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Abstract. Let T(X ) be the semigroup of all transformations on a set X . For a non-empty subset
Y of X , denoted by T(X ,Y ) the subsemigroup of T(X ) consisting of all transformations whose
range is contained in Y . Kelarev and Praeger in [9] gave necessary and sufficient conditions for all
vertex-transitive Cayley graphs of semigroups. In this paper, we give similar descriptions for all
vertex-transitive Cayley graphs of T(X ,Y ).
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1. Introduction
Let S be a semigroup and A ⊆ S. The Cayley graph Cay(S, A) of the semigroup S with the
connection set A is defined as the digraph with vertex set S and arc set E(Cay(S, A)) containing
of all ordered pairs (x, y) such that y = xa for some a ∈ A. The Cayley graphs of groups and
semigroups have been considered by many authors, see for example in [1], [2], [4], [5], [8], [9],
[10], [11], [13], [14], [15]. Lately, Cayley graphs play an important role in theoretical computer
science as one of powerful tools in this subject (see [3], [7]). In addition, the notion of quantum
walks in physics also employs Cayley graphs (for example, see [6], [12]).
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Let D = (V ,E) be a digraph. A mapping φ : V (D)→V (D) is called an endomorphism of the
digraph D if (uφ,vφ) ∈ E(D) for all (u,v) ∈ E(D), i.e., φ is an arc-preserving. If φ : V (D)→V (D) is
a bijective endomorphism and φ−1 is also an endomorphism, then φ is called an automorphism.
Let End(D) denote the set of all endomorphisms of D and Aut(D) denote the set of all
automorphisms of D. For a Cayley digraph Cay(S, A), let End(S, A) denote End(Cay(S, A))
and Aut(S, A) denote Aut(Cay(S, A)).

A digraph D = (V ,E) is Aut(D)-vertex-transitive or vertex-transitive if for any two vertices
x, y ∈ V , there is an automorphism ψ ∈ Aut(D) such that xψ = y. In general, a subset C of
End(D) is called vertex-transitive on D, and D is called C-vertex-transitive if, for any two
vertices x, y ∈ V , there is an endomorphism ψ ∈ C such that xψ = y. For a Cayley digraph
Cay(S, A), an element ϕ ∈ End(S, A) is said to be a colour-preserving endomorphism if xa = y
implies (xϕ)a = yϕ, for all x, y ∈ S and a ∈ A. We will denote by ColEnd(S, A) and ColAut(S, A)
the sets of all colour-preserving endomorphisms and all colour-preserving automorphisms of
Cay(S, A), respectively.

It is well known that for every group G and A ⊆ G, Cay(G, A) is Aut(G, A)-vertex-
transitive. In 2003, Kelarev and Praeger [9] characterized all Aut(S, A)-vertex-transitive and
all ColAut(S, A)-vertex-transitive Cayley graphs of semigroups. Since then many authors have
given similar descriptions for all vertex-transitive Cayley graphs of some specific semigroups,
see for example in, [4], [10], [11], [14].

The full transformation semigroup on the set X denoted by T(X ) is the set of all
functions from X into itself. It is well known that every semigroup can be embedded in some
transformation semigroup. Therefore, some properties of semigroups might be obtained from
the study on transformation semigroups. Now, we consider a subsemigroup of T(X ), namely
T(X ,Y ), given by

T(X ,Y )= {α ∈ T(X ) : im(α)⊆Y }

where Y 6= ; and im(α) denotes the image of α. generalization of T(X ). In this paper, we show
under which conditions Cayley graphs of T(X ,Y ) satisfy the properties of being Aut(T(X ,Y ), A)-
vertex-transitive and ColAut(T(X ,Y ), A)-vertex-transitive.

2. Preliminaries
For α ∈ T(X ,Y ) and x ∈ X , the image of x under α is written as xα. For Z ⊆ X , Zα denotes the
set of all images of elements in Z under α. The kernel of α is defined by

ker(α)= {(a,b) ∈ X × X : aα= bα}.

In 2008, Sanwong and Sommanee [17] described Green’s relations on T(X ,Y ) and then we
have the following lemma about an R-relation.

Lemma 2.1 ([17]). Let α,β ∈ T(X ,Y ). Then β = αµ for some µ ∈ T(X ,Y ) if and only if
ker(α)⊆ ker(β). Consequently, αRβ if and only if ker(α)= ker(β).

The symbol πα denotes the partition of X induced by the transformation α, namely

πα = {yα−1 : y ∈ im(α)} ,

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 219–227, 2018



On Vertex-transitive Cayley Graphs of Finite Transformation Semigroups . . . : C. Tisklang and S. Panma 221

where yα−1 is the set of all x ∈ X such that xα= y. It is easily seen that, for all α,β ∈ T(X ,Y ),

ker(α)= ker(β) if and only ifπα =πβ.

The following results are obtained in [16], [18] and [19].

Lemma 2.2 ([16]). Let α,β ∈ T(X ,Y ). Then Xβ⊆Yα if and only if there exists γ ∈ T(X ,Y ) such
that γα=β.

Lemma 2.3 ([19]). Let A ⊆ T(X ,Y ). Then T(X ,Y )A = T(X ,Y ) if and only if Yα= Y for some
α ∈ A.

Lemma 2.4 ([19]). Let A ⊆ T(X ,Y ) and Yα = Y for all α ∈ A. If elements β and γ are in the
same component in Cay(T(X ,Y ), A), then βRγ.

Theorem 2.5 ([19]). Let A ⊆ T(X ,Y ). Then 〈A〉 is a completely simple semigroup and
T(X ,Y )A = T(X ,Y ) if and only if Yα=Y for all α ∈ A.

Lemma 2.6 ([18]). Let X be a finite set and Y1,Y2 be non-empty subsets of X . Then T(X ,Y1)∼=
T(X ,Y2) if and only if |Y1| = |Y2|.

By the above lemma, there is no loss of generality in assuming X = {1,2, . . . ,n} and

Y = {1,2, . . . , r}. For convenience, if α ∈ T(X ,Y ) where α=
(

1 . . . n
a1 . . . an

)
, we write α= [a1, . . . ,an].

Recall that a semigroup S is left (right) zero semigroup if ab = a(ab = b) for all a,b ∈ S. A
left simple (right simple) is a semigroup which has no proper left (right) ideal. A left group (right
group) is a semigroup which is left (right) simple and right (left) cancellative. It is well known
that a semigroup is a left (right) group if and only if it is isomorphic to the direct product of a
group and a left (right) zero semigroup. A completely simple is a semigroup which has no proper
ideals and contains a minimal idempotent with respect to the partial order f ≤ g ⇔ f = f g = gf .

A subgraph H of a digraph G is called an induced subgraph of G if for every u,v ∈ V (H),
(u,v) is an edge in H whenever (u,v) is an edge in G. For a non-empty set A of vertices of
a graph G, the subgraph of G induced by A is the induced subgraph with vertex set A and
denoted by G[A] or simply [A].

The following two theorems are the characterizations of all ColAut(S, A)-vertex-transitive
and Aut(S, A)-vertex-transitive Cayley graphs such that all principal left ideals of 〈A〉 are finite.

Theorem 2.7 ([9]). Let S be a semigroup, and A ⊆ S such that all principal left ideals of the
subsemigroup 〈A〉 are finite. Then, the Cayley graph Cay(S, A) is ColAut(S, A)-vertex-transitive
if and only if the following conditions hold:

(1) Sa = S for all a ∈ A;

(2) 〈A〉 is isomorphic to a direct product of a left zero band and a group;

(3) |s〈A〉| is independent of the choice of s ∈ S.

Theorem 2.8 ([9]). Let S be a semigroup, and A ⊆ S such that all principal left ideals of the
subsemigroup 〈A〉 are finite. Then, the Cayley graph Cay(S, A) is Aut(S, A)-vertex-transitive if
and only if the following conditions hold:
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(1) SA = S;

(2) 〈A〉 is a completely simple semigroup;

(3) The Cayley graph Cay(〈A〉, A) is Aut(〈A〉, A)-vertex-transitive;

(4) |s〈A〉| is independent of the choice of s ∈ S.

3. Vertex-transitivity
Throughout of this section we assume that A is non-empty set. In this section, we show

under which conditions Cayley graphs of T(X ,Y ) enjoy the property of being Aut(T(X ,Y ), A)-
vertex-transitive and the property of being ColAut(T(X ,Y ), A)-vertex-transitive.

Write AY = {α|Y : α ∈ A}. Let α,β,∈ T(X ,Y ) and Yα = Y = Yβ. We get, y ∈ Y , yα = yα|Y
and so

y(αβ)= (yα)β= (yα|Y )β|Y = y(α|Yβ|Y ).

Hence (αβ)|Y =α|Yβ|Y .

Lemma 3.1. Let A ⊆ T(X ,Y ) and Yα=Y for all α ∈ A. Then Cay(〈A〉, A) is Aut(〈A〉, A)-vertex-
transitive.

Proof. Let α ∈ A. Since 〈AY 〉 is a subgroup of T(Y ), Cay(〈AY 〉, AY ) is Aut(〈AY 〉, AY )-vertex-
transitive and hence Cay(〈AY 〉, AY ) is a strongly connected component. Moreover, Cay(〈AY 〉, AY )
= [〈AY 〉].

We claim that [α〈A〉] ∼= [〈AY 〉]. Define f : V ([α〈A〉]) → V ([〈AY 〉]) by β f = β|Y for all
β ∈ V ([α〈A〉]) = α〈A〉. Let β,γ ∈ V ([α〈A〉]). Then β = αβ1 · · ·βk and γ = αγ1 · · ·γl for some
β1, . . . ,βk,γ1, . . . ,γl ∈ A. We have (λµ)|Y =λ|Yµ|Y since Yλ=Y =Yµ for all λ,µ ∈ A. Hence

(βγ) f = (βγ)|Y
= [(αβ1 · · ·βk)(αγ1 · · ·γl)]|Y
= (αβ1 · · ·βk)|Y (αγ1 · · ·γl)|Y
=β|Y γ|Y
= (β f )(γ f ).

Thus f is a group homomorphism. Now, we show that f is 1-1. Let λ,µ ∈ V ([α〈A〉]) be such
that λ f =β=µ f for some β ∈V ([〈AY 〉]). Then λ|Y =β=µ|Y and by Lemma 2.4, it implies that
πλ = πµ. If y ∈ Y , we get yλ = yµ. Let x ∈ X \ Y . Then x ∈ yiλ

−1 for some yi ∈ Y . Thus there
exists z ∈Y ∩ yiλ

−1 and so xλ= zλ= zµ= xµ since πµ =πλ. Hence λ=µ. This implies that f is
1-1.

Now, let γ′ ∈V ([〈AY 〉]). Since [〈AY 〉] is a strongly connected component, there exists a dipath
from α|Y to γ′. That is γ′ =α|Y (γ1)|Y · · · (γk)|Y = (αγ1 · · ·γk)|Y where γ1, . . . ,γk ∈ A. Therefore, there
exists α(γ1 · · ·γk) ∈α〈A〉 such that (αγ1 · · ·γk) f = γ′, and hence f is onto.

Next, we show that f preserves arcs. Let (β,γ) ∈ E([α〈A〉]) for some β,γ ∈V ([α〈A〉]). Then
γ=βδ for some δ ∈ A and so

γ|Y = γ f = (βδ) f = (β f )(δ f )=β|Y δ|Y .
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Hence (β|Y ,γ|Y ) ∈ E([〈AY 〉]). Let (λ′,µ′) ∈ E([〈AY 〉]) for some λ′,µ′ ∈ V ([〈AY 〉]) be such that
µ f =µ′ and λ f =λ′ for some µ,λ ∈V ([α〈A〉]). Then λ′β′ =µ′ for some β′ ∈ AY . Thus β′ =β f =β|Y
for some β ∈V ([α〈A〉]). Thus

(λβ) f = (λ f )(β f )= (λ|Y )(β|Y )=λ′β′ =µ′ =µ|Y =µ f .

This implies that λβ = µ since f is 1−1 and so (λ,µ) ∈ E([α〈A〉]). Therefore, [α〈A〉] ∼= [〈AY 〉]
for all α ∈ A. Since [〈AY 〉] is Aut(〈AY 〉, AY )-vertex-transitive, [α〈A〉] is Aut([α〈A〉])-vertex-
transitive for all α〈A〉 ⊆ 〈A〉.

Next, we show 〈A〉 = ⋃̇
α∈Aα〈A〉 and [〈A〉] = ⋃̇

α∈A[α〈A〉]. Clearly,
⋃̇
α∈Aα〈A〉 ⊆ 〈A〉. Let

β ∈ 〈A〉. Then β = β1 · · ·βk where β1, . . . ,βk ∈ A and so β ∈ β1〈A〉. Hence 〈A〉 ⊆ ⋃
α∈Aα〈A〉 and

thus 〈A〉 =⋃
α∈Aα〈A〉. Let γ ∈α〈A〉∩δ〈A〉. By the proof of Lemma 2.4, there are dipaths from γ

to α and δ to γ, i.e., α= γα1 · · ·αl and γ= δγ1 · · ·γh where α1, . . . ,αl ,γ1, . . . ,γh ∈ A. Let λ ∈α〈A〉.
Then

λ=αλ1 · · ·λs where λ1, . . . ,λs ∈ A

= γα1 . . .αlλ1 · · ·λs

= δγ1 · · ·γhα1 · · ·αlλ1 · · ·λs ∈ δ〈A〉.
Therefore, α〈A〉 ⊆ δ〈A〉. Similarly, δ〈A〉 ⊆α〈A〉. Hence δ〈A〉 =α〈A〉. Therefore, 〈A〉 = ⋃̇

α∈Aα〈A〉.
Finally, we show that [〈A〉] = ⋃̇

α∈A[α〈A〉] where [〈A〉] is the induced subgraph of
Cay(T(X ,Y ), A). By the above proof, we have V ([〈A〉])=V (

⋃̇
α∈A[α〈A〉]). It remains to prove that

E([〈A〉])=⋃
α∈A E([α〈A〉]). It is obvious that

⋃
α∈A E([α〈A〉])⊆ E([〈A〉)]. Now, let (β,γ) ∈ E([〈A〉])

where β,γ ∈ 〈A〉. Then γ=βδ for some δ ∈ A and β=β1 · · ·βk where β1, . . . ,βk ∈ A. So β,γ ∈β1〈A〉
and thus (β,γ) ∈ E([β1〈A〉])⊆⋃

α∈A E([α〈A〉]). Hence

E([〈A〉])⊆ ⋃
α∈A

E([α〈A〉]).

Thus [〈A〉] = ⋃̇
α∈A[α〈A〉]. It is clear that Cay(〈A〉, A) = [〈A〉]. Therefore, Cay(〈A〉, A) =⋃̇

α∈A[α〈A〉] is Aut(〈A〉, A)-vertex-transitive as required.

Example 3.2. Let X = {1,2, . . . ,7}, Y = {1,2, . . . ,6}, A = {α,β} a subset of T(X ,Y ), α =
[2,3,1,5,6,4,2] and β= [4,5,6,1,2,3,1].

We have Cay(〈A〉, A) as shown in Figure 1. We get that Yα = Y = Yβ and Cay(〈A〉, A) is
Aut(〈A〉, A)-vertex-transitive.

b

b

b

b

b b

α α2

α3 β

α3βα α3βα2

b

b

b

b

b

b
α3β β2

β2α β2α2

βα βα2

Figure 1. Cay(〈A〉, A) where A = {[2,3,1,5,6,4,2], [4,5,6,1,2,3,1]}
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In the following theorems, we shall give the descriptions for all vertex-transitive Cayley
graphs of T(X ,Y ).

Theorem 3.3. Let A ⊆ T(X ,Y ). Then Cay(T(X ,Y ), A) is Aut(T(X ,Y ), A)-vertex-transitive if and
only if the following conditions hold:

(1) Yα=Y for all α ∈ A;

(2) |β〈A〉| is independent of the choice of β ∈ T(X ,Y ).

Proof. (⇒) Assume that Cay(T(X ,Y ), A) is Aut(T(X ,Y ), A)-vertex-transitive. By Theorem 2.8,
the condition (2) holds and T(X ,Y )A = T(X ,Y ). Thus Yα=Y for all α ∈ A by Theorem 2.5.
(⇐) We will prove by using Theorem 2.8. It remains to prove that T(X ,Y )A = T(X ,Y ),
Cay(〈A〉, A) is Aut(〈A〉, A)-vertex-transitive, and 〈A〉 is a completely simple semigroup. By
Lemma 2.3 and Lemma 3.1, we get T(X ,Y )A = T(X ,Y ) and Cay(〈A〉, A) is Aut(〈A〉, A)-vertex-
transitive. Since Yα= Y for all α ∈ A, 〈A〉 is a completely simple semigroup by Theorem 2.5
which completes the proof.

Example 3.4. Let X = {1,2,3,4}, Y = {1,2}, and A = {[2,1,1,2], [1,2,1,1]}. Then Yα= Y for all
α ∈ A and |β〈A〉| is independent of the choice of β ∈ T(X ,Y ). By Theorem 3.3, Cay(T(X ,Y ), A) is
Aut(T(X ,Y ), A)-vertex-transitive and shown in the following figure.

[1, 1, 1, 1]

b

b

[2, 2, 2, 2]

[1, 1, 1, 2]

b

b

[2, 2, 2, 1]

b b b b b b

b b b b b b

[1, 1, 2, 1] [1, 1, 2, 2] [1, 2, 1, 1] [1, 2, 1, 2] [1, 2, 2, 1] [1, 2, 2, 2]

[2, 2, 1, 2] [2, 2, 1, 1] [2, 1, 2, 2] [2, 1, 2, 1] [2, 1, 1, 2] [2, 1, 1, 1]

Figure 2. Cay(T(X ,Y ), A) where A = {[2,1,1,2], [1,2,1,1]}

Corollary 3.5. Let A ⊆ T(X ,Y ). Then Cay(T(X ,Y ), A) is Aut(T(X ,Y ), A)-vertex-transitive if
and only if Cay(T(Y ), AY ) is Aut(T(Y ), AY )-vertex-transitive.

Proof. (⇒) Assume that Cay(T(X ,Y ), A) is Aut(T(X ,Y ), A)-vertex-transitive. By Theorem
3.3(1), we have Yα|Y = Y for all α|Y ∈ AY . We claim that |γ′〈AY 〉| = |γ〈A〉| where γ′ = γ|Y
in T(Y ), γ ∈ T(X ,Y ). Now, define g : γ〈A〉 −→ γ′〈AY 〉 by (γβ)g = γ′β|Y . We can prove that g is 1-1
and onto which is similar to prove that f is 1-1 and onto in Lemma 3.1. Hence |γ〈A〉| = |γ′〈AY 〉|
for all γ′ ∈ T(Y ) where γ′ = γ|Y for some γ ∈ T(X ,Y ). For β′,δ′ ∈ T(Y ), there exist β,δ ∈ T(X ,Y )
such that β′ =β|Y ,δ′ = δ|Y . From Theorem 3.3(2), we have |β′〈AY 〉| = |β〈A〉| = |δ〈A〉| = |δ′〈AY 〉|.
(⇐) Assume that Cay(T(Y ), AY ) is Aut(T(Y ), AY )-vertex-transitive. Then, by Theorem 3.3, we
have

(i) Yα|Y =Y for all α|Y ∈ AY and
(ii) |β′〈AY 〉| is independent of the choice of β′ ∈ T(Y ).
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By (i), we get that Yα=Y for all α ∈ A. Finally, let γ ∈ T(X ,Y ). Then γ′ = γ|Y ∈ T(Y ). Thus
we have a function g from γ〈A〉 to γ′〈AY 〉 which is 1-1 and onto. By (ii), |γ〈A〉| = |γ′〈AY 〉| =
|β′〈AY 〉| = |β〈A〉|.

Example 3.6. From Example 3.2, we let AY = {α|Y ,β|Y } where α|Y = [2,3,1,5,6,4] and β|Y =
[4,5,6,1,2,3]. We have Cay(〈AY 〉, AY ) is Aut(〈AY 〉, AY )-vertex-transitive, as shown in Figure 3
and Cay(〈A〉, A) also is, as in Figure 1.

b

b

b

b

b b

α|Y α2
|Y

α3
|Y

β|Y

α|Y β|Y α2
|Y β|Y

Figure 3. Cay(〈AY 〉, AY )

Now we consider the set A such that Yα=Y for all α ∈ A. We get that

〈A〉 = {β ∈ T(X ,Y ) :β|Y ∈ 〈AY 〉 and βRα for some α ∈ A}.

It is well known that for φ ∈ T(X ), φ is an idempotent if and only if xφ= x for all x ∈ im(φ).
Then the set of all idempotents of 〈A〉 is

E(〈A〉)= {ε= [1,2, . . . , r, z1, z2, . . . , zn−r] ∈ T(X ,Y ) : εRα for some α ∈ A}.

Moreover, E(〈A〉) is a left zero semigroup.

Lemma 3.7. Let A ⊆ T(X ,Y ). If Yα=Y for all α ∈ A, then 〈A〉 is a left group.

Proof. Let Yα=Y for all α ∈Y and E = E(〈A〉) be the set of all idempotents in 〈A〉. Then 〈AY 〉
is a subgroup of T(Y ) and E is a left zero band. Now, we show that 〈A〉 ∼= 〈AY 〉×E.

Define f : 〈AY 〉×E →〈A〉 by for α′ = [y1, . . . , yr] ∈ 〈AY 〉 and ε= [1,2, . . . , r, z1, . . . , zn−r] ∈ E,

([y1, . . . , yr], [1,2, . . . , r, z1, . . . , zn−r]) 7→ [y1, . . . , yr, z1α
′, . . . , zn−rα

′].

It easily see that f is a well-defined homomorphism and for α′ ∈ 〈AY 〉 and ε ∈ E, there exists
α ∈ A such that α|Y = α′. It follows that (α′,ε) f ∈ 〈A〉. Next, we show that f is 1− 1. Let
(α′,ε1), (β′,ε2) ∈ 〈AY 〉×E be such that (α′,ε1) f = γ= (β′,ε2) f where ε1 = [1,2, . . . , r,a1, . . . ,an−r]
and ε2 = [1,2, . . . , r,b1, . . . ,bn−r]. Let γ = [y1, . . . , yr, z1, . . . , zn−r]. Then α′ = [y1, . . . , yr] = β′

and aiα
′ = zi = biβ

′ for all i = 1, . . . ,n − r and it implies that ai = bi . Thus ε1 = ε2 and
consequently, (α′,ε1) = (β′,ε2). Finally, we prove that f is onto. Let δ ∈ 〈A〉 be such that
δ = [y1, . . . , yr, z1, . . . , zn−r]. Then δ′ = δ|Y = [y1, . . . , yr] ∈ 〈AY 〉. Set ε = [1,2, . . . , r,a1, . . . ,an−r]
where ai ∈ ziδ

−1 ∩Y . So ε ∈ E and (δ′,ε) f = δ. Therefore, f is onto.
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Theorem 3.8. The Cayley graph Cay(T(X ,Y ), A) is ColAut(T(X ,Y ), A)-vertex-transitive if and
only if it is Aut(T(X ,Y ), A)-vertex-transitive.

Proof. Obviously, if Cay(T(X ,Y ), A) is ColAut(T(X ,Y ), A)-vertex-transitive, then it is
Aut(T(X ,Y ), A)-vertex-transitive. Conversely, assume that Cay(T(X ,Y ), A) is Aut(T(X ,Y ), A)-
vertex-transitive. Then Yα=Y for all α ∈ A and so T(X ,Y )α= T(X ,Y ) for all α ∈ A by Lemma
2.3. Lemma 3.7 implies that 〈A〉 is isomophic to a direct product of a group and a left zero band.
It follows that Cay(T(X ,Y ), A) is ColAut(T(X ,Y ), A)-vertex-transitive by Theorem 2.7 and the
proof is complete.
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