelets is that the known wavelets such
as Haar, Daubechies, Coiflet, Symlet, CDF, Mexican hat, and Gaussian are not easily extendable
to two or more variables (in some cases, they miss some wavelet properties). So far some wavelet
methods and algorithms such as MRA, Mallat, Galerkin are introduced [12]. In this paper, we
construct new father wavelets with two variables, these wavelets depend on the differential
invariants of differential equations. Therefore, we can use MRA with these father wavelets
for analyzing differential equations and build the corresponding mother wavelets based on
them and invariant solutions of DEs. In fact, we incorporate the results of equivalence methods
(like the Lie symmetry methods) into the MRA (as one of the wavelet methods) and this new
method is called optimized MRA method with the invariant solutions (OMRA). In practice,
the final solution will be obtained in the form of a linear combination of the father wavelets
and correspondent mother wavelets. We will show the performance of OMRA method with the
example.

The remainder of the paper is organized as follows. In Section 2, we recall some needed
results to construct differential invariants, invariant solutions, father wavelets and MRA. In
Section 3, OMRA method is proposed. In Section 4, the proposed method will be demonstrated
by example. Finally, the conclusions and future works will be presented.

2. Preliminaries
In this section, we remember some needed results, definitions, and theorems of the Lie symmetry
methods and wavelet theory. The interested readers invited to see [5], [10] and [9] for the Lie
point symmetries and their application to solve differential equations and see [7], [8] and [2] for
the wavelets theory.
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2.1 The Lie Symmetry Method
In this section, the general procedure for determining symmetries for any system of partial
differential equations are recalled (see [5], [10] and [9]). To begin, let us consider the general
case of a nonlinear system of partial differential equations of order nth in p independent and q
dependent variables is given as a system of equations:

∆ν(x,u(n))= 0, ν= 1, · · · , l, (2.1)

involving x = (x1, · · · , xp), u = (u1, · · · ,uq) and the derivatives of u with respect to x up to n, where
u(n) represents all the derivatives of u of all orders from 0 to n. We consider a one-parameter
Lie group G of infinitesimal transformations acting on the independent and dependent variables
of the system (2.1):

(x̃i, ũ j)= (xi,ui)+ s(ξi,η j)+O(s2), i = 1, · · · , p, j = 1, · · · , q,

where s is the parameter of the transformation and ξi , η j are the infinitesimals of the
transformations for the independent and dependent variables, respectively. A symmetry group
of the system (2.1) is a one-parameter Lie group of infinitesimal transformations G acting on
an open subset M of the space of independent and dependent variables for the system (2.1)
with the property that whenever u = f (x) is a solution of system (2.1) and whenever g · f is
defined for g ∈G, then u = g · f (x) is also a solution of the system (2.1). Indeed, a symmetry of a
differential equation is a transformation which maps solutions of the equation to other solutions.

The infinitesimal generator v associated with G can be written as v=
p∑

i=1
ξi∂xi +

q∑
j=1

η j∂u j . The

invariance of the system (2.1) under the infinitesimal transformations leads to the invariance
conditions ([10, Theorem 2.31]):

Pr(n)v
[
∆ν(x,u(n))

]= 0, ∆ν(x,u(n))= 0, ν= 1, · · · , l,

where Pr(n) is called the nth-order prolongation of the infinitesimal generator given by

Pr(n)v = v+
q∑

α=1

∑
J
φαJ(x,u(n))∂uαJ

, where J = ( j1, · · · , jk), 1 ≤ jk ≤ p, 1 ≤ k ≤ n and the sum is

over all J ’s of order 0< #J ≤ n. If #J = k, the coefficient φαJ of ∂uαJ
will only depend on k-th and

lower order derivatives of u and φJ
α(x,u(n))= DJ

(
φα−

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i , where uαi := ∂uα
/
∂xi

and uαJ,i := ∂uαJ
/
∂xi .

One of the most important properties of these infinitesimal symmetries is that they form a
Lie algebra under the usual Lie bracket. The first advantage of symmetry group methods is
to construct new solutions from known solutions. The second is when a nonlinear system of
differential equations admits infinite symmetries, so it is possible to transform it to a linear
system. Neither the first advantage nor the second will be investigated here, but symmetry
group method will be applied to the PDE to be connected directly to some order differential
equations. To do this, a particular linear combinations of infinitesimals are considered and their
corresponding invariants are determined.

We establish the characteristics system for every infinitesimal generator vector field as
follows

dx
ξ

= dt
τ

= du
φ
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and obtain the differential invariants corresponding to these vector field. The PDE is expressed
in the coordinates (x, t,u), so for reducing this equation, we should search for its form in
the specific coordinates. Those coordinates will be constructed by searching for independent
invariants (y,v) corresponding to the infinitesimal generator. So using the chain rule, the
expression of the equation in the new coordinate allows us to the reduced equation. For more
information and examples (see [10]).

2.2 Wavelets
Wavelets are important functions in the mathematics and other scientific fields. Unless
otherwise stated, we assumed that the wavelets belong to L2(R2) (the space of squared integrable
functions with integral norm). Here, the mother wavelets, father wavelets and wavelet family
are introduced.

Definition 2.3. The wavelet ψ is a function that satisfies the following admissible condition

Cψ =
∫
R2

|F(ψ)(ω)|2dω
|ω|2 > 0 ,

where F(ψ)(ω) is the Fourier transformation of wavelet ψ and defines as:

F(ψ)(ω)= 1p
2π

∫
R2

exp(−ix.ω)ψ(x)dω .

Cψ is called the wavelet coefficient of ψ. Here, we assume that ω = (ω1,ω2) and x = (x1, x2)
belong to R2. For further information and examples (see [2]).

Definition 2.4. The wavelet ψ is called mother wavelet, if it assured in the following properties:∫
R2
ψ(x) dx= 0,∫

R2
|ψ(x)|2 dx<∞,

lim
|ω|→∞

F(ψ(ω))= 0 .

The important point to note here is the first condition equivalent to the admissible condition
(for more details see [7]).

We emphasize that mother wavelets have the admissible condition, n-zero moments and
exponential decay properties. The mother wavelet have two parameters: the translation
parameter b = (b1,b2) and scaling parameter a > 0. The mother wavelet corresponding to
(a,b) is

ψa,b(x)=ψ
(

x−b
a

)
=ψ

(
x1 −b1

a
,
x2 −b2

a

)
.

Indeed, the mother wavelet with the parameters (a,b) is the correspondent family wavelet.

Definition 2.5. The wavelet φ is called father wavelet, if it satisfies the following properties:∫
R2
φ(x) dx= 1, (2.2)∫

R2
|φ(x)|2 dx= 1, (2.3)
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〈φ(x),φ(x−n)〉 = δ(n) (2.4)

where 〈 , 〉 is scalar product derived from the integral norm of L2(R2).

For more details see [7].
In fact, the father wavelets are considered as scaling functions in the multiresolution

analysis, for decomposing L2(R2).

Multiresolution Analysis

Definition 2.6. A multiresolution analysis (MRA) of L2(R2) is defined as sequence of non-empty
closed subspace Vj ⊂ L2(R2), ( j ∈Z) such that

{0}⊂ . . .⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ . . .⊂ L2(R2)

by the following properties:

(1)
⋃
j∈Z

Vj is dense in L2(R2) and
⋂
j∈Z

Vj = {0},

(2) f (x) ∈Vj iff, f (2x) ∈Vj+1 for all j ∈Z,

(3) f (x) ∈Vj iff, f (x1 −2s j, x2 −2sk) ∈Vj , for all ( j,k) ∈Z2,

(4) There exist a function φ(x) ∈V0 with nonvanishing integral,
such that the set {φ0,k(x)=φ(x−k),k ∈Z} is an orthonormal basis of V0,

where x = (x1, x2) ∈R2.

By a given father wavelet φ(x), the related wavelet family is defined as

φs
j,k(x)= 2s/2φ(2sx1 − j,2sx2 −k) (2.5)

thus φ0
j,k(x) = φ j,k(x) = φ(x1 − j, x2 − k), where the function φ j,k(x) is said to be the scaling

function associated with MRA.

Theorem 2.7. If M = {Vj} is a MRA for L2(R2) with g =φ(x−k) as the scaling function, then for
every j,k ∈Z, we can build the wavelets φ and ψ such that

{{φ j,k}, {ψ j,k}} j,k∈Z
is an orthonormal basis of L2(R2). The wavelets φ and ψ are the father and mother wavelets
(respectively).

Proof. For proof and more details, we refer the reader to [8] and [6].

Suppose that father wavelet φ is given, by obtaining corresponding MRA and constructing
corresponding mother wavelet ψ, We can define the following subspaces:

Definition 2.8. Let given a MRA with the scaling function g =φ(x−k), the father and mother
wavelets, φ and ψ (respectively). The approximation subspaces Vj and wavelet subspaces Wj

(respectively) are defined as follows:

Vs := span
{
φs

j,k |φs
j,k(x)= 2s/2φ(2sx1 − j,2sx2 −k)

}
, (2.6)

Ws := span
{
ψs

j,k |ψs
j,k(x)= 2s/2ψ(2sx1 − j,2sx2 −k)

}
. (2.7)
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Remark 2.9. We can say Wj is an orthogonal complement of Vj in Vj+1, i.e.

Vs+1 =Vs ⊕Ws

by following this process, we found that ⊕sWs = L2(R2). In other hand, since φ(x) ∈V0 ⊂V1, there
exists a sequence {a j,k, j,k ∈Z} such that

φ(x)=
p

2
∑
j,k

a j,kφ(2x1 − j,2x2 −k) .

These equations are called dilation equations, two-scale differential equations, or refinement
equations. The mother wavelet ψ satisfies the similar equations as below

ψ(x)=
p

2
∑
j,k

w j,kφ(2x1 − j,2x2 −k) , (2.8)

where the coefficients w j,k are given by

w j,k = (−1) j+kā1− j,1−k . (2.9)

These equations are called the wavelet equations.

Definition 2.10. The coefficients a j,k and w j,k are called the approximate and wavelet
coefficients (respectively). In fact, the approximate coefficient a j,k are calculated as follows

a j,k = 〈φ,φ1; j,k〉 =
p

2
Ï

φ(x, t)φ(2x− j,2t−k) dx dt (2.10)

where the scaling parameter s is 1.

Theorem 2.11. Suppose M = {Vj} is a MRA for L2(R2) with g =φ(x−k) as the scaling function
and W ′

js are the corresponding wavelet subspaces. Then L2(R2)=⊕ jWj and every f ∈ L2(R2) can
be uniquely expressed as a sum

∑
w j,kψ j,k . In other words, under the above assumptions, the set

of all mother wavelets {ψ j,k} j,k∈Z is an orthonormal basis of L2(R2).

Proof. For proof and more details see [3] and [6].

3. Optimized MRA Method
The optimized MRA method (OMRA) has 4 following steps:

(1) Apply equivalence algorithms (for example, the Lie symmetry method) on DE, and obtain
the differential invariants.

(2) Propose the suitable father wavelet based on the differential invariants.

(3) Apply MRA with father wavelet as the scaling function, then obtain the approximation
and wavelet subspaces, the related coefficients and correspondent mother wavelet based
on the father wavelet and invariant solutions.

(4) The final solution is in the form of the linear combination of father wavelet (by structure
based on differential invariants), the mother wavelet (with structure based on father
wavelet and invariant solutions) and wavelet coefficients.

In the following, some OMRA formula are proposed. First, by given suitable father wavelet based
on the differential invariants (DI), we obtain approximation coefficients by writing dilation
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equations as follows

φ(x, t)=∑
j

∑
k

a j,kφ1; j,k(x, t)=
p

2
∑

j

∑
k

a j,kφ(2x− j,2t−k) , (3.1)

where a j,ks are the approximation coefficients. Then, we obtain the wavelet coefficients by (2.9).
Now, if father wavelet φ completely dependent on DE and its DI, then the corresponding

mother wavelet are obtained from (2.8). So, the approximate solution as follows:

u(x, t)=∑
j,k

a j,kφ j,k(x, t)+∑
j,k

w j,kψ j,k(x, t), (3.2)

After calculating the approximation and wavelet coefficients, we consider the solution as (3.1).
Then put it in DE, by solving the resulting ODE for ψ j,k(x, t), the mother wavelet ψ will be
obtained as follows:

ψ(x, t)=∑∑
w j,kψ1; j,k(x, t)=

p
2

∑
j

∑
k

w j,kψ(2x− j,2t−k) .

On the other hand, since ψ j,k can be bulit an orthonormal basis for the solution space M (after
determining ψ), we can consider the solution of DE as follows:

u(x, t)=∑
j,k

w j,kψ j,k(x, t) . (3.3)

Therefore by having corresponding mother wavelet, we will have approximate solution based
on the mother wavelet. We emphasize that in OMRA similar to usual MRA, the corresponding
mother wavelets aren’t unique.

Remark 3.1. In OMRA, the approximation and wavelet subspaces are defined like MRA with
the scaling parameter s = 1. Therefore, the solution space M(n) is decomposed as

M(n) = {⊕ j,kVj,k}⊕ j,k {⊕ j,kWj,k} .

For more details see [6].

4. Example
In this section, we demonstrate OMRA by example. In practice, we apply OMRA on the heat
equation and obtain solutions. Finally, the OMRA results will be proposed.

First, the Lie symmetry method results for the heat equation ut = uxx proposed in Table 1 (for
detailed calculations about implementation of the Lie symmetry method on the heat equation,
see [10]):

Table 1. The Lie symmetry method results for the heat equation

Symmetry group Differential invariants dim(g) Invariant solutions

Translation x− ct, u 2 kexp(−c(x− ct))+ l

Scaling (x/
p

t), (u/ta) 3 k ·erf (x/
p

2t)+ l

Galilean Boost t, uexp(x2/4t) 2 kp
t
exp(− x2

4t )

erf is the error function
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In Table 1, the symmetry groups are the translation with factor (c), scaling with factor (a)
and Galilean boost (respectively). We offer two following father wavelets

φ1(x, t)= 4
3π

exp
(
− x2 + t2

0.75

)
, φ2(x, t)= exp

(
− x2 +15t2

5

)
cos(x)cos(t/3) .

By a little calculation, it can be seen that offered functions have properties (2.2)-(2.4) of
the father wavelets. These wavelets are related to the Galilean boost differential invariants.
Figures 1 and 2 show the graphs of father wavelets. The some properties are clear from these
figures.

Figure 1. The graph of φ1
Figure 2. The graph of φ2

Now, we will apply OMRA by these father wavelets on the heat equation. First, by considering
the father wavelet φ1(x, t), we have

φ1; j,k(x, t)=
p

2 φ(2x− j,2t−k)= 4
p

2
3π

exp
(
− (2x− j)2 + (2t−k)2

0.75

)
thus

φ(x, t)=
p

2
∑

j

∑
k

a j,kφ(2x− j,2t−k)

from (2.10) (for the approximation coefficients), we get

a j,k =
p

2
Ï

16
p

2
9π2 exp

(
−5x2 +5t2 −4x j−4tk+ j2 +k2

0.75

)
dx dt

so, the approximation coefficients as follows

a j,k =
32
9π2 exp

(
− j2 +k2

0.75

)Ï
exp

(
−5x2 +5t2 −4(x j+ tk)

0.75

)
dx dt ,

where j,k = 0,1,2 (for nth-order DE, we assume that j,k = 0,1,2, · · · ,n). After calculating nine
approximation coefficients a j,k, the approximation matrix A = [a j,k] j,k as follows4.134 3.17 1.42

3.17 2.42 1.09
1.42 1.09 0.49


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therefore (based on the wavelet coefficients from (2.9)) the matrix W = [w j,k] j,k as follows 2.42 −3.17 2.42
−3.17 4.134 −3.17
2.42 −3.17 2.42

 .

Now, we consider solution as (3.2) and put it in the heat equation. The resulting PDE for
ψ j,k(x, t) is

ψt −ψxx =
(
86x2 −8t−8

0.75

)
exp

(
−4x2 +4t2

0.75

)
, (4.1)

by solving this PDE, the mother wavelet ψ will be obtained as follows:

ψ(x, t)=ψh +ψp ,

where ψh, ψp are the homogeneous and particular solutions of (4.1), respectively (for more
details and information about the analytical methods for solving differential equations, we refer
the reader to [4]). Here, we can consider ψh as an invariant solution of the heat equation. For
example, the invariant solutions of translation and Galilean boost (respectively) are

kexp(−c(x− ct))+ l,
kp
t

exp
(
− x2

4t

)
.

where k, l = cte (for more details and calculations see [10]). On the other hand, we have the
following special solution

ψp =−1.025exp(−5.33(x2 + t2)) .

Since the mother wavelet ψ made by the father wavelet φ, the following combination of father
wavelet φ is always a particular solution for the PDE in terms of ψ

ψp :=− a0,0

w0,0
φ0,0 ,

where φ0,0 =
p

2φ(2x,2t).

Second, by using of the father wavelet φ2(x, t), we have

φ1; j,k(x, t)=
p

2 φ(2x− j,2t−k)=
p

2 exp
(
− (2x− j)2 +15(2t−k)2

5

)
cos(2x− j)cos((2t−k)/3)

thus φ(x, t)=
p

2
∑

j

∑
k

a j,kφ(2x− j,2t−k),

where

a j,k =
p

2
Ï {

exp
(
−5x2 +285t2 −4x j−60tk+ j2 +15k2

5

)
cos(x)cos(t/3)cos(2x− j)cos

(
2t−k

3

)}
dx dt

and j,k = 0,1,2. Now, we should calculate nine approximation coefficients a j,k . After calculation,
the matrix A = [a j,k] j,k are obtained as follows0.25618 0.024 0.00002

0.0195 0.0189 0.00015
−0.9346 −0.00002 0.000006

 .
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Therefore from (2.9), the matrix W = [w j,k] j,k as follows0.0189 −0.0195 0.00131
−0.024 0.25618 −0.024
0.0189 0.0195 0.0189

 .

Similar to the first case, by considering the solution as (3.2) and putting it in the heat equation,
the resulting PDE for ψ j,k(x, t) is appeared as follows:

ψt −ψxx = (19.35)
{

64x2

25
+ 16x

5
sin(2x)cos(2t/3)

+
(
24t−25

5

)
cos(2x)cos(2t/3)−1.6

}
exp

(
−4x2 +60t2

5

)
, (4.2)

by solving this PDE, the mother wavelet ψ will obtained as follows:

ψ(x, t)=ψh +ψp ,

where ψh, ψp are the homogeneous and particular solutions of (4.2), respectively (see [4]). Here,
again we can consider ψh as an invariant solution of the heat equation. While for the particular
solution, we have

ψs =−19.16exp
(
−4x2 +60t2

5

)
cos(2x) ·cos(2t/3) .

Finally, according to the above discussions and calculations, the final solutions for the heat
equation with OMRA based on invaraint solutions (under symmetry groups such as the
translation and Galilean boost) as follows:

u1 =
∑
i, j,k

ci, j{kexp(A1)−1.025exp(A2)+ l},

u2 =
∑
i, j,k

ci, j

{
kp
t

exp(A3)−1.025exp(A2)
}

,

u3 =
∑
i, j,k

ci, j{kexp(A1)−19.16exp(A4)cos(4x−2i)cos(4t−2 j)/3)+ l},

u4 =
∑
i, j,k

ci, j

{
kp
t

exp(A3)−19.16exp(A4)cos(4x−2i)cos(4t−2 j)/3)
}

,

where

A1 = 8(t− j)+2(i−2x),

A2 =−5.33((2x− i)2 + (2t− j)2),

A3 =− (2x− i)2

4(2t− j)
,

A4 =−4(2x− i)2 +60(2t− j)2

5
,

and ci, j ’s are the coefficients that can obtained by putting ul (for l = 1, . . . ,4) in the heat
equation and initial or boundary conditions, also note that all summations should be calculated
for (i, j,k = 0,1,2). (It is worth noting that, we consider c = 2 for the corresponding solutions to
the translation.)
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As a result, according to the above discussions and calculations, by using the father wavelets
(built based on the differential invariants), the correspondent mother wavelets (constructed by
invariant solutions) and implementation of modified MRA (i.e. OMRA), we obtained the new
approximate solutions (in the form of linear combination of father and mother wavelets) for the
heat equation, that include solutions derived by other methods (like invariant solutions of the
Lie symmetry method).

5. Conclusions and Future Works
In this paper, we proposed the new method based on the wavelets for analyzing PDEs. We
constructed new father and mother wavelets with two independent variables according to
the differential invariants, then proposed corresponding MRA, applied it on the differential
equations and here after the PDE was solved and the solutions were obtained. Indeed, OMRA
is improved MRA by differential invariants (in the structure of father wavelets) and invariant
solutions (in the structure of mother wavelets). In future works, we will propose suitable father
wavelets for every differential invariant and symmetry group by implementing WTM on other
PDEs. Moreover, by implementing OMRA on other PDEs, we hope to generalize WTM for solving
both linear and non-linear PDEs at every order and every number of independent variables
with every initial condition, and we will propose the proper father wavelets for every symmetry
group.
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