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1. Introduction
In 1916, formal definition of uniform distribution with modulo 1 (u.d. mod 1) was given by
H. Weyl in ([15], [16]).

Let x̃ = (xn) be a sequence of non-negative real numbers and (an) be congruence (mod 1) of x̃.
If

lim
N→∞

1
N

N∑
h=1

f (an)=
∫ 1

0
f (x)d(x)

holds, for every real valued function f defined on [0,1], then x̃ = (xn) is called (u.d. mod 1).
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Also, H. Weyl gave a theorem that known as Weyl Criteria: let m be a non-zero integer and
f (x)= e2πix be a function defined on [0,1]

lim
N→∞

1
N

N∑
h=1

e(man)=
∫ 1

0
e(mx)d(x)= 0,

where e(man)= e2πiman .

In 1953 as a generalization of (u.d. mod 1) the notation of uniformly distributed mod ∆ was
introduced by W.J. Le Veque in [13].

Let ∆ be a subdivision of the interval [0,∞) such that ∆ := {z0, z1, . . .} where 0 = z0 < z1 <
. . .< zn < . . . and lim

n→∞zn =∞.

For zn−1 ≤ x < zn, integer part and fractional part of x ∈ [0,∞) are defined respectively as

[x]∆ := zn−1, {x}∆ := x− [x]∆
δ(x)

,

where δ(x) := zn − zn−1. It is clear that 0≤ {x}∆ < 1.

If zk = k for all k ∈N, then ∆ is called the natural subdivision of [0,∞) and it is denoted by
∆0 = {1,2,3, . . .} and ∆-integer and ∆-fractional part reduces to [xn]∆ = [xn] and {xn}∆ = {xn} (see
more [12]).

Let x̃ = (xk) be a sequence of non-negative real numbers. If the sequence x̃∆ = ({xk}∆) is
uniformly distributed in [0,1], then the sequence x̃ = (xk) is said to be uniformly distributed
modulo ∆ (abbreviated u.d. mod ∆).

In 1960, the concept (u.d. mod ∆) was studied by J. Cigler, and given some results about (u.d.
mod ∆) in [3].

Let T = (tnk) be a positive Toeplitz matrix and lim
n→∞

∞∑
k=1

tnk = 1 satisfied.

For a non-negative real valued sequence x̃ = (xk) and characteristic function ϕα(x̃) of [0,α)
with 0≤α≤ 1,

lim
n→∞

∞∑
k=1

tnkϕα({xk})= z(α)

holds. Where z(α)=α and z(0)= 0, z(1)= 1.

If f is a continuous function defined on [0,1], then

lim
n→∞

∞∑
k=1

tnk f (xk)=
∫ 1

0
f (x)dz(x)

satisfied. In the same paper, J. Cigler also gave analogue of Weyl Criteria for a positive Toeplitz
matrix. For q is a non-zero integers and if f (x)= e2πiqx, then we have

lim
n→∞

1
n

n∑
k=1

tnke2πiqxk =
∫ 1

0
e2πiqxdz(x).

In literature, this notion was studied by H. Davenport and W.J. Le Veque [8], P. Erdös and
H. Davenport [7], W.M. Schmidt [14], and R.E. Burkard [1, 2].
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A detailed survey of the results on (u.d. mod 1) prior to 1936 can be found by J.F. Koksma
in [11]. The period from 1936 to 1961 is covered in the survey article of J. Cigler and
G. Helmberg [4]. Last four decades, there is no significant result about this notation. In this
paper, we want again to draw attention to researchers this subject.

In section 2, ∆-convergence is defined. Especially, it is shown that every convergence
sequence is ∆0-convergence but the converse is not true. (Theorem 2.5, Remark 2.6).

The relation between (u.d. mod 1) and usual convergence of sequence will be given in
section 4 with (Theorem 3.1). It is also shown that if dense subsequence of (xn) is (u.d. mod 1),
then x̃ = (xn) is (u.d. mod 1) (viceversa) (Theorem 3.3).

In the last section of this paper, we consider a lacunary sequence of positive integers and
give many inclusion results.

2. ∆-Convergence of Non-negative Sequences

Let x̃ = (xn) be a sequence of non-negative real numbers and ∆ := {0 = z0 < z1 < z2 < . . .}
be a subdivision of the interval [0,∞). For all n ∈ N, there exists a unique n ∈ N such that
zk−1 ≤ xn < zk holds. ∆-integer and ∆-fractional part of x̃ = (xn) are

[xn]∆ := zk−1; {xn}∆ := xn − zk−1

zk − zk−1
,

respectively, so that 0≤ {xn}∆ < 1 holds for all n ∈N.

Let’s say that during the study we consider usual partition of [0,∞) and we will use notations
[xn]∆ = [xn] and {xn}∆ = {xn} instead of [xn]∆0 and {xn}∆0 for integer and fractional part.

Definition 2.1. A sequence x̃ = (xn) of non-negative real numbers is said to be ∆-convergent if
{xn} is convergent (in usual sense).

Theorem 2.2. Let x̃ = (xn) be a sequence of non-negative real numbers and l ∈ R. If (xn) is
monotone and convergent to l, then there exists an n0 ∈N such that [xn]= [l] for all n ≥ n0.

Proof. Assume that for every n ∈N there exists kn > n such that [xkn] 6= [l]. That is; for n = 1
there exists k1 > 1 such that [xk1] 6= [l]. For k1, there exists k2 > k1 such that [xk2] 6= [l]. If we
continue this consecutively we find at least one monotone increasing sequence (kn) such that
[xkn+1] 6= [l]. Then, we have a subsequence ([xkn]) of ([xn]) such that [xkn] 6= [l] holds for all n ∈N.
Thus, [xkn] is not convergent to l. This is a contradiction to assumption on (xn).

Remark 2.3. The converse of Theorem 2.2 is not true, in general.

Let us consider x̃ = (xn) as

xn :=
{

n0 + t1, if n is even
n0 + t2, if n is odd.

for 0< t1, t2 < 1. It is clear that (xn) is not convergence. But [xn]= n0 for all n ∈N.
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Remark 2.4. Monotonicity is not omitted in Theorem 2.2.

Let us consider x̃ = (xn) as

xn :=
1− 1

n , if n is even

1+ 1
n , if n is odd.

It is clear that the sequence (xn) is convergent to 1. But ∆ integer part of x̃ = (xn) is

[xn] :=
0, if n is even

1, if n is odd.

Theorem 2.5. Let x̃ = (xn) be a sequence of non negative real numbers. If x̃ = (xn) is convergent,
then x̃ = (xn) is ∆-convergent.

Proof. Assume that there exists l ∈R such that x̃ = (xn) is convergent to l. From Theorem 2.2,
we know that there exists an n0 ∈N such that [xn]= [l] holds for all n ≥ n0. Therefore, we have

|{xn}− {l}| = |(xn − [xn])− (l− [l])| = |(xn − l)− ([xn]− [l])| ≤ |xn − l|+ |[xn]− [l]|.
So, if we take limit as n →∞, the right side of the above inequality tends to zero. Hence, we
obtain desired result.

Remark 2.6. The converse of Theorem 2.5 is not true, in general.

Let us consider x̃ = (xn) as

xn :=
n+ 1

n , if n is even,

n, if n is odd.

The sequence (xn) is not convergent. It is clear that ∆-fractional part of x̃ = (xn)

{xn} :=


1
n , if n is even,

0, if n is odd,

is convergent to zero.

Corollary 2.7. Let x̃ = (xn) be a real valued sequence. If [xn] convergent to l1 and {xn} convergent
to l2, then x̃ = (xn) convergent to l1 + l2.

Definition 2.8. Let x̃ = (xn) be a non-negative real valued sequence. It is said to be mutually
constant sequence if there exists an n0 ∈N such that for all n ≥ n0, then xn is a constant.

Theorem 2.9. Let x̃ = (xn) be a non-negative real valued sequence such that ([xn])n∈N be a
mutually constant. If ({xn})n∈N is monotone, then the sequence (xn) is convergent.

Proof. Since 0 ≤ {xn} < 1, then monotonicity of ({xn}) is enough to be convergent. Hence,
Corollary 2.7 gives the proof.

Remark 2.10. The converse of Theorem 2.9 is not true, in general.
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Let t0 ∈ (0,1) be an arbitrary point and consider monotone increasing (αn) and monotone
decreasing (βn) such that 0<αn < t0 <βn < 1 holds for all n ∈N such that lim

n→∞αn = lim
n→∞βn = t0.

Hence, let us consider x̃ = (xn) as:

xn :=
{

n0 +αn, if n is even,

n0 +βn, if n is odd.

It is clear that (xn) convergent to n0 + t0 but, the fractional part of (xn)

{xn} :=
{
αn, if n is even,

βn, if n is odd

is not monotone sequence.

Definition 2.11. A real number t ∈ [0,1) is said to be a ∆-accumulation point of x̃ = (xn) if there
exists a subsequence ({xnk })k∈N of ({xn})n∈N such that lim

k→∞
{xnk }= t.

The set of ∆-accumulation points of x̃ is shown with Y∆
x̃ . Also, Yx̃ is the set of accumulation

points of x̃.

Theorem 2.12. Let x̃ = (xn) be a sequence of non-negative real numbers. If t ∈Yx̃, then {t} ∈Y∆
x̃ .

Proof. Let t ∈ Yx̃. There exists a subsequence (xnk ) of (xn) such that (xnk ) is convergent to t.
Then, by the Theorem 2.5, ({xnk }) is convergent to {t}. Thus, the proof is obtained.

Remark 2.13. The converse of Theorem 2.12 is not true, in general.

Let (xn) = (
n+ 10

3

)
. It is clear that

{10
3

} ∉ Yx̃. Because of ({xn}) = ({10
3

})
, every subsequence

({xnk })⊂ ({xn}) is convergent to
{10

3

}
. So,

{10
3

} ∈Y∆
x̃ .

Corollary 2.14. Let x̃ = (xn) be a sequence of non-negative real numbers. Then, Y∆
x̃ 6= ;.

Proof. From Bolzano-Weierstrass Theorem, we know that every bounded sequence has a limit
point. Then, since 0≤ {xn}< 1, then Y∆

x̃ 6= ;.

Definition 2.15. A sequence x̃ = (xn) of non-negative real numbers is said to be ∆-Cauchy
sequence if ({xn}) is Cauchy sequence.

Theorem 2.16. Let x̃ = (xn) be a non-negative real valued sequence. Then, x̃ = (xn) is ∆-
convergent if and only if x̃ = (xn) is ∆-Cauchy sequence.

Proof. Let x̃ = (xn) be ∆-convergent. Then, {xn} is convergent to {α}, α ∈R. Therefore, we have

|{xn}− {xm}| = |{xn}− {α}+ {α}− {xm}| ≤ |{xn}− {α}|+ |{xm}− {α}|
Since, {xn} is Cauchy sequence, then x̃ = (xn) is ∆-Cauchy sequence. On the other hand, let
x̃ = (xn) be ∆-Cauchy sequence. Since every closed subset of complete metric space R is complete,
then the sequence ({xn})n∈N is convergent and x̃ = (xn) is ∆-convergent.
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Corollary 2.17. Let x̃ = (xn) be a non-negative real valued sequence. If x̃ = (xn) is convergent,
then x̃ = (xn) is ∆-Cauchy sequence.

Proof. By the Theorem 2.5, since x̃ = (xn) is convergent, then x̃ = (xn) is ∆-convergent. Then, by
the Theorem 2.16, x̃ = (xn) is ∆-Cauchy sequence.

Theorem 2.18. Let x̃ = (xn) be a non-negative real valued sequence such that [xn] be mutually
constant. Then, the sequence ({xn}) is a Cauchy sequence if and only if the sequence x̃ is a Cauchy
sequence.

Proof. Let ({xn}) be a Cauchy sequence. Then, for every ε> 0, there exists an n0 ∈N such that
|{xn}− {xm}| < ε holds for all n,m ≥ n0. Also, there exists n1 ∈N such that [xn]= [xn1] holds for
all n ≥ n1. Let us choose n∗ =max{n0,n1} ∈N. So, we have following inequality for n,m ≥ n∗

|xn − xm| = |([xn]+ {xn})− ([xm]+ {xm})|
≤ |{xn}− {xm}|+ |[xn]− [xm]| = |{xn}− {xm}|.

Last inequality gives that (xn) is a Cauchy sequence. For sufficiency of the proof, since (xn) is a
Cauchy sequence and [xn] is mutually constant, following inequality

|{xn}− {xm}| = |(xn − [xn])− (xm − [xm])| ≤ |xn − xm|+ |[xn]− [xm]|
holds. This completed the proof.

In following theorem a sufficient (not necessary) condition will be given for a sequence to be
∆-Cauchy.

Theorem 2.19. Let x̃ = (xn) be a sequence of non-negative real numbers. If x̃ is ∆-Cauchy
sequence, then lim

n→∞|{xn+1}− {xn}| = 0 holds.

Proof. Let x̃ be ∆-Cauchy sequence. We know that for every ε> 0, there exists an n0 ∈N such
that |{xm}− {xn}| < ε holds for all n,m ≥ n0. If we take m > n,m = n+1, lim

n→∞|{xn+1}− {xn}| = 0.
Therefore, the proof is completed.

Remark 2.20. The converse of Theorem 2.19 is not true, in general.

Let (xn) = (
n+ 1

n
)
n. Because of the sequence (xn) is not a Cauchy sequence in Q, from the

previous theorem, (xn) is not ∆-Cauchy sequence. On the other hand, since for every n ∈ N,
[xn]= 2 and xn+1 − xn = [xn+1]+ {xn+1}− [xn]− {xn}, then

lim
n→∞

∣∣∣∣{(
1+ 1

n+1

)n+1}
−

{
(1+ 1

n
)n

}∣∣∣∣= 0

holds.
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3. Uniform Distribution and Some Properties

L. Kuipers [12] gave definition of uniform distribution (modulo 1) of a real valued sequence
x̃ = (xn).

Recall that the sequence x̃ is said to be uniformly distributed (modulo 1) if for every
subinterval [a,b) of [0,1) we have

lim
N→∞

A([a,b), N, {xn})
N

= b−a, (3.1)

where A([a,b), N, {xn}) is a counting function by defined as the number of terms xn, 1≤ n ≤ N ,
for which {xn} ∈ [a,b).

This equality is equivalent to

lim
N→∞

1
N

N∑
n=1

χ[a,b)({xn})= b−a. (3.2)

Theorem 3.1. Let x̃ = (xn) be a non-negative real valued sequence. If x̃ = (xn) is (u.d. mod 1),
then x̃ = (xn) is not convergent.

Proof. Assume that the sequence x̃ = (xn) convergent to L ∈R. There are two case for L, (i) L ∈Z
or (ii) L ∉Z.

If L ∈Z, then because of Theorem 2.5, the sequence ({xn})n∈N convergent to zero. In the case,
for every ε > 0, there exists an integer n0 = n0(ε) ∈ N such that {xn} < ε holds for all n ≥ n0.
Especially, if we take 0< ε< a < b < 1 and [a,b)⊂ [0,1), then we have

lim
N→∞

A([a,b), N, {xn})
N

≤ lim
N→∞

n0

N
= 0 .

This is a contradiction that

lim
N→∞

A([a,b), N, {xn})
N

= b−a.

Now, L ∉Z, then L = [L]+ l1 such that l1 ∈ (0,1). From this we have {xn}→ l1 by Theorem 2.5.
In the same way, for every ε> 0, there exists an integer n0 = n0(ε) ∈N such that |{xn}− l1| < ε

holds for all n ≥ n0. We can consider subinterval [a,b) of [0,1) such that l1+ε< a < b < 1. Thus,
the equality

lim
N→∞

A([a,b), N, {xn})
N

= lim
N→∞

n0

N
= 0

holds. This is also a contradiction to assumption on x̃ = (xn).

Remark 3.2. The converse of Theorem 3.1 is not true, in general.

Let x̃ = (xn) = (
n+ 1

n
)
. It is clear that the sequence x̃ is not convergent. If we consider

[0, 1
2 )⊂ [0,1), then

lim
N→∞

A
([

0, 1
2

)
, N, {xn}

)
N

= lim
N→∞

N −2
N

= 1 6= 1
2

.

Hence, x̃ is not uniformly distributed sequence.
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For a given sequence x̃, it is written {xn : n ∈N} to denote its range. If (xnk ) is a subsequence
of x̃ and K = {nk : k ∈N}, we abbreviate (xnk ) by (x̃)K .

The subsequence (x̃)K is said to be a thin subsequence of x̃ = (xn) if δ(K)= 0, where

δ(K) := lim
n→∞

1
n
|{k ≤ n : k ∈ K}|.

If δ(K)= 1, then the subsequence (x̃)K is called dense subsequence of x̃[10].

Theorem 3.3. Let x̃ = (xn) be a sequence of non negative real numbers. Then, a dense subsequence
of x̃ is (u.d.mod 1) if and only if the sequence x̃ is (u.d.mod 1).

Proof. Let (xnk ) be an arbitrary dense subsequence of x̃ = (xn) such that density of K = {nk : k ∈
N} is one. Therefore, following equality

1
N

N∑
n=1

χ[a,b)({xn})= 1
N

[ ∑
nk∈K

χ[a,b)({xnk })+ ∑
nk∉K

χ[a,b)({xnk })

]
. (3.3)

holds for any [a,b)⊂ [0,1).

The second sum in the right side of above equality we have
1
N

∑
nk∉K

χ[a,b)({xnk })= 0

because of δ(K c)= 0. If we take limit as N →∞ in (3.3), it is obtained that (xn) is (u.d. mod 1) if
and only if (xnk ) is (u.d. mod 1).

Definition 3.4. x̃ = (xn) and ỹ= (yn) are non-negative real valued sequences. They are called
asymptotically equivalent if the set A = {n : xn 6= yn} has zero asymptotic density. It is denoted
by x̃ ³ ỹ.

Definition 3.5. x̃ = (xn) and ỹ= (yn) are non-negative real valued sequences. They are called
∆-asymptotically equivalent if the density of the set A∆ = {n : {xn} 6= {yn}} is zero. It is denoted
by x̃

∆³ ỹ.

Let us consider x̃ = (xn) as (xn)= (
n+ 1

n
)

and ỹ= (yn) as

yn :=
n, n is square,

2+ 1
n , otherwise.

It is clear that δ({n : {xn} 6= {yn}}) = 0 but δ({n : xn 6= yn}) 6= 0. So, sequences x̃ and ỹ are ∆-
asymptotically equivalent but not asymptotically equivalent.

Now, let us x̃ = (xn) as (xn)= (
n− 1

n
)

and ỹ= (yn) as

yn :=
1+ 1

n , n is square

n− 1
n , otherwise.

It clear that x̃ ³ ỹ. But, the sequences ({xn})= (n−1
n

)
and

{yn} :=


1
n , n is square
n−1

n , otherwise.
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are not asymptotically equivalent.

Thus, we understood that asymptotically equivalent and ∆-asymptotically equivalent are
not comparable.

Theorem 3.6. Let x̃ = (xn) and ỹ= (yn) be non-negative real valued sequences and x̃ ³ ỹ. Then,
(xn) is (u.d.mod 1) if and only if (yn) is (u.d. mod 1).

Proof. For the necessity, let us assume that x̃ = (xn) is (u.d. mod 1) sequence. By using (3.1), we
have

b−a = lim
N→∞

1
N

N∑
n=1

χ[a,b)({xn})

= lim
N→∞

(
1
N

∑
n∈A∩N

χ[a,b)({xn})+ 1
N

∑
n∉A∩N

χ[a,b)({xn})

)

= 0+ lim
N→∞

1
N

∑
n∉A∩N

χ[a,b)({yn}) .

From this equality, we say that (yn)n∈Ac is (u.d. mod 1) as a dense subsequence of (yn) because
of δ(Ac)= 1. Therefore, we obtain from Theorem 3.3 that (yn) is (u.d. mod 1) sequence.

The sufficiency part can be proved by using same step. So, it is omitted here.

Definition 3.7. A sequence x̃ = (xn) of non-negative real numbers is said to be T-uniformly
distributed with modulo 1 (T-u.d. mod 1) if for every pair a, b of real numbers with 0≤ a < b ≤ 1
such that

lim
N→∞

N∑
k=1

tnkχA([a,b),n,x̃)(k)= b−a, (3.4)

where A([a,b), N, x̃)= |{k ≤ N : {xk} ∈ [a,b)}| and T = (tnk).

Let us note that, if we consider (tnk) as

tnk :=
{ 1

n , k ≤ n,
0, k > n,

then (3.4) is coincided with (3.1) given by L. Kuipers [12].

Let x̃ = (xn) be a sequence of non-negative real numbers and T = (tnk) be a non-negative
regular summability matrix. The subsequence (x̃)K said to be a T-thin subsequence of x̃ = (xn) if
δT(K)= 0, where

δT(K) := lim
n→∞

∞∑
k=1

tnkχK (k)

If δT(K)= 1, then the subsequence (x̃)K is called T-dense subsequence of x̃[5].

Definition 3.8. x̃ = (xn) and ỹ= (yn) are non-negative real valued sequences. They are called
T-equivalent if T-density of the set A = {n : xn 6= yn} is zero. It is denoted by x̃ ³ ỹ (w.r.t -T).

Theorem 3.9. Let x̃ = (xn) and ỹ= (yn) be non-negative real valued sequences and x̃ ³ ỹ (w.r.t-T).
Then, x̃ = (xn) is (T-u.d.mod 1) if and only if ỹ= (yn) is (T-u.d. mod 1).
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Proof. One can prove like the proof of the Theorem 3.6. Let x̃ = (xn) be a (T-u.d.mod 1) sequence
and assume that ỹ= (yn) is not (T-u.d. mod 1). By using equation (3.4),

b−a = lim
n→∞

n∑
k=1

tnkχ[a,b)({xk})

= lim
n→∞

n∑
k=1,k∈A

tnkχ[a,b)({xk})+ lim
n→∞

n∑
k=1,k∉A

tnkχ[a,b)({xk})

= 0+ lim
n→∞

n∑
k=1,k∉A

tnkχ[a,b)({yk}).

This is contradiction. Because, we know that if ỹ is not (u.d. mod 1), then the dense subsequence
of ỹ is not (u.d. mod 1). Thus, we proved that the sequence ỹ = (yn) is (T-u.d. mod 1). In the
same way we can show sufficiency of the Theorem 3.9.

Theorem 3.10. Let x̃ = (xn) be a sequence of non-negative real numbers, T1 = (t(1)
nk) and T2 = (t(2)

nk)
be two regular matrices such that for every ε> 0,

n∑
k=1

|t(1)
nk − t(2)

nk| < ε (3.5)

holds. Then the sequence x̃ = (xn) is (T1 u.d. mod 1) if and only if the sequence x̃ = (xn) is (T2 u.d.
mod 1).

Proof. For necessity of the theorem, we assume under the hypothesis x̃ = (xn) is a (T1 u.d. mod
1) sequence. Following inequality∣∣∣∣∣ n∑

k=1
t(2)
nkχ[a,b)({xk})− (b−a)

∣∣∣∣∣=
∣∣∣∣∣ n∑
k=1

(t(2)
nk − t(1)

nk + t(1)
nk)χ[a,b)({xk})− (b−a)

∣∣∣∣∣
≤

∣∣∣∣∣ n∑
k=1

(t(2)
nk − t(1)

nk)χ[a,b)({xk})

∣∣∣∣∣+
∣∣∣∣∣ n∑
k=1

(t(1)
nkχ[a,b)({xk})− (b−a)

∣∣∣∣∣
≤

n∑
k=1

|t(2)
nk − t(1)

nk|+
∣∣∣∣∣ n∑
k=1

(t(1)
nkχ[a,b)({xk})− (b−a)

∣∣∣∣∣
holds for an arbitrary subinterval [a,b) of [0,1). Therefore, assumption and (3.5) give the proof.
Thus, x̃ = (xn) is (T2 u.d. mod 1) sequence.

The sufficiency of the theorem can be proved easily doing suitable changes.

4. Uniform Distribution in Lacunary Sense

In this section, an arbitrary lacunary sequence considered as a partition of [0,∞) and some
inclusion theorems will be given.

From [9], we know that θ := (kr), r = 1,2, . . . , is a lacunary sequence of non-negative integers
such that it is an increasing sequence such that kr −kr−1 →∞, where r →∞.

The intervals determined by θ will be denoted by Ir := (kr−1,kr] and hr := kr −kr−1 is length
of the intervals Ir .
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Now, let x̃ = (xn) be a non-negative real valued sequence. For all n ∈N there exists a unique
k ∈N such that kr−1 ≤ xn < kr holds.

Let us define respectively θ-integer part and θ-fractional part of x̃ = (xn) as follows:

[x]θ := kr−1 and {x}θ := x−kr−1

hr
so that 0≤ {x}θ < 1.

Definition 4.1. A sequence x̃ = (xn) of non-negative real numbers is said to be lacunary
uniformly distributed modulo 1 (u.d. mod θ) if the sequence ({xn}θ) is uniformly distributed in
[0,1].

Lemma 4.2. Let x̃ = (xn) be non-negative real valued sequence. Then, the sequence x̃ is (u.d. mod

1) if and only if for every α ∈ [0,1), lim
N→∞

1
N

N∑
n=1

χ[0,α)({xk})=α.

Proof. Let x̃ be a (u.d. mod 1) sequence. By the equation (3.1), the following equality

lim
N→∞

1
N

N∑
n=1

χ[0,α)({xk})=α

satisfying for a = 0 and b =α.

On the other hand, let the equation α ∈ [0,1], lim
N→∞

1
N

N∑
n=1

χ[0,α)({xk}) = α holds for every

α ∈ [0,1]. Let a,b ∈ [0,1) such that b > a. By the hypothesis, we have

lim
N→∞

1
N

N∑
n=1

χ[0,a)({xk})= a

and

lim
N→∞

1
N

N∑
n=1

χ[0,b)({xk})= b.

By using the last two equations,

b−a = lim
N→∞

1
N

N∑
n=1

(χ[0,b) −χ[0,a))({xk})

= lim
N→∞

1
N

N∑
n=1

χ[a,b)({xk}) .

It means that x̃ is (u.d. mod 1).

Theorem 4.3. Let x̃ = (xn) be a sequence of non-negative real numbers and θ = (kr)r∈N be a
lacunary sequence. If x̃ = (xn) is (u.d. mod 1), then x̃ = (xn) is (u.d. mod θ).

Proof. Since (xn) is (u.d. mod 1), then for an arbitrary α ∈ [0,1) we have from Lemma 4.2

lim
n→∞

1
n

n∑
k=1

χ[0,α)({xk})=α. (4.1)

Also, following equality

1
hr

kr∑
kr−1+1

χ(0,α)({xk}θ)= 1
hr

[
kr∑

k=1
χ(0,α)({xk}θ)−

kr−1∑
k=1

χ(0,α)({xk}θ)

]
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= kr

hr

(
1
kr

kr∑
k=1

χ(0,α)({xk}θ)

)
− kr−1

hr

(
1

kr−1

kr−1∑
k=1

χ(0,α)({xk}θ)

)
holds.

On the other hand, from the equation (4.1), for every ε> 0

α−ε< 1
kr

kr∑
k=1

χ(0,α)({xk}θ)<α+ε (4.2)

and

α−ε< 1
kr−1

kr−1∑
k=1

χ(0,α)({xk}θ)<α+ε (4.3)

hold.

By using (4.2) and (4.3), the following inequality

kr

hr
·α− kr

hr
·ε− kr−1

hr
·α+ kr−1

hr
·ε< 1

hr

kr∑
kr−1+1

χ(0,α)({xk}θ)

< kr

hr
·α+ kr

hr
·ε− kr−1

hr
·α− kr−1

hr
·ε

satisfies. Therefore, for every ε> 0, following inequality

α−ε< 1
hr

kr∑
kr−1+1

χ(0,α)({xk}θ)<α+ε,

holds. Hence, the last inequality gives that

1
hr

kr∑
kr−1+1

χ(0,α)({xk}θ)→α

when r →∞. So, desired result is obtained.

Theorem 4.4. Let x̃ = (xn) and ỹ = (yn) are non-negative real valued sequences and x̃ ³ ỹ.
x̃ = (xn) is (u.d. mod θ) if and only if ỹ= (yn) is (u.d. mod θ).

Proof. For the necessity, we suppose that x̃ = (xn) is (u.d. mod θ). For every α ∈ (0,1), we have

lim
r→∞

1
hr

∑
k∈Ir

χ(0,α)({xk}θ)=α .

By hypothesis, we can take the set B = {k ∈ Ir : xk 6= yk} with δ(B)= 0. Now, we should show that
ỹ= (yn) (u.d. mod θ). For every α ∈ (0,1), by using the Theorem 3.3

lim
r→∞

1
hr

∑
k∈Ir

χ(0,α)({yk}θ)= lim
r→∞

1
hr

( ∑
k∈Ir ,k∈B

+ ∑
k∈Ir ,k∉B

)
χ(0,α)({yk}θ)

=
(

lim
r→∞

1
hr

∑
k∈Ir ,k∈B

+ lim
r→∞

1
hr

∑
k∈Ir ,k∉B

)
χ(0,α)({yk}θ)

= 0+ lim
r→∞

1
hr

∑
k∈Ir

χ(0,α)({xk}θ)=α .

Conversely, in the same way we can show sufficiency of the Theorem 4.4.
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Lemma 4.5 ([9]). If b1,b2, . . . ,bn are positive real numbers and if a1,a2, . . . ,an are real numbers
satisfying

|a1 +a2 + . . .+an|
b1 +b2 + . . .+bn

> ε

then
|ai|
bi

> ε

for some 1≤ i ≤ n.

Now, let us give definition of lacunary refinement of a lacunary sequence θ = (kr) (see [9]).

A lacunary refinement of θ = (kr) is a lacunary sequence θ′ = (k
′
r) satisfying (kr)⊆ (k

′
r).

Theorem 4.6. Let x̃ = (xn) be a non-negative real valued sequence and θ = (kr) be a lacunary
sequence and assume that θ′ be a lacunary refinement of θ. If x̃ = (xn) is (u.d. mod θ), then
x̃ = (xn) is (u.d. mod θ′).

Proof. Suppose each Ir of θ contains the points {k′
r,i}

v(r)
i=1 of θ′ such that

kr−1 < k′
r,1 < k′

r,2 < . . .< k′
r,v(r) = kr ,

where I ′r,i := (k′
r,i−1,k′

r,i].

Note that for all r, v(r) ≥ 1 because of {kr} ⊆ {k′
r}. Let {I∗j }∞j=1 be the sequence of abutting

intervals {I ′r,i} ordered by increasing right end points [9]. Then, we have for every α ∈ [0,1)

lim
r→∞

1
hr

∑
Ir

χ(0,α)({xk}θ)=α .

So, for every ε> 0,

α−ε< 1
hr

∑
Ir

χ(0,α)({xk}θ)<α+ε

holds.

1
h∗

j

∑
I∗j ⊂I j

χ(0,α)({xk}θ)=

( ∑
I ′r,1

+ ∑
I ′r,2

+ . . .+ ∑
I ′r,v(r)

)
χ(0,α)({xk}θ′)

h′
r,1 +h′

r,2 + . . .+h′
r,v(r)

. (4.4)

In the equality (4.4) for every each i = 1,2, . . . ,v(r), by using Lemma 4.5,

α−ε<
∑

I ′r,i
χ(0,α)({xk}θ′)

h′
r,i

<α+ε.

As r →∞, we have

lim
r→∞

1
h′

r,i

∑
I ′r,i

χ(0,α)({xk}θ′)=α .

So, we obtain desired result.

Since usual partition of [0,∞) is a lacunary refinement of any θ = {kr}, then we can give
following result:
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Corollary 4.7. Let x̃ = (xn) be a sequence of non-negative real numbers and θ = (kr) be a
lacunary sequence. If x̃ = (xn) is (u.d.mod θ), then x̃ = (xn) is (u.d. mod 1).

Theorem 4.8. Let x̃ = (xn) be a non-negative real valued sequence and θ = (kr) be a lacunary
sequence. Assume that θ′ = (k′

r) be a lacunary refinement of θ such that

lim
r→∞

kr −kr−1

k′
r −k′

r−1
= d(d ≥ 1). (4.5)

holds. If x̃ = (xn) is (u.d. mod θ′), then x̃ = (xn) is (u.d. mod θ).

Proof. Suppose each interval Ir of θ contains the points {k′
r,i}

v(r)
i=1 of θ′ so that

kr−1 < k′
r,1 < k′

r,2 < . . .< k′
r,v(r) = kr ,

where I ′r,i = (k′
r,i−1,k′

r,i]. Because of {kr}⊆ {k′
r}, v(r)≥ 1 for all r. Let {I∗j }∞j=1 be the sequence of

abutting intervals {I ′r,i} ordered by increasing right end points. Take an arbitrary α ∈ (0,1), then
we have

1
kr −kr−1

kr∑
kr−1+1

χ(0,α)({xk}θ′)=
1

kr −kr−1

 k′
r,1∑

kr−1+1
+

k′
r,2∑

k′
r,1+1

+ . . .+
kr∑

k′
r,v(r)−1+1

χ(0,α)({xk}θ′)

=
k′

r,1 −kr−1

kr −kr−1
· 1
k′

r,1 −kr−1

k′
r,1∑

kr−1+1
+

k′
r,2 −k′

r,1

kr −kr−1
· 1
k′

r,2 −k′
r,1

k′
r,2∑

k′
r,1+1

+ . . .

+
kr −k′

r,v(r)−1

kr −kr−1

1
kr −k′

r,v(r)−1

kr∑
k′

r,v(r)−1+1

χ(0,α)({xk}θ′).

On the other hand, for i = 1,2, . . . ,v(r), we have

lim
r→∞

1
kr −kr−1

kr∑
kr−1+1

χ(0,α)({xk}θ)=α ·v(r)
1

v(r)
=α

because x̃ = (xn) is (u.d.mod θ′). Thus we obtain that x̃ = (xn) is (u.d. mod θ).

Definition 4.9. Let θ = (kr) be a lacunary sequence. A sequence x̃ = (xn) of non-negative real
numbers is said to be B-lacunary uniformly distributed modulo 1 (Bθ-u.d. mod 1) if for every
the real number α with 0<α< 1, we have

lim
r→∞

∑
i∈Ir

bθr,iχA(α,Ir ,w)(i)=α , (4.6)

where A(α, Ir,w)= |{i ∈ Ir : {xi}θ <α}| and the regular matrix Bθ = (bθr,i) defined by

bθr,i :=
{

(kr −kr−1)−1, for kr−1 < i < kr

0, otherwise

(see [9]).

Theorem 4.10. Let x̃ = (xn) be a sequence of non-negative numbers and θ = (kr) be a lacunary
sequence. Assume that liminf qr > 1. Then, x̃ = (xn) is (u.d. mod 1) if and only if x̃ = (xn) is
(Bθ-u.d. mod 1).
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Proof. Suppose liminf qr > 1.∑
i∈Ir

bθr,iχ(0,α)({xi}θ)= 1
hr

(
kr∑

i=1
χ(0,α)({xi}θ)−

kr−1∑
i=1

χ(0,α)({xi}θ)

)

= kr

hr

(
1
kr

kr∑
i=1

χ(0,α)({xi}θ)

)
− kr−1

hr

(
1

kr−1

kr−1∑
i=1

χ(0,α)({xi}θ)

)
= arur +drvr ,

where ur →α , vr →α ,(ar) and (dr) are bounded sequences satisfying ar+dr = 1, for r = 1,2, . . .,
(|ar| ≤ F

F−1 , |dr| ≤ 1
F−1 ,F = inf qr > 1) we then observe

|arur +drvr −α| = |ar(ur −α)+dr(vr −α)| ≤ |ar||ur −α|+ |dr||vr −α|
which converges to 0, and it follows that (xn) is (Bθ-u.d. mod 1).

Theorem 4.11. Let x̃ = (xn) be a sequence of non-negative numbers and θ = (kr) be a lacunary
sequence. Let θ′ = (k′

r) be lacunary refinement of θ and

lim
r→∞

kr −kr−1

k′
r −k′

r−1
= d (d ≥ 1). (4.7)

If x̃ = (xn) is (Bθ′ u.d. mod 1), then x̃ = (xn) is (Bθ u.d. mod 1).

Proof. Suppose each Ir of θ contains the points θ′ so that

kr−1 < k′
r,1 < k′

r,2 < . . .< k′
r,v(r) = kr

where I ′r,i = (k′
r,i−1,k′

r,i]. So, {kr}⊆ k′
r , for all r, v(r)≥ 1. For an arbitrary α ∈ (0,1), by using (4.7),

we have
kr∑

kr−1+1
bθr,iχ(0,α)({xi}θ)= 1

kr −kr−1

kr∑
kr−1+1

χ(0,α)({xi}θ)

= 1
kr −kr−1

∑
I ′r,1

χ(0,α)({xi}θ′)+
∑
I ′r,2

χ(0,α)({xi}θ′)+ . . .+ ∑
I ′r,v(r)

χ(0,α)({xi}θ′)


=

k′
r,1 −kr−1

kr −kr−1

 1
k′

r,1 −kr−1

∑
I ′r,1

χ(0,α)({xi}θ′)


+

k′
r,2 −k′

r,1

kr −kr−1

 1
k′

r,2 −k′
r,1

∑
I ′r,2

χ(0,α)({xi}θ′)

+ . . .

+
kr −k′

r,v(r)−1

kr −kr−1

 1
kr −k′

r,v(r)−1

∑
I ′r,v(r)

χ(0,α)({xi}θ′)


=

k′
r,1 −kr−1

kr −kr−1

∑
I ′r,1

bθ
′
r,iχ(0,α)({xi}θ′)
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+
k′

r,2 −k′
r,1

kr −kr−1

∑
I ′r,2

bθ
′
r,iχ(0,α)({xi}θ′)

+ . . .

+
kr −k′

r,v(r)−1

kr −kr−1

 ∑
I ′r,v(r)

bθ
′

r,iχ(0,α)({xi}θ′)


For each i = 1,2, . . . ,v(r) and r →∞

kr∑
kr−1+1

bθr,iχ(0,α)({xi}θ)= v(r)α
1

v(r)
=α .

From last equality, we showed that x̃ = (xn) is (Bθ u.d. mod 1).

Theorem 4.12. Let x̃ = (xn) be a non-negative real valued sequence and θ = (kr) be a lacunary
sequence. Let θ′ = (k′

r) be lacunary refinement of θ. If x̃ = (xn) is (Bθ u.d. mod 1), then x̃ = (xn) is
(Bθ′ u.d. mod 1).

Proof. Suppose each Ir of θ contains the points θ′ so that

kr−1 < k′
r,1 < k′

r,2 < . . .< k′
r,v(r) = kr

where I ′r,i = (k′
r,i−1,k′

r,i]. Let {I∗j } be the sequence of abutting intervals {I ′r,i} ordered by
increasing right end points. Because of x̃ = (xn) is (Bθ u.d. mod 1), for an arbitrary α ∈ [0,1) we
have

lim
r→∞

kr∑
kr−1+1

bθr,iχ(0,α)({xi}θ)=α.

By using Lemma 4.5,

∑
I∗j ⊂I j

bθr,iχ(0,α)({xi}θ)= 1
h j

∗
∑
I j

∗
χ(0,α)({xi}θ)=

( ∑
I ′r,1

+ ∑
I ′r,2

+ . . .+ ∑
I ′r,v(r)

)
χ(0,α)({xi}θ′)

h′
r,1 +h′

r,2 + . . .+h′
r,v(r)

.

For every i = 1,2, . . . ,v(r) and ε> 0,

α−ε<
∑

I ′r,i
χ(0,α)({xi}θ′)

h′
r,i

<α+ε .

We find last inequality. As r →∞∑
I ′r,i

bθ
′
r,iχ(0,α)({xi}θ′)=α .

Hence, x̃ = (xn) is (Bθ′ u.d. mod 1).

5. Conclusion

In this paper, ∆-convergence has been defined and then main properties of ∆-convergence
has been given by using usual partition of [0,∞). Mainly, relation between ∆-convergence
and convergence has been given. In the second part, by using lacunary sequence, lacunary
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distribution has been defined and investigated. We hope that the results obtained in this paper
can be applied to the concrete problems in analytic number theory. We strongly feel that the
results which is obtained in this paper, can be re-write for any real valued sequence.
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