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1. Introduction
Linear matrix equations show up in several scientific fields such as, system and control
theory, image processing, transportation problems, quantum mechanics (see e.g., [1, 4, 7, 17]).
The current research on (systems of) linear matrix equations can be divided into three topics.
The first one is to investigate necessary and sufficient condition for solvability and unique
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solvability of certain linear matrix equations with/without constraints, and then derive exact
formulae for solutions (if possible). The second one is to obtain solutions that minimize least-
squares errors (see e.g., [14, 21]). The last topic is to propose iterative schemes for solving linear
matrix equations and deduce their convergence analysis (e.g., [9, 22]). This paper focuses on the
first one.

One of the famous linear matrix equation, arising from stability analysis and optimal control,
is the so called Lyapunov equation: AX + X AT = C, here A, C are given square matrices, and
X is an unknown square matrix. This equation is a special case of the Sylvester equation:

AX + XB = C. (1.1)

In fact, the equation (1.1) has a unique solution for arbitrary matrix C if and only if A and −B
have no eigenvalues in common, and the solution can be represented in terms of Kronecker
products and the vector operator (e.g., [5]). Let us take a look at a generalization of (1.1), namely
the generalized Sylvester equation:

AXB+CX D = F. (1.2)

Eq. (1.2) also includes the following equations as special cases:

AXB = F, (1.3)

AXBT + X = F, (1.4)

AX AT − X = F. (1.5)

The equations (1.4) and (1.5) are known as the discrete-time Sylvester equation and the
discrete-time Lyapunov equation, respectively. The equation (1.2) plays an important role
in a generalized eigenvalue problem [8], numerical analysis for certain differential equations
[10], and stability analysis of descriptor systems [6].

A general system of coupled linear matrix equations takes the form
A1X A2 +B1Y B2 = E,

C1XC2 +D1Y D2 = F,
(1.6)

where A i , Bi , Ci , D i , E, F are given matrices for i = 1,2, and X , Y are unknown matrices. As
a special case of (1.6), a system of coupled Sylvester matrix equations:

AX +Y B = E,

XB+ AY = F
(1.7)

was investigated in [20]. More generally, the existence and uniqueness of solutions of (1.6)
when every mentioned matrix is square and CiD i = D iCi for all i = 1,2 was given in [13].
The following system was also discussed in [13]:

AXB+ AY D = E,

AX D+ AY B = F,
(1.8)

here every mentioned matrix is square. In fact, this system is uniquely solvable if and
only if A and B ± D are invertible. See more information on linear matrix equations in
[2, 3, 11, 12, 16, 18, 19, 23] and references therein.
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Our main task in the present work is to investigate a system of coupled generalized Sylvester
matrix equations in the form

AXB+CY D = E ,

CX D+ AY B = F ,
(1.9)

where A, B, C, D, E, F are rectangular complex matrices and X , Y are unknown complex
matrices. We apply Kronecker products and vector operator to reduce the system (1.9) to a
simple vector-matrix equation. Then we obtain several necessary and sufficient conditions for
solvability and unique solvability of the system (1.9) that hold for arbitrary E, F (see Section 3).
These conditions rely on Kronecker products, vector operator, Moore-Penrose inverses, and
ranks (see Section 2 for prerequisites on these topics). A discussion when the matrices E, F
are fixed in the system (1.9) is also provided (see Section 4), and in this case we obtain explicit
formulas of solutions. Cartain interesting special cases of (1.9) are also investigated. Note that
when C = 0, the system (1.9) becomes the single equation (1.3). Our result also includes (1.7)
and (1.8) as special cases.

2. Preliminaries
In this section, we provide fundamental tools for solving linear matrix equations. These tools
include Kronecker products, the vector operator, Moore-Penrose inverses, and a block-matrix
technique.

Denote by Mm,n(C) the set of m-by-n complex matrices. We abbreviate Mn,n(C) to Mn(C).

2.1 Kronecker Products and the Vector Operator
Recall that the Kronecker product of two matrices A = [ai j] ∈ Mm,n(C) and B ∈ Mp,q(C) is
defined by

A⊗B = [ai jB] ∈ Mmp,nq(C).

Lemma 1 (see e.g., [15]). The Kronecker product satisfies the following properties (provided that
every operation is well-defined):

(i) The map (A,B) 7→ A⊗B is bilinear.

(ii) Compatability with transpose: (A⊗B)T = AT ⊗BT .

(iii) Mixed product property: (A⊗B)(C⊗D)= AC⊗BD.

(iv) Compatability with ordinary inverse: A⊗B is invertible if and only if both A and B are
invertible, in which case (A⊗B)−1 = A−1 ⊗B−1.

(v) rank(A⊗B)= (rank A)(rankB).

The vector operator is a column-stacking operator assigned to a matrix A ∈ Mm,n(C) by

Vec A = [a11 a21 . . . am1 a12 a22 . . . am2 . . . a1n a2n . . . amn]T ∈Cmn.

This operator is clearly linear and bijective.
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Lemma 2 (see e.g., [15]). The vector operator can turn the usual matrix product to the Kronecker
product as follows:

Vec(AXB)= (BT ⊗ A)Vec X ,

provided that every operation is well-defined.

2.2 Moore-Penrose Inverse and Linear Equations
Every matrix A ∈ Mm,n(C) admits its Moore-Penrose inverse, which is the matrix A† ∈ Mn,m(C)
satisfying the following four conditions:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

If A ∈ Mn(C) is invertible, then A† = A−1. A simple and accurate way to compute the Moore-
Penrose inverse is to use the singular value decomposition. Indeed, for any A ∈ Mm,n(C) we can
decompose A =UΣV∗ where U ∈ Mm(C) is unitary, V ∈ Mn(C) is unitary and Σ= [di j] ∈ Mm,n(C)
is a rectangular diagonal matrix with nonnegative entries. Then A† =VΣ†U∗ where

Σ† = [d†
i j], d†

i j =
{

d−1
i j , di j 6= 0

0, di j = 0.

Lemma 3 (see e.g., [15]). Let A ∈ Mm,n(C) and B ∈ Mp,q(C). Then

(i) (A†)T = (AT)†,

(ii) (A⊗B)† = A† ⊗B†.

Lemma 4 (see e.g., [15]). Let A ∈ Mm,n(C) and b ∈Cm. The following statements are equivalent:

(i) The vector-matrix equation Ax = b has a solution x.

(ii) rank[A |b ]= rank A.

(iii) AA†b = b.

In the above case, the general solution is given by x = A†b+ (I − A†A)q where q ∈Cm is arbitrary.

Lemma 5 (see e.g., [15]). Let A ∈ Mm,n(C). The following statements are equivalent:

(i) The system Ax = b is consistent for every b ∈Cm.

(ii) A has full row rank.

(iii) AA† = Im.

Lemma 6 (see e.g., [15]). Let A ∈ Mm,n(C). Assume that the system Ax = b is consistent for every
b ∈Cm. Then the following statements are equivalent:

(i) The system Ax = b is uniquely solvable for every b ∈Cm.

(ii) A has full column rank.

(iii) A†A = In.

Communications in Mathematics and Applications, Vol. 8, No. 3, pp. 365–378, 2017



Solvability, Unique Solvability, and Representation of Solutions. . . : T. Nuchniyom and P. Chansangiam 369

2.3 A Block Matrix Technique
Recall the following fact; its proof is provided for benefits of audiences.

Lemma 7. Let A,B,C,D ∈ Mn(C) be such that A is invertible. Then T ≡
[

A B
C D

]
is invertible if

and only if D−CA−1B is invertible.

Proof. One can observe the following matrix decomposition:[
In 0

−CA−1 In

][
A B
C D

]
=

[
A B
0 D−CA−1B

]
.

Taking determinants yields

det
[

In 0
−CA−1 In

]
det

[
A B
C D

]
= det

[
A B
0 D−CA−1B

]
,

and hence, det(T)= det(A)det(D−CA−1B). Therefore, T is invertible if and only if D−CA−1B
is invertible.

3. Equivalent Conditions for Solvability and Unique Solvability
for Arbitrary E, F

In this section, we investigate necessary and sufficient conditions for the rectangular system
of coupled generalized Sylvester matrix equations (1.9) to be solvable and uniquely solvable
for arbitrary E, F . Our main idea is to reduce the main system (1.9) to a simple vector-matrix
equation by using Kronecker product, vector operator, and block-matrix algebra. Such vector-
matrix equation can be treated by using Moore-Penrose inverses and rank argument.

Theorem 1. Let A,C ∈ Mm,n(C) and B,D ∈ Mp,q(C). Denote

H =
[

BT ⊗ A DT ⊗C
DT ⊗C BT ⊗ A

]
, P = BT ⊗ A+DT ⊗C, Q = BT ⊗ A−DT ⊗C.

Then the following statements are equivalent:

(i) The system (1.9) is solvable for arbitrary E,F ∈ Mm,q(C).

(ii) The vector-matrix equation Hx = b is solvable for arbitrary b ∈C2mq.

(iii) rankH = 2mq.

(iv) HH† = I2mq.

(v) The equation Px1 = b1 is solvable for arbitrary b1 ∈ Cmq and the equation Qx2 = b2 is
solvable for arbitrary b2 ∈Cmq.

(vi) rankP = rankQ = mq.

(vii) PP† =QQ† = Imq.

Proof. Taking the vector operator to (1.9) and then using Lemma 2, we get

(BT ⊗ A)Vec X + (DT ⊗C)VecY =VecE,

(DT ⊗C)Vec X + (BT ⊗ A)VecY =VecF.
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For convenience, let us denote

x =
[
Vec X
VecY

]
, b =

[
VecE
VecF

]
,

U = 1p
2

[
Imq −Imq
Imq Imq

]
, V = 1p

2

[
Inp Inp
−Inp Inp

]
.

The system (1.9) is equivalent to the vector-matrix equation Hx = b due to the injectivity of the
vector operator. By Lemma 5, the conditions (ii)− (iv) are equivalent. One can decompose H as
follows:

H =U
[
BT ⊗ A+DT ⊗C 0

0 BT ⊗ A−DT ⊗C

]
V

=U
[
P 0
0 Q

]
V .

(3.1)

A direct computation reveals that

HH† =U
[
P 0
0 Q

]
VV∗

[
P† 0
0 Q†

]
U∗

= 1
2

[
Imq −Imq
Imq Imq

][
PP† 0

0 QQ†

][
Imq Imq
−Imq Imq

]
= 1

2

[
PP† +QQ† PP† −QQ†

PP† −QQ† PP† +QQ†

]
.

Hence, the condition (iv) is equivalent to

PP† +QQ† = 2Imq and PP† −QQ† = 0,

which can be reduced to PP† =QQ† = Imq. Lemma 5 tells us that the conditions (v)− (vii) are
equivalent.

Theorem 2. Let A,C ∈ Mm,n(C) and B,D ∈ Mp,q(C). Denote the matrices H,P,Q as in Theorem
1. Assume that the system (1.9) is solvable for arbitrary E,F ∈ Mm,q(C). Then the following
statements are equivalent:

(i) The system (1.9) is uniquely solvable for arbitrary E,F ∈ Mm,q(C).

(ii) The vector-matrix equation Hx = b is uniquely solvable for arbitrary b ∈C2mq.

(iii) rankH = 2np.

(iv) H†H = I2np.

(v) The equation Px1 = b1 is uniquely solvable for arbitrary b1 ∈ Cmq and the equation
Qx2 = b2 is uniquely solvable for arbitrary b2 ∈Cmq.

(vi) rankP = rankQ = np.

(vii) P†P =Q†Q = Inp .

Proof. By applying the vector operator, the conditions (i) and (ii) can be seen to be equivalent.
The conditions (ii)-(iv) are equivalent by Lemma 6. From the decomposition (3.1), we have

H†H =V∗
[
P† 0
0 Q†

]
U∗U

[
P 0
0 Q

]
V
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= 1
2

[
Inp −Inp
Inp Inp

][
P†P 0

0 Q†Q

][
Inp Inp
−Inp Inp

]
= 1

2

[
P†P +Q†Q P†P −Q†Q
P†P −Q†Q P†P +Q†Q

]
.

Hence, the condition (iv) is equivalent to

P†P +Q†Q = 2Inp and P†P −Q†Q = 0,

which can be reduced to P†P =Q†Q = Inp. Lemma 6 tells us that the conditions (v)− (vii) are
equivalent.

4. Equivalent Conditions for Solvability and Unique Solvability
for Fixed E, F, and Representation of Solutions

In this section, we investigate existence and uniqueness of solution for the system (1.9) and its
interesting special cases. Exact formula of the unique solution is explicitly presented.

Theorem 3. Let A,C ∈ Mm,n(C), B,D ∈ Mp,q(C) and E,F ∈ Mm,q(C). Denote the matrices P,Q
as in Theorem 1. Consider the coupled generalized Sylvester matrix equations

AXB+CY D = E,

CX D+ AY B = F.
(4.1)

Then the following statements are equivalent:

(i) The system (4.1) has a solution.

(ii) rankP +rankQ = rank
[

BT ⊗ A DT ⊗C VecE
DT ⊗C BT ⊗ A VecF

]
.

(iii)
(
2Imq − (PP† +QQ†)

)
VecE = (PP† −QQ†)VecF , and(

2Imq − (PP† +QQ†)
)
VecF = (PP† −QQ†)VecE.

In the above case, the general solution is given by

Vec X = 1
2

[
(P† +Q†)VecE+ (P† −Q†)VecF + (2Inp − (P†P +Q†Q))q1 − (P†P −Q†Q)q2

]
,

VecY = 1
2

[
(P† −Q†)VecE+ (P† +Q†)VecF − (P†P −Q†Q)q1 + (2Inp − (P†P +Q†Q))q2

]
where q1, q2 ∈Cnp are arbitrary.

Proof. Denote the matrix H and the vector b as in Theorem 1. Then the system (4.1) is
equivalent to the vector-matrix equation Hx = b. From the decomposition (3.1), since U and V
are invertible, we have

rankH = rank
[
P 0
0 Q

]
= rankP +rankQ.

By Lemma 4, the conditions (i) and (ii) are equivalent. Lemma 4 also implies that the system
(4.1) is consistent if and only if HH†b = b. One can compute

HH†b = 1
2

[
PP† +QQ† PP† −QQ†

PP† −QQ† PP† +QQ†

][
VecE
VecF

]
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= 1
2

[
(PP† +QQ†)VecE+ (PP† −QQ†)VecF
(PP† −QQ†)VecE+ (PP† +QQ†)VecF

]
.

It follows that the conditions (i) and (iii) are equivalent.
If the solution x exists, Lemma 4 ensures that it must be in the form

x = H†b+ (I2np −H†H)q ,

where q ∈C2np is arbitrary. Setting q =
[

q1
q2

]
when q1, q2 ∈Cnp, we have

x =V∗
[
P† 0
0 Q†

]
U∗

[
VecE
VecF

]
+

([
Inp 0
0 Inp

]
− 1

2

[
P†P +Q†Q P†P −Q†Q
P†P −Q†Q P†P +Q†Q

])[
q1
q2

]
= 1

2

[
(P† +Q†)VecE+ (P† −Q†)VecF
(P† −Q†)VecE+ (P† +Q†)VecF

]
+ 1

2

[ (
2Inp − (P†P +Q†Q)

)
q1 − (P†P −Q†Q)q2

−(P†P −Q†Q)q1 +
(
2Inp − (P†P +Q†Q)

)
q2

]
= 1

2

[
(P† +Q†)VecE+ (P† −Q†)VecF + (

2Inp − (P†P +Q†Q)
)
q1 − (P†P −Q†Q)q2

(P† −Q†)VecE+ (P† +Q†)VecF − (P†P −Q†Q)q1 +
(
2Inp − (P†P +Q†Q)

)
q2

]
.

Therefore, the general (vector) solution of system (4.1) is given by

Vec X = 1
2

[
(P† +Q†)VecE+ (P† −Q†)VecF + (2Inp − (P†P +Q†Q))q1 − (P†P −Q†Q)q2

]
,

VecY = 1
2

[
(P† −Q†)VecE+ (P† +Q†)VecF − (P†P −Q†Q)q1 + (2Inp − (P†P +Q†Q))q2

]
.

Theorem 4. Let A,B,C,D,E,F ∈ Mn(C). Denote P = BT ⊗ A+DT ⊗C and Q = BT ⊗ A−DT ⊗C.
Then the system (4.1) has a unique solution if and only if P and Q are invertible. In this case,
the unique solution is given by

Vec X = 1
2

[
P−1(VecE+VecF)+Q−1(VecE−VecF)

]
,

VecY = 1
2

[
P−1(VecE+VecF)−Q−1(VecE−VecF)

]
.

Proof. As in the proof Theorem 1, the system (4.1) is equivalent to the vector-matrix equation
Hx = b. The decomposition (3.1) says that the system (4.1) has a unique solution if and only if
both P and Q are invertible. To obtain the unique solution of (4.1), we substitute P† = P−1 and
Q† =Q−1 into the general solution of Theorem 3, and we thus obtain

Vec X = 1
2

[
(P−1 +Q−1)VecE+ (P−1 −Q−1)VecF + (2In2 − (P−1P +Q−1Q))q1 − (P−1P −Q−1Q)q2

]
= 1

2
[
P−1(VecE+VecF)+Q−1(VecE−VecF)

]
.

Similarly, we get the above formula of VecY .

Theorem 5. Let A,C ∈ Mn(C), B,D ∈ Mp(C) and E,F ∈ Mn,p(C) be such that A and
B are invertible. Then the system (4.1) has a unique solution if and only if BT ⊗ A −(
(DB−1D)T ⊗CA−1C

)
is invertible.

Proof. From the proof of Theorem 3, we see that the system (4.1) has a unique solution if and
only if the matrix

H =
[

BT ⊗ A DT ⊗C
DT ⊗C BT ⊗ A

]
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is invertible. Since A and B are invertible, so is BT ⊗ A by Lemma 1. Then Lemma 7 implies
that the invertibility of H is equivalent to that of

(BT ⊗ A)− (DT ⊗C)(BT ⊗ A)−1(DT ⊗C),

which can be reduced to that of BT ⊗ A− (
(DB−1D)T ⊗CA−1C

)
by Lemma 1.

Theorem 6. Let A ∈ Mm,n(C), B,D ∈ Mp,q(C) and E,F ∈ Mm,q(C). Consider the following
coupled linear matrix equations

AXB+ AY D = E,

AX D+ AY B = F.
(4.2)

Then the following statements are equivalent:

(i) The system (4.2) has a solution.

(ii) (rank A) (rank(B+D)+rank(B−D))= rank
[

BT ⊗ A DT ⊗ A VecE
DT ⊗ A BT ⊗ A VecF

]
.

(iii) The following two conditions hold:

AA†[(E+F)(B+D)†(B+D)+ (E−F)(B−D)†(B−D)
]= 2E, (4.3)

AA†[(E+F)(B+D)†(B+D)− (E−F)(B−D)†(B−D)
]= 2F. (4.4)

In the above case, the general solution is given by

X =Q1 + 1
2

[
A†{(E+F)(B+D)† + (E−F)(B−D)†}

− A†A
{
(Q1 +Q2)(B+D)(B+D)† + (Q1 −Q2)(B−D)(B−D)†}], (4.5)

Y =Q2 + 1
2

[
A†{(E+F)(B+D)† − (E−F)(B−D)†}

− A†A
{
(Q1 +Q2)(B+D)(B+D)† − (Q1 −Q2)(B−D)(B−D)†}], (4.6)

where Q1,Q2 ∈ Mn,p(C) are arbitrary.

Proof. Denote R = (B+D)T⊗A and S = (B−D)T⊗A. In the viewpoint of Theorem 3 when A = C,
the existence of a solution of the system (4.2) is equivalent to any of the following conditions:

(ii)′ rankR+rankS = rank
[

BT ⊗ A DT ⊗ A VecE
DT ⊗ A BT ⊗ A VecF

]
,

(iii)′ The following two conditions hold:(
2Imq − (RR† +SS†)

)
VecE = (RR† −SS†)VecF, (4.7)(

2Imq − (RR† +SS†)
)
VecF = (RR† −SS†)VecE. (4.8)

By Lemma 1, we have

rankR = (rank A)(rank(B+D)), rankS = (rank A)(rank(B−D)).

Hence, the condition (ii)′ becomes the condition (ii). Now, we shall show that the equation (4.7)
is reduced to (4.3). Indeed, by Lemma 3, we have

R† = ((B+D)†)T ⊗ A†, S† = ((B−D)†)T ⊗ A†.
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It follows that

RR† = (
(B+D)†(B+D)

)T ⊗ AA†,

SS† = (
(B−D)†(B−D)

)T ⊗ AA†.

Hence,

(RR† +SS†)VecE =Vec
[
AA†E

{
(B+D)†(B+D)+ (B−D)†(B−D)

}]
,

(RR† −SS†)VecF =Vec
[
AA†F

{
(B+D)†(B+D)− (B−D)†(B−D)

}]
.

Now, the equation (4.7) becomes

2E− AA†E
[
(B+D)†(B+D)+ (B−D)†(B−D)

]= AA†F
[
(B+D)†(B+D)− (B−D)†(B−D)

]
.

which is equivalent to (4.3). Similarly, (4.8) and (4.4) are equivalent.
To obtain a formula of the general solution, note that Theorem 3, Lemma 1 and Lemma 3

together imply that

Vec X = 1
2

[
K1 VecE+K2 VecF +K3q1 +K4q2

]
,

VecY = 1
2

[
K2 VecE+K1 VecF +K4q1 +K3q2

]
,

where q1, q2 ∈Cnp are arbitrary, and

K1 =
(
(B+D)† + (B−D)†)T ⊗ A†,

K2 =
(
(B+D)† − (B−D)†)T ⊗ A†,

K3 = 2Inp −
[(

(B+D)(B+D)† + (B−D)(B−D)†)T ⊗ A†A
]
,

K4 =−(
(B+D)(B+D)† − (B−D)(B−D)†)T ⊗ A†A.

The bijectivity of Vec implies that q1 =VecQ1 and q2 =VecQ2 for some unique Q1,Q2 ∈ Mn,p(C),
respectively. Then by Lemmas 2 and 3, we have

K1 VecE =Vec
[
A†E

(
(B+D)† + (B−D)†)],

K2 VecF =Vec
[
A†F

(
(B+D)† − (B−D)†)],

K3q1 =Vec
[
2Q1 − A†AQ1

(
(B+D)(B+D)† + (B−D)(B−D)†)],

K4q2 =Vec
[− A†AQ2

(
(B+D)(B+D)† − (B−D)(B−D)†)].

Since the vector operator is linear and bijective, we obtain

X =1
2

[
A†E

(
(B+D)† + (B−D)†)+ A†F

(
B+D)† − (B−D)†)

+2Q1 − A†AQ1
(
(B+D)(B+D)† + (B−D)(B−D)†)

− A†AQ2
(
(B+D)(B+D)† − (B−D)(B−D)†)],

which can be reformed to the desired formula (4.5). Similarly, we get the formula of Y as
(4.6).
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Corollary 1. Let A,B,D,E,F ∈ Mn(C). The system (4.2) has a unique solution if and only if
A,B+D and B−D are invertible. In this case, the unique solution is given by

X = 1
2

A−1[(E+F)(B+D)−1 + (E−F)(B−D)−1],
Y = 1

2
A−1[(E+F)(B+D)−1 − (E−F)(B−D)−1].

Proof. In the viewpoint of Theorem 4 when A = C, the system (4.2) has a unique solution if and
only if (B+D)T ⊗ A and (B−D)T ⊗ A are invertible. By Lemma 1, this condition is equivalent
to the invertibility of A, B+D and B−D. The formula of unique solution can be obtained by
substituting the Moore-Penrose inverses of A, B+D, B−D with their ordinary inverses in (4.5)
and (4.6).

Corollary 1 was obtained in [13, Theorem 4.11] under the restrict condition AB = BA.

Corollary 2. Let A ∈ Mn(C), B,D ∈ Mp(C) and E,F ∈ Mn,p(C) be such that A and B are
invertible. Then the system (4.2) has a unique solution if and only if B−DB−1D is invertible.

Proof. The idea of proof is similar to the proof of Theorem 5.

Theorem 7. Let A,C ∈ Mm,n(C), B ∈ Mp,q(C) and E,F ∈ Mm,q(C). Consider the following coupled
linear matrix equations

AXB+CY B = E,

CXB+ AY B = F.
(4.9)

Then the following statements are equivalent:

(i) The system (4.9) has a solution.

(ii) (rankB) (rank(A+C)+rank(A−C))= rank
[
BT ⊗ A BT ⊗C VecE
BT ⊗C BT ⊗ A VecF

]
.

(iii) The following two conditions hold:[
(A+C)(A+C)†(E+F)+ (A−C)(A−C)†(E+F)

]
B†B = 2E, (4.10)[

(A+C)(A+C)†(E+F)− (A−C)(A−C)†(E+F)
]
B†B = 2F. (4.11)

In the above case, the general solution is given by

X = Q1 + 1
2

[{
(A+C)†(E+F)+ (A−C)†(E−F)

}
B†

−{
(A+C)†(A+C)(Q1 +Q2)+ (A−C)†(A−C)(Q1 −Q2)

}
BB†], (4.12)

Y =Q2 + 1
2

[{
(A+C)†(E+F)− (A−C)†(E−F)

}
B†

−{
(A+C)†(A+C)(Q1 +Q2)− (A−C)†(A−C)(Q1 −Q2)

}
BB†

]
,

(4.13)

where Q1, Q2 ∈ Mn,p(C) are arbitrary.
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Proof. The idea of proof is similar to that of Theorem 6. In this case, the general solution is
given by

Vec X = 1
2

[
J1 VecE+ J2 VecF + J3q1 + J4q2

]
,

VecY = 1
2

[
J2 VecE+ J1 VecF + J4q1 + J3q2

]
,

where q1, q2 ∈Cnp are arbitrary, and

J1 = (B†)T ⊗{
(A+C)† + (A−C)†},

J2 = (B†)T ⊗{
(A+C)† − (A−C)†},

J3 = 2Inp −
[
(BB†)T ⊗{

(A+C)†(A+C)+ (A−C)†(A−C)
}]

,

J4 =−(BB†)T ⊗{
(A+C)†(A+C)− (A−C)†(A−C)

}
.

We arrive at (4.12) and (4.13) by using properties of the vector operator.

Corollary 3. Let A,B,C,E,F ∈ Mn(C). The system (4.9) has a unique solution if and only if
B, A+C and A−C are invertible. In this case, the unique solution is given by

X = 1
2

[
(A+C)−1(E+F)+ (A−C)−1(E−F)

]
B−1,

Y = 1
2

[
(A+C)−1(E+F)− (A−C)−1(E−F)

]
B−1.

Proof. The criterion for uniqueness of solution follows from Theorem 4 by setting B = D. The
formula of the solutions X and Y can be derived from (4.12) and (4.13) by substituting the
Moore-Penrose inverses of B, A+C, A−C with their ordinary inverses.

Corollary 3, under the restrict condition AB = BA, was obtained in [13, Theorem 4.10].

Corollary 4. Let A,C ∈ Mn(C), B ∈ Mp(C) and E,F ∈ Mn,p(C). If A and B are invertible, then
the system (4.9) has a unique solution if and only if A−CA−1C is invertible.

Proof. The proof is similar to that of Theorem 5.

5. Conclusions
We investigate the following system of coupled generalized Sylvester matrix equations:

AXB+CY D = E,

CX D+ AY B = F
where A, B, C, D, E, F are rectangular complex matrices and X , Y are unknown complex
matrices. Equivalent conditions for solvability and unique solvability of the system that hold
for arbitrary E, F and for given E, F are obtained in terms of Kronecker products, the vector
operator, Moore-Penrose inverses, and ranks. Explicit formulas of solutions are also presented.
Moreover, we discuss several special cases of this system.
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