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1. Introduction and preliminaries
Brianciari [11] generalized the concept of a metric where the triangular inequality is replaced by
a rectangular one. Using this concept, many papers have been done in order to prove (common)
fixed point results (for more details, see [5,6,15–17,22–24] and [25]). On the other hand, the idea
of a b-metric has been introduced in the papers [12] and [13] (for other results, see [1,2,7–10]
and [20]). Extending the above concepts, the following definition was given by Roshan et al.
[21, Lemma 1.10] (see also [4]).
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Definition 1.1. Let X be a nonempty set, s ≥ 1 be a given real number and let d : X × X →
[0,+∞) be a mapping such that for all x, y ∈ X and all distinct points u,v ∈ X , each distinct from
x and y:

(1) d(x, y)= 0 if and only if x = y;

(2) d(x, y)= d(y, x);

(3) d(x, y)≤ s[d(x,u)+d(u,v)+d(v, y)] (b-rectangular inequality).

Then (X ,d) is called a b-rectangular or a b-generalized metric space (b-g.m.s.).

The following is an easy example of a b-g.m.s.

Example 1.2. Let X = A∪B, where A = {0,1} and B = { 1
n : n = 2,3,4, . . .

}
.

Define d : X × X → [0,∞) by

d(x, y)= d(y, x)=


0, if x = y
4, if x 6= y and {x, y}⊆ B
1, if x ∈ B, y ∈ A and x 6= y or {x, y}⊆ A and x 6= y.

Then (X ,d) is a b-g.m.s with coefficient s = 2> 1, but (X ,d) is not a g.m.s, as d
(

1
2 , 1

4

)
= 4> 3=

d
(

1
2 ,0

)
+d(0,1)+d

(
1, 1

4

)
.

The following lemma dif and only ifers from [15, Lemma 1.10] and [17, Lemma 1]. We need
it in the sequel.

Lemma 1.3 ([21, Lemma 1]). Let (X ,d) be a b-g.m.s. and let {xn} be a Cauchy sequence in X
such that xm 6= xn whenever m 6= n. Then {xn} can converge to at most one point.

The following lemma is also useful for the rest.

Lemma 1.4 ([21, Example 1.1]). Let (X ,d) be a b-g.m.s.

(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y as n →∞, with
x 6= y, and xn 6= x, yn 6= y for n ∈N. Then, we have

1
s

d(x, y)≤ liminf
n→∞ d(xn, yn)≤ limsup

n→∞
d(xn, yn)≤ sd(x, y).

(b) If y ∈ X and {xn} is a nonconstant Cauchy sequence in X with xn 6= xm for all n 6= m,
converging to x 6= y, then

1
s

d(x, y)≤ liminf
n→∞ d(xn, y)≤ limsup

n→∞
d(xn, y)≤ sd(x, y),

for all x ∈ X .

Definition 1.5 ([3]). A mapping f : [0,∞)2 → R is called a C-class function if it is continuous
and satisfies the following axioms:

(1) f (s, t)≤ s for all s, t ∈ [0,∞);

(2) f (s, t)= s implies that either s = 0, or t = 0.
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We will denote the family of C-class functions as C (see also, [19]). Note that for some F ∈C,
we add the condition F(0,0)= 0.

Example 1.6 ([3]). The following functions F : [0,∞)2 →R are elements of C, for all s, t ∈ [0,∞):

(1) F(s, t)= s− t;

(2) F(s, t)= ms for 0< m < 1;

(3) F(s, t)= s
(1+t)r for r ∈ (0,∞).

Definition 1.7 ([18]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the
following properties are satisfied:

(i) ψ is non-decreasing and continuous,

(ii) ψ(t)= 0 if and only if t = 0.

Remark 1.8. We let Ψ denote the class of the altering distance functions.

Definition 1.9 ([3]). An ultra altering distance function is a continuous and nondecreasing
mapping ψ : [0,∞)→ [0,∞) such that ψ(t)> 0 for all t > 0.

Remark 1.10. Let Φu denote the set of all ultra altering distance functions.

Definition 1.11. Let ψ ∈Ψ, ϕ ∈Φu and F ∈C. The tripled (ψ,ϕ,F) is said to be monotone if for
any x, y ∈ [0,∞)

x ≤ y=⇒ F(ψ(x),ϕ(x))≤ F(ψ(y),ϕ(y)).

Example 1.12. Let F(s, t)= s− t, φ(x)=p
x and

ψ(x)=
{p

x if 0≤ x ≤ 1,
x2, if x > 1,

then (ψ,φ,F) is monotone.

Example 1.13. Let F(s, t)= s− t, φ(x)= x2

ψ(x)=
{p

x if 0≤ x ≤ 1,
x2, if x > 1,

then (ψ,φ,F) is not monotone.

Example 1.14. Let F(s, t)= s
1+t , φ(x)= 3px and

ψ(x)=
{

3px if 0≤ x ≤ 1,
x3, if x > 1,

then (ψ,φ,F) is monotone.
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Example 1.15. Let F(s, t)= s− t, φ(x)= x3 and

ψ(x)=
{

3px if 0≤ x ≤ 1,
x3, if x > 1,

then (ψ,φ,F) is not monotone.

Example 1.16. Let F(s, t)= log
( t+es

1+t
)
, ψ(x)= x and φ(x)= ex, then (ψ,φ,F) is monotone.

2. Main Results
Our first main result is

Theorem 2.1. Let (X ,¹,d) be a complete b-g.m.s. and f : X → X be an increasing mapping with
respect to ¹ such that there exists an element x0 ∈ X with x0 ¹ f x0. Suppose that

ψ(sd( f x, f y))≤ F(ψ(M(x, y)),ϕ(M(x, y))) (2.1)

for all comparable elements x, y ∈ X , where ψ ∈Ψ, ϕ ∈Φu , F ∈ C, such that (ψ,ϕ,F) is monotone.
Assume also that ψ(r+ t)≤ψ(r)+ψ(t) and

M(x, y)=max
{

d(x, y),
d(x, f x)d(y, f y)

1+d( f x, f y)
,
d(x, f x)d(y, f y)

1+d(x, y)
,

d(x, f x)d(x, f 2 y)
1+ s[d(x, f x)+d(y, f y)+d( f y, f 2 y)]

,
d(x, f x)d(x, f y)

1+d(x, f y)+d(y, f x)

}
.

If f is continuous, then f has a fixed point. Moreover, the set of fixed points of f is well ordered if
and only if f has one and only one fixed point.

Proof. Let x0 ∈ X . Taking xn = f nx0. If xn = xn+1 for some n ∈N, then xn = f xn, i.e., xn is a fixed
point of f . From now on, we suppose that xn 6= xn+1 for all n ∈N. Since x0 ¹ f x0 and f is an
increasing function, we get

x0 ¹ f x0 ¹ f 2x0 ¹ ·· · ¹ f nx0 ¹ f n+1x0 ¹ ·· · .

Step 1: We shall prove that

lim
n→∞d(xn, xn+1)= 0. (2.2)

Having in mind xn ¹ xn+1 for each n ∈N, then by Definition 1.11 in (2.1), we get

ψ(sd(xn, xn+1))=ψ(sd( f xn−1, f xn))

≤ F(ψ(M(xn−1, xn)),ϕ(M(xn−1, xn)))

≤ F(ψ(max{d(xn−1, xn),d(xn, xn+1))),ϕ(max{d(xn−1, xn),d(xn, xn+1))). (2.3)

We used that

M(xn−1, xn)=max
{

d(xn−1, xn),
d(xn−1, f xn−1)d(xn, f xn)

1+d( f xn−1, f xn)
,
d(xn−1, f xn−1)d(xn, f xn)

1+d(xn−1, xn)
,

d(xn−1, f xn−1)d(xn−1, f 2xn)
1+ s[d(xn−1, f xn−1)+d(xn, f xn)+d( f xn, f 2xn)]

,
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d(xn−1, f xn−1)d(xn−1, f xn)
1+d(xn−1, f xn)+d(xn, f xn−1)

}
=max

{
d(xn−1, xn),

d(xn−1, xn)d(xn, xn+1)
1+d(xn, xn+1)

,
d(xn−1, xn)d(xn, xn+1)

1+d(xn−1, xn)
,

d(xn−1, xn)d(xn−1, xn+2)
1+ s[d(xn−1, xn)+d(xn, xn+1)+d(xn+1, xn+2)]

,

d(xn−1, xn)d(xn−1, xn+1)
1+d(xn−1, xn+1)+d(xn, xn)

}
≤max

{
d(xn−1, xn),d(xn−1, xn),d(xn, xn+1),

d(xn−1, xn)s[d(xn−1, xn)+d(xn, xn+1)+d(xn+1, xn+2)]
1+ s[d(xn−1, xn)+d(xn, xn+1)+d(xn+1, xn+2)]

,

d(xn−1, xn)d(xn−1, xn+1)
1+d(xn−1, xn+1)

}
≤max{d(xn−1, xn),d(xn, xn+1)}.

If for some n ≥ 1, max{d(xn−1, xn),d(xn, xn+1)}= d(xn, xn+1), then from (2.3) we obtain

ψ(sd(xn, xn+1))≤ F(ψ(d(xn, xn+1)),ϕ(d(xn, xn+1)))

≤ψ(d(xn, xn+1))≤ψ(sd(xn, xn+1)). (2.4)

Thus ψ(d(xn, xn+1)) = 0 or ϕ(d(xn, xn+1)) = 0. This implies that d(xn, xn+1) = 0, which is a
contradiction. We deduce that max{d(xn−1, xn),d(xn, xn+1)} = d(xn−1, xn) for all n ≥ 1. Again
by (2.3), we have

ψ(sd(xn, xn+1))≤ F(ψ(d(xn−1, xn)),ϕ(d(xn−1, xn)))

≤ψ(d(xn−1, xn))≤ψ(sd(xn−1, xn)),

which implies that

d(xn, xn+1)≤ d(xn−1, xn), for all n ≥ 1. (2.5)

The sequence {d(xn, xn+1)} is decreasing, and so there exists r ≥ 0 such that lim
n→∞d(xn, xn+1)= r.

Assume that r > 0. Letting with n →∞ in (2.3),

ψ(sr)≤ F(ψ(r),ϕ(r))≤ψ(r)≤ψ(sr).

So ψ(r)= 0 or ϕ(r)= 0. This implies that r = 0, which is a contradiction. Hence (2.2) is proved.

Step 2: We have xn 6= xm for all n,m ∈N.
We argue by contradiction. Assume that xn = xm for some n > m, so xn+1 = f xn = f xm = xm+1.
By continuing this process, xn+k = xm+k for each k ∈N. Then (2.1) implies that

ψ(d(xm, xm+1))=ψ(d(xn, xn+1))

≤ψ(sd(xn, xn+1))=ψ(sd( f xn−1, f xn))

≤ F(ψ(M(xn−1, xn)),ϕ(M(xn−1, xn)))

≤ F
(
ψ(max{d(xn−1, xn),d(xn, xn+1)),ϕ

(
max{d(xn−1, xn),d(xn, xn+1)}

)
.
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If max{d(xn−1, xn),d(xn, xn+1)}= d(xn, xn+1) for some n ≥ 1, then

ψ(d(xm, xm+1))=ψ(d(xn, xn+1))

≤ψ(sd(xn, xn+1))

=ψ(sd( f xn−1, f xn))

≤ F(ψ(d(xn, xn+1)),ϕ(d(xn, xn+1)))

≤ψ(d(xn, xn+1))

=ψ(d(xm, xm+1)).

So, ψ(d(xn, xn+1)) = 0 or ϕ(d(xn, xn+1)) = 0. This implies that d(xn, xn+1) = 0, which is a
contradiction. Thus max{d(xn−1, xn),d(xn, xn+1)}= d(xn−1, xn) for all n ≥ 1. Then we obtain

ψ(d(xm, xm+1))<ψ(d(xn−1, xn))

≤ F(ψ(M(xn−2, xn−1)),ϕ(M(xn−2, xn−1)))

≤ψ(d(xn−2, xn−1))
...

≤ F(ψ(M(xm, xm+1)),ϕ(M(xm, xm+1)))

= F(ψ(d(xm, xm+1)),ϕ(d(xm, xm+1)))

<ψ(d(xm, xm+1)).

Thus ψ(d(xm, xm+1)) = 0 or ϕ(d(xm, xm+1)) = 0. This implies that d(xm, xm+1) = 0, which is a
contradiction. That is, we can assume that xn 6= xm for all n 6= m.

Step 3: We will show that {xn} is a b-g.m.s Cauchy sequence.
Using the b-rectangular inequality and a property of ψ in (2.1),

ψ(d(xn, xm))≤ψ(sd(xn, xn+1)+ sd(xn+1, xm+1)+ sd(xm+1, xm))

≤ψ(sd(xn, xn+1))+ψ(sd(xn+1, xm+1))+ψ(sd(xm+1, xm))

≤ψ(sd(xn, xn+1))+F(ψ(M(xn, xm)),ϕ(M(xn, xm)))+ψ(sd(xm, xm+1)). (2.6)

But,

d(xn, xm)≤ M(xn, xm)

=max
{

d(xn, xm),
d(xn, f xn)d(xm, f xm)

1+d( f xn, f xm)
,
d(xn, f xn)d(xm, f xm)

1+d(xn, xm)
,

d(xn, f xn)d(xn, f 2xm)
1+ s[d(xn, f xn)+d(xm, f xm)+d( f xm, f 2xm)]

,

d(xn, f xn)d(xn, f xm)
1+d(xn, f xm)+d(xm, f xn)

}
. (2.7)

Therefore, from (2.2) and (2.7)

limsup
m,n→∞

M(xn, xm)= limsup
m,n→∞

d(xn, xm). (2.8)
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Taking limsup as m,n →∞ in (2.6) and applying again (2.2), we get

ψ(limsup
m,n→∞

d(xn, xm))≤ limsup
m,n→∞

F(ψ(M(xn, xm)),ϕ(M(xn, xm)))

≤ F(ψ(limsup
m,n→∞

(M(xn, xm)),ϕ(limsup
m,n→∞

M(xn, xm)))

≤ψ(limsup
m,n→∞

M(xn, xm))

≤ψ(limsup
m,n→∞

d(xn, xm)) (2.9)

which implies that

ψ(limsup
m,n→∞

d(xn, xm))= 0 or ϕ(limsup
m,n→∞

d(xn, xm))= 0.

So

lim
m,n→∞supd(xn, xm)= 0. (2.10)

Consequently, {xn} is a b-g.m.s Cauchy sequence in X .

Step 4: We shall prove that f has a fixed point.
Since (X ,d) is b-g.m.s complete, the sequence {xn} b-g.m.s-converges to some z ∈ X , that is,
lim

n→∞d(xn, z) = 0. We shall show that such z is a fixed point of f . We argue by contradiction.
Suppose that f z 6= z. From Lemma 1.3, it follows that xn dif and only ifers from both f z and z
for n sufficiently large. Using the b-rectangular inequality,

d( f z, z)≤ sd( f z, f xn)+ sd( f xn, f xn+1)+ sd( f xn+1, z).

Taking n →∞, the continuity of f yields that f z = z. Therefore, z is a fixed point of f .

Step 5: We shall show that the set of fixed point of f is well ordered if only if f has a unique
fixed point.
Let u and v be two fixed points of f such that u 6= v. From (2.1), we obtain

ψ(d(u,v))=ψ(d( f u, f v))≤ F(ψ(M(u,v)),ϕ(M(u,v)))

= F(ψ(d(u,v)),ϕ(d(u,v))). (2.11)

But

M(u,v)=max
{

d(u,v),
d(u, f u)d(v, f v)

1+d( f u, f v)
,
d(u, f u)d(v, f v)

1+d(u,v)
,

d(u, f u)d(u, f 2v)
1+ s[d(u, f u)+d(v, f v)+d( f v, f 2v)]

,
d(u, f u)d(u, f v)

1+d(u, f v)+d(v, f u)

}
=max{d(u,v),0}= d(u,v).

Then (2.11) leads to ψ(d(u,v))= 0 or ϕ(d(u,v))= 0. This implies that d(u,v)= 0, a contradiction.
Hence u = v, and f has a unique fixed point. Conversely, if f has a unique fixed point, then the
set of fixed points of f is a singleton and hence it is well ordered.

The continuity of f in Theorem 2.1 can be dropped and be replaced by the following
hypothesis:
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(H) if {xn} is a nondecreasing sequence in X such that xn → u as n →∞, then there exists a
subsequence {xn(k)} of {xn} such that xn(k) ¹ u for all k.

Theorem 2.2. Assume that all hypotheses of Theorem 2.1 hold, except that the continuity
assumption on f is replaced by (H). Then f has a fixed point.

Proof. From the proof of Theorem 2.1, we construct an increasing Cauchy sequence {xn} with
xn 6= xm for all m 6= n in X such that xn → z ∈ X . By using (H), we obtain xn(k) ¹ z. Now, we will
show that f z = z. On contrary, assume that f z 6= z. From Lemma 1.4 and (2.1),

ψ(d(z, f z))=ψ
(
s

1
s

d(z, f z)
)

≤ψ
(
s limsup

k→∞
d(xn(k)+1, f z)

)
= limsup

k→∞
ψ(sd(xn(k)+1, f z))

≤ F
(
ψ

(
lim
k→∞

sup M(xn(k), z)
)
,ϕ

(
lim
k→∞

inf M(xn(k), z)
))

,

where

M(xn(k), z)=max
{

d(xn(k), z),
d(xn(k), f xn(k))d(z, f z)

1+d( f xn(k), f z)
,
d(xn(k), f xn(k))d(z, f z)

1+d(xn(k), z)
,

d(xn(k), f xn)d(xn(k), f 2z)
1+ s[d(xn(k), f xn(k))+d(z, f z)+d( f z, f 2z)]

,

d(xn(k), f xn(k))d(xn(k), f z)
1+d(xn(k), f z)+d(z, f xn(k))

}
.

Letting k → ∞ and using (2.2)), we get ψ(d(z, f z)) ≤ F(ψ(0),ϕ(0)) = 0, a contradiction. This
implies that z = f z.

By choosing F(s, t)= rs, where 0≤ r < 1 in Theorem 2.2, we obtain the following corollary.

Corollary 2.3 ([21]). Let (X ,¹,d) be a complete b-g.m.s. and f : X → X be an increasing mapping
with respect to ¹ such that there exists an element x0 ∈ X with x0 ¹ f x0. Assume there exists r
with 0≤ r < 1

s such that

d( f x, f y)≤ rM(x, y),

for all comparable elements x, y ∈ X , where

M(x, y)=max
{

d(x, y),
d(x, f x)d(y, f y)

1+d( f x, f y)
,
d(x, f x)d(y, f y)

1+d(x, y)
,

d(x, f x)d(x, f 2 y)
1+ s[d(x, f x)+d(y, f y)+d( f y, f 2 y)]

,
d(x, f x)d(x, f y)

1+d(x, f y)+d(y, f x)

}
.

If f is continuous or (H) holds, then f has a fixed point. Also, the set of fixed points of f is well
ordered if and only if f has one and only one fixed point.

Corollary 2.4 ([21]). Let (X ,¹,d) be a partially ordered complete b-g.m.s. and f : X → X be an
increasing mapping with respect to ¹ such that there exists an element x0 ∈ X with x0 ¹ f x0.
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Assume that

d( f x, f y)≤αd(x, y)+βd(x, f x)d(y, f y)
1+d( f x, f y)

+γd(x, f x)d(y, f y)
1+d(x, y)

+δ d(x, f x)d(x, f 2 y)
1+ s[d(x, f x)+d(y, f y)+d( f y, f 2 y)]

+λ d(x, f x)d(x, f y)
1+d(x, f y)+d(y, f x)

(2.12)

for all comparable elements x, y ∈ X , where α,β≥ 0 and α+β+γ+δ+λ< 1
s . If f is continuous

or (H) holds, then f has a fixed point.

By choosing F(s, t)= s− t in Theorem 2.2, we obtain the following corollary.

Corollary 2.5. Let (X ,¹,d) be a complete b-g.m.s. and f : X → X be an increasing mapping
with respect to ¹ such that there exists an element x0 ∈ X with x0 ¹ f x0. Assume that

ψ(d( f x, f y))≤ψ(M(x, y))−ϕ(M(x, y)),

for all comparable elements x, y ∈ X , where ψ,ϕ ∈Ψ with ψ(r+ t)≤ψ(r)+ψ(t) and

M(x, y)=max
{

d(x, y),
d(x, f x)d(y, f y)

1+d( f x, f y)
,
d(x, f x)d(y, f y)

1+d(x, y)
,

d(x, f x)d(x, f 2 y)
1+ s[d(x, f x)+d(y, f y)+d( f y, f 2 y)]

,
d(x, f x)d(x, f y)

1+d(x, f y)+d(y, f x)

}
.

If f is continuous or (H) holds, then f has a fixed point. Also, the set of fixed points of f is well
ordered if and only if f has one and only one fixed point.

Corollary 2.6. Let (X ,¹,d) be a partially ordered complete b-g.m.s. and f : X → X be an
increasing mapping with respect to ¹ such that there exists an element x0 ∈ X with x0 ¹ f x0.
Assume that

ψ(sd( f x, f y))≤ F
(
ψ(M(x, y)),ϕ(M(x, y))

)
(2.13)

for all comparable elements x, y ∈ X , where ψ ∈Ψ, ϕ ∈Φu , F ∈ C, such that (ψ,ϕ,F) is monotone,
ψ(r+ t)≤ψ(r)+ψ(t) and

M(x, y)=max
{

d(x, y),
d(x, f x)d(y, f y)

1+d( f x, f y)

}
,

If f is continuous or (H) holds, then f has a fixed point. Also, the set of fixed points of f is well
ordered if and only if f has one and only one fixed point.

Proof. It suffices to consider Definition 1.11 in Theorem 2.2.

Next, we give some results for almost generalized weakly contractive mappings. For instance,
let (X ,d) be a b-g.m.s and f : X → X be a given mapping. For x, y ∈ X , set

M(x, y)=max
{
d(x, y),d(x, f x),d(y, f y)

}
and

N(x, y)=min
{
d(x, f x),d(x, f y),d(y, f x),d(y, f y)

}
.
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Definition 2.7. Let (X ,d) be a b-g.m.s. We say that a mapping f : X → X is an almost
generalized (F,ψ,ϕ)s-contractive mapping if there exist L ≥ 0 and ψ ∈Ψ,ϕ ∈ Φu and F ∈ C

such that (ψ,ϕ,F) is monotone and ψ(r+ t)≤ψ(r)+ψ(t) with

ψ(sd( f x, f y))≤ F(ψ(M(x, y)),ϕ(M(x, y)))+Lψ(N(x, y)) (2.14)

for all x, y ∈ X .

We state the following result.

Theorem 2.8. Let (X ,¹,d) be a partially ordered complete b-g.m.s. and f : X → X be a
continuous mapping which is non-decreasing with respect to ¹. Assume that f is an almost
generalized (F,ψ,ϕ)s-contractive mapping. If there exists x0 ∈ X such that x0 ¹ f x0, then f has a
fixed point. Also, the set of fixed points of f is well ordered if and only if f has one and only one
fixed point.

Proof. Let {xn} be a sequence in X such that xn+1 = f xn. Having that x0 ¹ f x0 = x1 and f is
non-decreasing, we have

x0 ¹ x1 ¹ ·· · ¹ xn ¹ xn+1 ¹ ·· · .

Suppose that xn = xm for some n > m, then we have xn+1 = f xn = f xm = xm+1. By continuing
this process there is a positive integer k (indeed, k = n−m) such that xn = xm+k = xn+k. So we
get xn = f (xn+k−1)= f 2(xn+k−2)= ·· · = f k(xn). If k = 1, then f xn = xn, so xn is a fixed point of f .
If k > 1, according to the proof of Theorem 4 in [14], f k−1(xn) is a fixed point of f . The proof is
completed. From now on, we assume that xn 6= xm for n 6= m. By (2.14), we obtain that

ψ(d(xn, xn+1))≤ψ(sd(xn, xn+1))

=ψ(sd( f xn−1, f xn))

≤ F
(
ψ(M(xn−1, xn)),ϕ(M(xn−1, xn))

)+Lψ(N(xn−1, xn)), (2.15)

where

M(xn−1, xn)=max
{
d(xn−1, xn),d(xn−1, f xn−1),d(xn, f xn)

}
=max

{
d(xn−1, xn),d(xn, xn+1)

}
(2.16)

and

N(xn−1, xn)=min
{
d(xn−1, f xn−1),d(xn−1, f xn),d(xn, f xn−1),d(xn, f xn)

}
=min

{
d(xn−1, xn),d(xn−1, xn+1),0,d(xn, xn+1)

}= 0. (2.17)

From (2.15)–(2.17) and the properties of ψ and ϕ, we obtain

ψ(d(xn, xn+1))≤ F
(
ψ

(
max

{
d(xn−1, xn),d(xn, xn+1)

})
,ϕ

(
max

{
d(xn−1, xn),d(xn, xn+1)

}))
. (2.18)

If for some n, max
{
d(xn−1, xn),d(xn, xn+1)

}= d(xn, xn+1), then by (2.18), we have

ψ(d(xn, xn+1))≤ F(ψ(d(xn, xn+1)),ϕ(d(xn, xn+1))).

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 109–126, 2018



New Fixed Point Results via C-class Functions in b-Rectangular Metric Spaces: A.H. Ansari et al. 119

So ψ(d(xn, xn+1)) = 0 or ϕ(d(xn, xn+1)) = 0. This implies that d(xn, xn+1) = 0, which gives a
contradiction. Then for all n ≥ 1

max
{
d(xn−1, xn),d(xn, xn+1)

}= d(xn−1, xn).

Therefore, (2.18) becomes

ψ(d(xn, xn+1))≤ F(ψ(d(xn−1, xn)),ϕ(d(xn−1, xn)))≤ψ(d(xn−1, xn)). (2.19)

Thus, {d(xn, xn+1)} is a non-increasing sequence of positive numbers. Hence there exists r ≥ 0
such that

lim
n→∞d(xn, xn+1)= r.

Taking the limit n →∞ in (2.19), we obtain

ψ(r)≤ F(ψ(r),ϕ(r))≤ψ(r).

Thus ψ(r)= 0 or ϕ(r)= 0. This implies that r = 0, that is,

lim
n→∞d(xn, xn+1)= 0. (2.20)

Next, we show that {xn} is a Cauchy sequence in X . Suppose the contrary, that is, {xn} is not a
Cauchy sequence. Then there exists ε> 0 for which we can find two subsequences {xmi } and
{xni } of {xn} such that ni is the smallest index for which

ni > mi > i and d(xmi , xni )≥ ε. (2.21)

That is

d(xmi , xni−2)< ε. (2.22)

Taking the limsup as i →∞ and using (2.22), we obtain

limsup
n→∞

d(xmi , xni−2)≤ ε. (2.23)

On the other hand, we have

d(xmi , xni )≤ sd(xmi , xmi+1)+ sd(xmi+1, xni−1)+ sd(xni−1, xni ).

Using (2.20), (2.21) and taking the limsup as i →∞, we obtain
ε

s
≤ limsup

n→∞
d(xmi+1, xni−1). (2.24)

From the b-rectangle inequality, we get

d(xmi , xni )≤ sd(xmi , xni−2)+ sd(xni−2, xni−1)+ sd(xni−1, xni ).

Taking the limsup as i →∞ and using (2.20), (2.21), we have
ε

s
≤ limsup

n→∞
d(xmi , xni−2). (2.25)

Using (2.14), we get

ψ(sd(xmi+1, xni−1))=ψ(sd( f xmi , f xni−2))

≤ F(ψ(M(xmi , xni−2)),ϕ(M(xmi , xni−2)))+Lψ(N(xmi , xni−2)), (2.26)
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where

M(xmi , xni−2)=max
{
d(xmi , xni−2),d(xmi , f xmi ),d(xni−2, f xni−2)

}
=max

{
d(xmi , xni−2),d(xmi , xmi+1),d(xni−2, xni−1)

}
(2.27)

and

N(xmi , xni−2)=min
{
d(xmi , f xmi ),d(xmi , f xni−2),d(xni−2, f xmi ),d(xni−2, f xni−2)

}
=min

{
d(xmi , xmi+1),d(xmi , xni−1),d(xni−2, xmi+1),d(xni−2, xni−1)

}
. (2.28)

Taking the limsup as i →∞ in (2.27) and (2.28) and using (2.20), (2.23), we obtain

limsup
i→∞

M(xmi , xni−2)=max
{

limsup
i→∞

d(xmi , xni−2),0,0
}
≤ ε.

Therefore

limsup
i→∞

M(xmi , xni−2)≤ ε, (2.29)

and

limsup
i→∞

N(xmi , xni−2)= 0. (2.30)

Similarly, as i →∞ in (2.27) and using (2.20) and (2.25), we obtain
ε

s
≤ limsup

i→∞
M(xmi , xni−2). (2.31)

Now, taking the limsup as i →∞ in (2.26) and using (2.24), (2.29) and (2.30), we get

ψ

(
s · ε

s

)
≤ψ

(
s limsup

i→∞
d(xmi+1, xni−1)

)
≤ F

(
ψ

(
limsup

i→∞
M(xmi , xni−2)

)
, limsup

n→∞
ϕ(M(xmi , xni−2))

)
≤ F

(
ψ(ε),ϕ

(
limsup

i→∞
M(xmi , xni−2)

))
≤ψ(ε),

which implies that

ψ(ε)= 0 or ϕ
(
limsup

i→∞
M(xmi , xni−2)

)
= 0.

Hence ε= 0 or limsup
i→∞

M(xmi , xni−2) = 0, which is a contradiction with respect to (2.31). Thus

{xn+1} is a b-g.m.s. Cauchy sequence in X , which is complete, so there exists z ∈ X such that
xn → z as n →∞, that is,

lim
n→∞xn+1 = lim

n→∞ f xn = z.

Now, suppose that f is continuous. We show that z is a fixed point of f . Suppose that f z 6= z.
By Lemma 1.3, it follows that xn dif and only ifers from both f z and z for n sufficiently large.
From the b-rectangle inequality, we obtain

d(z, f z)≤ sd(z, f xn)+ sd( f xn, f xn+1)+ sd( f xn+1, f z).
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Taking the limit n →∞, we have

d(z, f z)≤ 0.

So we get f z = z, that is, z is a fixed point of f .

Note that the continuity of f in Theorem 2.8 is not necessary and can be dropped.

Theorem 2.9. Under the hypotheses of Theorem 2.8, except that the continuity assumption on f
is replaced by the hypothesis (H). Then f has a fixed point in X .

Proof. From the proof of Theorem 2.8, we construct an increasing sequence {xn} in X such that
xn → z, for some z ∈ X . From the assumption on X , we get that xn(k) ¹ z, for all k ∈N. Now, we
show that f z = z. From (2.14), we obtain

ψ(sd(xn(k)+1, f z))=ψ(sd( f xn(k), f z))

≤ F(ψ(M(xn(k), z)),ϕ(M(xn(k), z)))+Lψ(N(xn(k), z)), (2.32)

where

M(xn(k), z)=max
{
d(xn(k), z),d(xn(k), f xn(k)),d(z, f z)

}
=max

{
d(xn(k), z),d(xn(k), xn(k)+1),d(z, f z)

}
(2.33)

and

N(xn(k), z)=min
{
d(xn(k), f xn(k)),d(xn(k), f z),d(z, f xn(k)),d(z, f z)

}
=min

{
d(xn(k), xn(k)+1),d(xn(k), f z),d(z, xn(k)+1),d(z, f z)

}
. (2.34)

Taking the limit as k →∞ in (2.33) and (2.34), we obtain

M(xn(k), z)→ d(z, f z) (2.35)

and

N(xn(k), z)→ 0.

Taking the limsup as k →∞ in (2.32) and using Lemma 1.4 with (2.35), we obtain

ψ(d(z, f z)=ψ
(
s · 1

s
d(z, f z)

)
≤ψ

(
s limsup

k→∞
d(xn(k)+1, f z)

)
≤ F

(
ψ

(
limsup

k→∞
M(xn(k), z)

)
, limsup

k→∞
ϕ(M(xn(k), z))

)
≤ F

(
ψ(d(z, f z)),ϕ

(
limsup

k→∞
M(xn(k), z)

))
.

Therefore, ψ(d(z, f z)) = 0 or ϕ
(
limsup

k→∞
M(xn(k), z)

)
= 0. Consequently, ψ(d(z, f z)) = 0 or

limsup
k→∞

M(xn(k), z)= 0. Thus from (2.35), we get z = f z, that is, z is a fixed point of f .

By choosing F(s, t)= s
1+t in Theorem 2.8, we obtain the following corollary.
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Corollary 2.10. Let (X ,¹,d) be a complete b-g.m.s. and f : X → X be an increasing mapping
with respect to ¹ such that there exists an element x0 ∈ X with x0 ¹ f x0. Assume that

ψ(sd( f x, f y))≤ ψ(M(x, y))
1+ϕ(M(x, y))

+Lψ(N(x, y))

for all comparable elements x, y ∈ X , where L ≥ 0, ψ ∈Ψ,ϕ ∈Φu and F ∈C such that (ψ,ϕ,F) is
monotone and ψ(r+ t)≤ψ(r)+ψ(t) with

M(x, y)=max{d(x, y),d(x, f x),d(y, f y)}

and

N(x, y)=min{d(x, f x),d(x, f y),d(y, f x),d(y, f y)}.

If f is continuous or (H) holds, then f has a fixed point. Also, the set of fixed points of f is well
ordered if and only if f has one and only one fixed point.

The following example is inspired from [21, Example 3].

Example 2.11. Let X = {a,b, c,δ, e} be equipped with the order ¹ given by

¹= (a,a), (b,b), (c, c), (δ,δ), (e, e), (δ, c), (δ,b), (δ,a), (δ, e), (c,a), (b,a), (e,a)

and let d : X × X → [0,+∞) be given as d(x, x)= 0 for x ∈ X ,

d(x, y)= d(y, x) for x, y ∈ X ,

d(c,b)= 1,

d(a, c)= d(c, e)= d(b,a)= d(a, e)= 1
8

,

d(c,δ)= d(b,δ)= d(b, e)= d(a,δ)= d(δ, e)= 1
2

.

Then it is easy to check that (X ,¹,d) is a (complete) ordered b-g.m.s. with parameter s = 8
3 .

Consider the mapping f : X → X defined as

f =
(
a b c δ e
a a a c a

)
.

It is easy to check that all the conditions of Corollary 2.3 are fulfilled with

d( f x, f y)≤ 1
4

M(x, y).

In particular, the contractive condition in Corollary 2.3 is nontrivial only in the case when
x ∈ {a,b, c, e} and y= δ (or vice versa), when it reduces to

d( f x, f y)= d(c,a)= 1
8
= 1

4
1
2
≤ 1

4
M(x, y).

It follows that f has a fixed point (which is z = a).

The following example is inspired from [21, Example 4].
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Example 2.12. Consider the set X = A∪ [2,3], where A = {0,1/3,1/4,1/5,1/6,1/7} is endowed
with the partial order defined as follows:

t ¹ 1/4¹ 1/7¹ 1/6¹ 1/3¹ 0¹ 1/5 for all t ∈ [2,3].

Define d : X × X → [0,+∞) by

d(0,1/3)= d(1/4,1/5)= d(1/6,1/7)= 0.16,

d(0,1/4)= d(1/3,1/6)= d(1/5,1/6)= 0.09,

d(0,1/5)= d(1/3,1/4)= d(1/5,1/7)= 0.25,

d(0,1/6)= d(1/3,1/7)= d(1/4,1/7)= 0.36,

d(0,1/7)= d(1/3,1/5)= d(1/4,1/6)= 0.49,

d(x, x)= 0 and d(x, y)= d(y, x) for x, y ∈ X ,

d(x, y)= (x− y)2 if {x, y}∩ [2,3] 6= ;.

Obviously, (X ,d) is a b-g.m.s. with s = 3. Now, consider the mapping f : X → X given as

f x =


1/7 if x ∈ [2,3],
1/5 if x ∈ A\{1/4},
1/6 if x = 1/4.

It is easy to check that f is increasing with respect to ¹. Also, there exists x0 ∈ X such that
x0 ¹ f x0. In order to show that the contractive condition (2.14) is fulfilled with ψ(t)= t,ϕ(t)= 1

1000
and F(s, t)= s

1+t , we distinguish the following:

1. For x ∈ [2,3] and y ∈ A\{1/4}, we have f x = 1/7, f y= 1/5 and M(x, y)> d(x, f x)> (13/7)2 > 2, so

ψ(d( f x, f y))= 0.25< ψ(M(x, y))
1+ϕ(M(x, y))

.

2. If x ∈ [2,3] and y= 1/4, then f x = 1/7, f y= 1/6 and M(x, y)> 2, thus

ψ(d( f x, f y))= 0.16< ψ(M(x, y))
1+ϕ(M(x, y))

.

3. For x ∈ A\{1/4} and y= 1/4, f x = 1/5, f y= 1/6, M(x, y)= 0.49, we have

ψ(d( f x, f y))= 0.09< ψ(M(x, y))
1+ϕ(M(x, y))

.

Hence, all the conditions of Theorem 2.8 are satisfied and f has a unique fixed point (which is
u = 1/5).

3. A Note on Erhan’s paper “Fixed points of (ψ,ϕ) contractions on
rectangular metric spaces”

In 2012, Erhan et al. [14] studied existence and uniqueness of fixed points of a general class of
(ψ,ϕ) contractive mappings on complete rectangular metric spaces (s = 1). However, there is a
slight flaw in the proof of their main result, which is [14, Theorem 4].

Erhan et al. [14] obtained the following result:
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Theorem 3.1 ([14]). Let (X ,d) be a Hausdorff and complete g.m.s. and let T : X → X be a
self-map satisfying

ψ(d(Tx,T y))≤ψ(M(x, y))−ϕ(M(x, y))+Lm(x, y) (3.1)

for all x, y ∈ X where ψ,ϕ ∈Ψ and L ≥ 0 with

M(x, y)=max
{
d(x, y),d(x,Tx),d(y,T y)

}
,

with

m(x, y)=min
{
d(x,Tx),d(y,T y),d(x,T y),d(y,Tx)

}
.

Then T has a unique fixed point in X .

Proof. This above theorem is proved in [14] by the the following steps:

Step 1. Show that lim
n→∞d(xn, xn+1)= 0.

Step 2. Show that T has a periodic point, that is, there exist a positive integer p and a point
z ∈ X such that z = T pz.

Step 3. If p = 1, then z = Tz, so z is a fixed point of T. If p > 1, then show that T p−1z is a
fixed point of T.

Step 4. Show that the uniqueness of fixed point of T.

In Step 2, in order to show that T has a periodic point, the authors used a reduction
and absurdum and shown that {xn} is a Cauchy sequence. Since (X ,d) is complete, then {xn}
converges to a limit u ∈ X .

Authors [14] proved that u is a fixed point of the T . By taking x = xn and y= u in (3.1), they
obtained the following inequality

ψ(d(Txn,Tu))≤ψ(M(xn,u))−ϕ(M(xn,u))+Lm(xn,u), (3.2)

where

M(xn,u)=max
{
d(xn,u),d(xn,Txn),d(u,Tu)

}
,

and

m(xn,u)=min
{
d(xn,Txn),d(u,Tu),d(xn,Tu),d(u,Txn)

}
.

From Step 1, note that m(xn,u) → 0 as n →∞. In the rest of the proof, the authors [14]
considered the following three cases:

Case 1. M(xn,u)= d(xn,u).

Case 2. M(xn,u)= d(xn, xn+1).

Case 3. M(xn,u)= d(u,Tu).

Their proof is true only for Cases 1 and 2. But, proof is incorrect and unclear for Case 3.
When taking limit as n →∞ in (3.2), the authors [14] used the continuity of function d(x, y) on
rectangular metric spaces (while, we know that this function is not continuous in each of its
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coordinates in general, see [22, Example 1.1]). They also obtained

ψ(d(u,Tu))≤ψ(d(u,Tu))−ϕ(d(u,Tu)).

Then they conclude that u = Tu.
Now, we perfect and simplify the proof of Case 3. If we assume that u 6= Tu, then by

Lemma 1.4, for s = 1 we get

d(u,Tu)≤ liminf
n→∞ d(Txn,Tu)

≤ limsup
n→∞

d(Txn,Tu)

≤ d(u,Tu).

So lim
n→∞d(Txn,Tu)= d(u,Tu). Letting n →∞ in (3.2), we get

ψ(d(u,Tu))≤ψ(d(u,Tu))−ϕ(d(u,Tu)).

It follows that u = Tu, which is a contradiction. So u is a fixed point of T.

4. Conclusion
We arrived to correct the proof of Erhan et al. [14, Theorem 4]. We also established some fixed
point results in the setting of b-rectangular metric space via C-class functions.
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