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1. Introduction
Let S be a semigroup and A a subset of S. Recall that the Cayley digraph Cay(S, A) of S
with the connection set A is defined as the digraph with a vertex set S and an arc set
E(Cay(S, A)) = {(x, xa) | x ∈ S,a ∈ A} (see [7]). Clearly, if A is an empty set, then Cay(S, A)
is an empty graph.
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Arthur Cayley (1821-1895) introduced Cayley graphs of groups in 1878. Cayley graphs of
groups have been extensively studied and many interesting results have been obtained (see for
examples, [1], [12], [13], and [14]). Also, the Cayley graphs of semigroups have been considered
by many authors. Many new interesting results on Cayley graphs of semigroups have recently
appeared in various journals (see for examples, [4], [8], [9], [10], [12], [15], [16], [17], [18], and
[19]). Furthermore, some properties of the Cayley digraphs of left groups and right groups are
obtained by some authors (see for examples, [11], [16], [17], [18], and [21]).

The concept of domination for Cayley graphs has been studied by various authors (see
for examples, [3], [5], [22], [24], and [25]). The total domination in graphs was introduced by
Cockayne, Dawes, and Hedetniemi (see [3]) and is now well studied in graph theory. Tamizh
Chelvam and Rani (see for examples, [24], [25], and [26]) have obtained bounds for various
domination parameters for a class of Circulant graphs. Here we shall study some domination
parameters of Cayley digraphs of right groups and left groups. All graphs considered in this
paper are finite directed graphs. The terminologies and notations which related to our paper
will be defined in the next section.

2. Preliminaries and Notations
In this section, we give some preliminaries needed in what follows on digraphs, semigroups,
Cayley graphs of semigroups, domination number, and total domination number. For more
information on digraphs, we refer to [2], and for semigroups see [6]. All sets in this paper are
assumed to be finite.

A semigroup S is said to be a right (left) zero semigroup if xy = y(xy = x) for all x, y ∈ S.
A semigroup S is called a right (left) group if it is isomorphic to the direct product G×Rm(G×Lm)
of a group G and an m-element right (left) zero semigroup Rm(Lm). If m = 1, then we can
consider a Cayley digraph of a right (left) group G×Rm(G×Lm) as a Cayley digraph of a group
G. So in this paper, we will consider in the case where m ≥ 2.

Let D = (V ,E) be a digraph. A set X ⊆V of vertices in a digraph D is called a dominating set
if every vertex v ∈V \ X , there exists x ∈ X such that (x,v) ∈ E and we call that x dominates v or
v is dominated by x. The domination number γ(D) of a digraph D is the minimum cardinality
of a dominating set in D and the corresponding dominating set is called a γ-set. A set X ⊆V is
called a total dominating set if every vertex v ∈ V , there exists x ∈ X such that (x,v) ∈ E. The
total domination number γt(D) equals the minimum cardinality among all total dominating
sets in D and the corresponding total dominating set is called a γt-set.

For any family of nonempty sets {X i|i ∈ I}, we write
⋃̇

i∈I X i :=⋃
i∈I X i if X i ∩ X j =; for all

i 6= j. Let (V1,E1), (V2,E2), . . . , (Vn,En) be digraphs such that Vi∩Vj =; for all i 6= j. The disjoint
union of (V1,E1), (V2,E2), . . . , (Vn,En) is defined as

⋃̇n
i=1(Vi,E i) := (

⋃̇n
i=1Vi,

⋃̇n
i=1E i). It is easy to

verify that γ(
⋃̇n

i=1(Vi,E i)) =
n∑

i=1
γ(Vi,E i), γt(

⋃̇n
i=1(Vi,E i)) =

n∑
i=1

γt(Vi,E i), and if for each i, j ∈ I

with (Vi,E i) ∼= (Vj,E j), then γ(Vi,E i) = γ(Vj,E j) and γt(Vi,E i) = γt(Vj,E j). From now on, |A|
denotes the cardinality of A where A is any finite set and pi denotes the projection map on the
ith coordinate of a triple where i ∈ {1,2,3}. A subdigraph F of a digraph G is called a strong
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subdigraph of G if and only if whenever u and v are vertices of F and (u,v) is an arc in G, then
(u,v) is an arc in F as well. Moreover, we denote by G a finite group and Gk a group of order
k, and let Rm(Lm) denote a right (left) zero semigroup with m elements. Now, we recall some
results which are needed in the sequel as below for further references.

Lemma 2.1 ([20]). Let S = G × Rm be a right group, A a nonempty subset of S such that
p2(A)= Rm,G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉}, and let I = {1,2, . . . ,k}. Then

(1) S/〈A〉 = {g i〈p1(A)〉×Rm|i ∈ I} and S =
·⋃

i∈I
(g i〈p1(A)〉×Rm),

(2) Cay(S, A)= ⋃̇
i∈I ((g i〈p1(A)〉×Rm),E i) where ((g i〈p1(A)〉×Rm),E i) is a strong subdigraph

of Cay(S, A) with ((g i〈p1(A)〉×Rm),E i)∼=Cay(〈A〉, A) for all i ∈ I .

Lemma 2.2 ([20]). Let S = G × Rm be a right group and A a nonempty subset of S. Then
〈A〉 = 〈p1(A)〉× p2(A) is a right group contained in S.

Lemma 2.3 ([16]). Let S = G ×Lm be a left group and A a nonempty subset of S. Then the
following conditions hold :

(1) for each l ∈ Lm, Cay(G× {l}, p1(A)× {l})∼=Cay(G, p1(A)),

(2) Cay(S, A)=
·⋃

l∈Lm

Cay(G× {l}, p1(A)× {l}).

Lemma 2.4 ([20]). Let S = G ×Lm be a left group, A a nonempty subset of S, G/〈p1(A)〉 =
{g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉}, and let I = {1,2, . . . ,k}. Then

(1) S/〈A〉 = {g i〈p1(A)〉× {l}|i ∈ I, l ∈ Lm} and S = ⋃̇
i∈I,l∈Lm(g i〈p1(A)〉× {l}),

(2) Cay(S, A) = ⋃̇
i∈I,l∈Lm((g i〈p1(A)〉 × {l}),E il) where ((g i〈p1(A)〉 × {l}),E il) is a strong sub-

digraph of Cay(S, A) with ((g i〈p1(A)〉× {l}),E il)∼=Cay(〈p1(A)〉, p1(A)) for all i ∈ I , l ∈ Lm.

The following lemmas give the results for the domination number and the total domination
number of Cayley graphs of the group Zn with respect to the specific connection sets.

Lemma 2.5 ([23]). Let n ≥ 3 be an odd integer, m = n−1
2 and A = {m,n− m,m− 1,n− (m−

1), . . . ,m− (k−1),n− (m− (k−1))}⊆Zn where 1≤ k ≤ m. Then γt(Cay(Zn, A))= d n
2k e.

Lemma 2.6 ([23]). Let n ≥ 3 be an even integer, m = bn−1
2 c and A = { n

2 ,m,n−m,m−1,n− (m−
1), . . . ,m− (k−1),n− (m− (k−1))}⊆Zn where 1≤ k ≤ m. Then γt(Cay(Zn, A))= d n

2k+1e.

3. Main Results
In this section, we give some results for the domination parameters of Cayley digraphs of right
groups and left groups related to the according connection sets such as the domination number
and total domination number. We divide this section into two parts. The first part gives some
results for the domination in Cayley digraphs of right groups and the second part for left groups.
Hereafter, we will denote by D the Cayley digraph Cay(S, A) of a semigroup S with a connection
set A.
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3.1 The domination parameters of Cayley digraphs of right groups
In this part, we study the domination parameters of Cayley digraphs of right groups related
to the appropriate connection sets. We start with the theorem which describes the domination
number in Cayley digraphs of right groups with arbitrary connection sets A where |p2(A)| 6=
|Rm|.

Theorem 3.1. Let S =G×Rm be a right group and A a nonempty subset of S. If |p2(A)| 6= |Rm|,
then γ(D)= (|Rm|− |p2(A)|)×|G|.

Proof. Suppose that |p2(A)| 6= |Rm|, we have |p2(A)| < |Rm|. Let Y = {(x,a) ∈ S|a ∉ p2(A)}. We
will show that Y is a dominating set of D. Let (b, c) ∈ S \Y . Then b ∈G and c ∈ p2(A), that is,
there exists d ∈ p1(A)⊆G such that (d, c) ∈ A. Since G is a group, there exists y ∈G such that
b = yd. From |Rm| > |p2(A)|, we get that there exists r ∈ Rm \ p2(A) which leads to (y, r) ∈ Y .
Thus (b, c) = (yd, c) = (y, r)(d, c). Therefore, Y is a dominating set of D. Hence γ(D) ≤ |Y | =
(|Rm| − |p2(A)|)× |G|. Now, we assume in the contrary that γ(D) < (|Rm| − |p2(A)|)× |G|. Let
X ⊆ S be a dominating set of D such that X is a γ-set, that is, |X | = γ(D)< (|Rm|− |p2(A)|)×|G|.
We have

|S \ X | = |S|− |X |
> nm− [(|Rm|− |p2(A)|)×|G|]
= nm− [(m−|p2(A)|)×n]

= nm−nm+n(|p2(A)|)
= n(|p2(A)|)
= |G× p2(A)|.

Thus there exists at least one element (a,b) ∈ (S \ X ) \ (G × p2(A)), that is, (a,b) ∈ S \ X
and (a,b) ∉ G × p2(A). Since a ∈ G, we obtain that b ∉ p2(A). From (a,b) ∈ S \ X and X
is the dominating set of D, there exists (x, y) ∈ X such that ((x, y), (a,b)) ∈ E(D). Thus
(a,b)= (x, y)(c,d)= (xc, yd)= (xc,d) for some (c,d) ∈ A. We conclude that b = d ∈ p2(A) which is
a contradiction. Therefore, γ(D)≮ (|Rm|− |p2(A)|)×|G|, that is, γ(D)= (|Rm|− |p2(A)|)×|G|, as
required.

The next theorem gives the bounds of the domination number in Cayley digraphs of right
groups with arbitrary connection sets A where |p2(A)| = |Rm|.

Theorem 3.2. Let S =G×Rm be a right group and A a nonempty subset of S. If |p2(A)| = |Rm|,
then |S|

|A|+1 ≤ γ(D)≤ |G|.

Proof. Assume that |p2(A)| = |Rm|. We first prove the right inequality, that is, γ(D)≤ |G|. For
each r ∈ Rm, let Y = {(x, r)|x ∈G} =G × {r}. We will show that Y is a dominating set of D. Let
(a,b) ∈ S \Y . Then a ∈G and b ∈ Rm such that b 6= r. Since |p2(A)| = |Rm| and p2(A)⊆ Rm, we
get that Rm = p2(A) and then b ∈ p2(A). Thus there exists c ∈ p1(A) ⊆ G such that (c,b) ∈ A.
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Since G is a group, there exists g ∈G such that a = gc. We obtain that (a,b)= (gc,b)= (g, r)(c,b)
where (g, r) ∈Y . Hence Y is the dominating set of D. Therefore, γ(D)≤ |Y | = |G× {r}| = |G|.

Now, we will prove the left inequality. Let X be the dominating set of D such that X is a
γ-set, that is, |X | = γ(D). Then for each (a,b) ∈ S \ X , we get that (a,b) = (x, y)(s, t) for some
(x, y) ∈ X and (s, t) ∈ A which implies that S\X ⊆ X A. Hence |S\X | ≤ |X A|. Since every element
of X has the same out-degree |A|, we obtain that

γ(D)|A| = |X ||A| ≥ |X A| ≥ |S \ X | = |S|− |X | = |S|−γ(D).

Then γ(D)|A| ≥ |S| −γ(D) which leads to |S| ≤ γ(D)|A| +γ(D) = γ(D)(|A| + 1). Hence γ(D) ≥
|S|

|A|+1 .

In the following example, we present the sharpness of the bounds given in Theorem 3.2.

Example 3.3. Let Z3 ×R2 be a right group where Z3 is a group of integers modulo 3 under the
addition and R2 = {r1, r2} is a right zero semigroup.

(1) Consider the Cayley digraph Cay(Z3 ×R2, {(2̄, r1), (2̄, r2)}).

b

b b b

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

b b

Figure 1. Cay(Z3 ×R2, {(2̄, r1), (2̄, r2)}).

We have X = {(0̄, r1), (1̄, r1), (2̄, r1)} is a γ-set of Cay(Z3×R2, {(2̄, r1), (2̄, r2)}) and γ(Cay(Z3×
R2, {(2̄, r1), (2̄, r2)}))= |X | = 3= |Z3|. Similarly, γ(Cay(Zn ×R2, {(2̄, r1), (2̄, r2)}))= |Zn| where
n ∈N.

(2) Consider the Cayley digraph Cay(Z4 ×R2, {(0̄, r1), (1̄, r1), (1̄, r2)}).

b b b

b b b

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

b

b

3̄r1

3̄r2

Figure 2. Cay(Z4 ×R2, {(0̄, r1), (1̄, r1), (1̄, r2)}).

We have Y = {(0̄, r2), (2̄, r2)} is a γ-set of Cay(Z4×R2, {(0̄, r1), (1̄, r1), (1̄, r2)}) and γ(Cay(Z4×
R2, {(0̄, r1), (1̄, r1), (1̄, r2)}))= |Y | = 2= |Z4×R2|

|{(0̄,r1),(1̄,r1),(1̄,r2)}|+1 .
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Similarly, we also obtain γ(Cay(Z2k ×R2, {(0̄, r1), (1̄, r1), (1̄, r2)})) = k = 4k
4 = |Z2k×R2|

|{(0̄,r1),(1̄,r1),(1̄,r2)}|+1

with a γ-set {(0̄, r2), (2̄, r2), (4̄, r2), . . . , (2k−2, r2)} where k ∈N.

The following theorems show the values for the domination number in Cayley digraphs of
right groups according to the specific connection sets. We begin with two lemmas which are
referred in the proofs of theorems.

Lemma 3.4. Let S =G×Rm be a right group and A a nonempty subset of S such that p1(A)=
G, p2(A)= Rm, and |A| = |Rm|. For each (x1, r1), (x2, r2) ∈ S, if (x1, r1)(y1, s1)= (x2, r2)(y2, s2) for
some (y1, s1), (y2, s2) ∈ A, then x1 = x2.

Proof. Let (x1, r1), (x2, r2) ∈ S be such that (x1, r1)(y1, s1) = (x2, r2)(y2, s2) for some (y1, s1),
(y2, s2) ∈ A. Thus (x1 y1, r1s1)= (x2 y2, r2s2), that is, (x1 y1, s1)= (x2 y2, s2). Then x1 y1 = x2 y2 and
s1 = s2. Since we know that p1(A)=G, p2(A)= Rm, and |A| = |Rm|, these imply y1 = y2. From
x1 y1 = x2 y2 where x1, x2, y1, y2 are elements of a group G and y1 = y2, we can conclude that
x1 = x2 by the cancellation law.

Lemma 3.5. Let S = G × Rm be a right group and A a nonempty subset of S such that
A = {a}× Rm where a ∈ G. Let Y be a dominating set of D. If there exists x ∈ G such that
x ∉ p1(Y ), then (xa, r) ∈Y for all r ∈ Rm.

Proof. Let Y be a dominating set of D. Suppose that there exists x ∈G such that x ∉ p1(Y ) and
assume in the contrary that there exists r ∈ Rm such that (xa, r) ∉Y . Since Y is a dominating
set of D, there exists (y, r′) ∈Y such that ((y, r′), (xa, r)) ∈ E(D), that is, (xa, r)= (y, r′)(a, r) where
(a, r) ∈ A. Hence xa = ya which implies that x = y ∈ p1(Y ) which contradicts to our supposition.
Therefore, (xa, r) ∈Y for all r ∈ Rm.

Theorem 3.6. Let S = G × Rm be a right group and A a nonempty subset of S such that
p1(A)=G, p2(A)= Rm, and |A| = |Rm|. Then γ(D)= |G|.

Proof. Assume that the conditions hold. Since |p2(A)| = |Rm|, we obtain that γ(D) ≤ |G| by
Theorem 3.2. Now, suppose that there exists a dominating set Y such that |Y | < |G|. Then
there exists g ∈ G such that g ∉ p1(Y ). We first prove that for each r ∈ Rm, (g, r)A ⊆ Y . Let
r ∈ Rm and (x, y) ∈ (g, r)A. Then (x, y)= (g, r)(g1, r1) for some (g1, r1) ∈ A. If (x, y) ∉Y , then there
exists (g′, r′) ∈ Y such that (x, y) = (g′, r′)(g2, r2) for some (g2, r2) ∈ A since Y is a dominating
set of D. Thus (g, r)(g1, r1) = (x, y) = (g′, r′)(g2, r2) where (g1, r1), (g2, r2) ∈ A. By Lemma 3.4,
we can conclude that g = g′ ∈ p1(Y ) which is a contradiction. Hence (x, y) ∈ Y which leads to
(g, r)A ⊆ Y . Since p1(A) = G, we obtain that the identity element e of G lies in p1(A). Then
there exists s ∈ p2(A) such that (e, s) ∈ A and (g, s)= (g, r)(e, s) ∈ (g, r)A ⊆Y . Whence g ∈ p1(Y )
which contradicts to the above supposition. Therefore, we can conclude that γ(D)= |G|.

Theorem 3.7. Let S = G × Rm be a right group and A a nonempty subset of S such that
A = {a}×Rm where a ∈G. Then γ(D)= |G|.
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Proof. Let S =G×Rm be a right group and A a nonempty subset of S such that A = {a}×Rm

where a ∈ G. Then |p2(A)| = |Rm|. By Theorem 3.2, we obtain that γ(D) ≤ |G|. Assume that
there exists a dominating set Y of D such that |Y | < |G| = n. Then there exists x ∈G such that
x ∉ p1(Y ). Let U = {u ∈G|u ∉ p1(Y )}. Assume that |U | = k where 1 ≤ k ≤ n−1. For each u ∈U ,
we obtain by Lemma 3.5 that (ua, r) ∈Y for all r ∈ Rm. Hence there exists at least one element
q ∈ p1(Y ) such that (q, r) ∈Y for all r ∈ Rm. Let V = {v ∈ p1(Y )|(v, r) ∈Y for all r ∈ Rm}. Assume
that |V | = l where 1≤ l ≤ n−k. By Lemma 3.5 again, we get that |Y | ≥ ml+[(n−k)− l]+(k− l)=
ml + n−2l = n+ (m−2)l. Since m ≥ 2, we obtain that |Y | ≥ n+ (m−2)l ≥ n, a contradiction.
Therefore, γ(D)= |G|, as required.

Theorem 3.8. Let S =G×Rm be a right group and A = K ×Rm a nonempty subset of S where
K is any subgroup of G. Then γ(D)= |G|

|K | .

Proof. Let S =G×Rm be a right group and A = K ×Rm a nonempty subset of S where K is a
subgroup of a group G. Consider the set of all left cosets of K in G, G/K = {g1K , g2K , . . . , gtK},
we obtain that the index of K in G equals t, that is, [G : K] = t. Let I = {1,2, . . . , t} be an
index set. By Lemma 2.1, we have S/〈A〉 = {g iK ×Rm|i ∈ I} such that S =

.⋃
i∈I

(g iK ×Rm) and

Cay(S, A)=
.⋃

i∈I
((g iK ×Rm),E i) where ((g iK ×Rm),E i) is a strong subdigraph of Cay(S, A) with

((g iK ×Rm),E i)∼=Cay(〈A〉, A) for all i ∈ I . Thus

γ(D)= γ(Cay(S, A))

= γ
( .⋃

i∈I
((g iK ×Rm),E i)

)
= ∑

i∈I
γ((g iK ×Rm),E i)

= |I|[γ(Cay(〈A〉, A))]

= t[γ(Cay(〈A〉, A))].

By Lemma 2.2, we can conclude that 〈A〉 = 〈p1(A)〉× p2(A)= 〈K〉×Rm = K ×Rm = A. Further-
more, we can prove that γ(Cay(〈A〉, A))= 1 which implies that γ(D)= t = [G : K]= |G|

|K | .

The next theorem gives the necessary and sufficient conditions for the existence of the total
dominating set in Cayley digraphs of right groups with connection sets.

Theorem 3.9. Let S =G×Rm be a right group and A a nonempty subset of S. Then the total
dominating set of D exists if and only if p2(A)= Rm.

Proof. We first prove the necessary condition by assuming that the total dominating set of D
exists, say T . We will show that p2(A)= Rm. By the definition of the connection set A, we know
that p2(A) ⊆ Rm. Let r ∈ Rm. Then for each a ∈G, we get that (a, r) is dominated by a vertex
(x, y) for some (x, y) ∈ T since T is the total dominating set of D. Thus there exists (a′, r′) ∈ A
such that (a, r) = (x, y)(a′, r′) = (xa′, yr′) = (xa′, r′) which implies that r = r′, that is, r ∈ p2(A).
Therefore, p2(A)= Rm.
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Conversely, we prove the sufficient condition by supposing that p2(A) = Rm. We will
prove that every vertex has an in-degree in D. Let (g, r) ∈ G × Rm. Then r ∈ Rm =
p2(A). Thus there exists a ∈ p1(A) such that (a, r) ∈ A. We obtain that ((ga−1, r′), (g, r)) =
((ga−1, r′), (ga−1, r′)(a, r)) ∈ E(D), that is, (g, r) is dominated by (ga−1, r′). So we can conclude
that every vertex of D always has an in-degree in D. If we take T = V (D) = S, then we can
see that T is a total dominating set of D since for each (x, y) ∈ S, (x, y) is dominated by some
vertices in T . Hence the total dominating set of D always exists if p2(A)= Rm.

Theorem 3.10. Let S = G ×Rm be a right group and A a nonempty subset of S such that
p2(A)= Rm. Then |S|

|A| ≤ γt(D)≤ |G|.

Proof. Let A be a connection set of D such that p2(A)= Rm. We know that the total dominating
set of D exists by Theorem 3.9. For each r ∈ Rm, let T = {(g, r)|g ∈ G} = G × {r}. We will show
that T is a total dominating set of D. Let (x, y) ∈ S = G ×Rm. Since p2(A) = Rm, we get that
y ∈ p2(A) which implies that there exists z ∈ p1(A) such that (z, y) ∈ A. Since G is a group and
x, z ∈G, we obtain that x = hz for some h ∈G.

Thus there exists (h, r) ∈ T such that (x, y)= (hz, y)= (h, r)(z, y). Hence (x, y) is dominated by
the vertex (h, r) in T . We can conclude that T is the total dominating set of D which leads to
γt(D)≤ |T| = |G× {r}| = |G|.

Next, we will show that γt(D) ≥ |S|
|A| . Assume in the contrary that there exists a total

dominating set T ′ such that |T ′| < |S|
|A| . Thus |T ′A| ≤ |T ′||A| < |S| which implies that there exists

at least one element (p, q) ∈ S but (p, q) ∉ T ′A. Hence there is no an element in T ′ which
dominates (p, q), this contradicts to the property of the total dominating set T ′. Consequently,
γt(D)≥ |S|

|A| , as required.

In the following example, we present the sharpness of the bounds given in Theorem 3.10.

Example 3.11. Let Z3 ×R2 be a right group where Z3 is a group of integers modulo 3 under
the addition and R2 = {r1, r2} is a right zero semigroup.

(1) Consider the Cayley digraph Cay(Z3 ×R2, {(2̄, r1), (0̄, r2), (2̄, r2)}).

b

b b b

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

b b

Figure 3. Cay(Z3 ×R2, {(2̄, r1), (0̄, r2), (2̄, r2)}).

We have X = {(0̄, r1), (1̄, r1), (2̄, r1)} is a γt-set of Cay(Z3 × R2, {(2̄, r1), (0̄, r2), (2̄, r2)}) and
γt(Cay(Z3 ×R2, {(2̄, r1), (0̄, r2), (2̄, r2)}))= |X | = 3= |Z3|.
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Similarly, we can get that γt(Cay(Zn × R2, {(2̄, r1), (0̄, r2), (2̄, r2)})) = |Zn| with a γt-set
Zn × {r1} where n ∈N.

(2) Consider Cay(Z3 ×R2, {(0̄, r1), (1̄, r1), (2̄, r1), (0̄, r2), (1̄, r2), (2̄, r2)}).

b b b

b b b

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

Figure 4. Cay(Z3 ×R2, {(0̄, r1), (1̄, r1), (2̄, r1), (0̄, r2), (1̄, r2), (2̄, r2)}).

We obtain that Y = {(0̄, r1)} is a γt-set of Cay(Z3 × R2, {(0̄, r1), (1̄, r1), (2̄, r1),
(0̄, r2), (1̄, r2), (2̄, r2)}) and γt(Cay(Z3×R2, {(0̄, r1), (1̄, r1), (2̄, r1), (0̄, r2), (1̄, r2), (2̄, r2)}))= |Y | =
1= |Z3 ×R2|

|{(0̄, r1), (1̄, r1), (2̄, r1), (0̄, r2), (1̄, r2), (2̄, r2)}| .

Similarly, γt(Cay(Z3k ×R2, {(0̄, r1), (1̄, r1), (2̄, r1), (0̄, r2), (1̄, r2), (2̄, r2)}))=
|Z3k ×R2|

|{(0̄, r1), (1̄, r1), (2̄, r1), (0̄, r2), (1̄, r2), (2̄, r2)}| with the γt-set {(0̄, r1), (3̄, r1), (6̄, r1), . . . , (3k−3, r1)}

where k ∈N.

3.2 The domination parameters of Cayley digraphs of left groups
The following result gives us the domination number of a Cayley digraph of a left group G×Lm

with a connection set A in the term of a domination number of a Cayley digraph of the subgroup
〈p1(A)〉 of G.

Theorem 3.12. Let S = G ×Lm be a left group, A a nonempty subset of S, and G/〈p1(A)〉 =
{g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉}. Then γ(D)= m ·k ·γ(Cay(〈p1(A)〉, p1(A))).

Proof. Let I = {1,2, . . . ,k}. By Lemma 2.4, we have D = ⋃̇
i∈I,l∈Lm((g i〈p1(A)〉× {l}),E il) such that

a digraph ((g i〈p1(A)〉 × {l}),E il) is the strong subdigraph of D with ((g i〈p1(A)〉 × {l}),E il) ∼=
Cay(〈p1(A)〉, p1(A)) for all i ∈ I, l ∈ Lm. Therefore, γ(D) =

k∑
i=1

m∑
l=1

γ((g i〈p1(A)〉× {l}),E il) and we

can conclude that γ(D)= m ·k ·γ(Cay(〈p1(A)〉, p1(A))).

Sometimes, it is not easy to find γ(Cay(〈p1(A)〉, p1(A))), so we can not find γ(D) actually.
However, we can know the bound of γ(D) which is not depend on γ(Cay(〈p1(A)〉, p1(A))).

The next theorem gives the bounds of the domination number in Cayley digraphs of left
groups with the according connection sets.

Theorem 3.13. Let S = G ×Lm be a left group and A a nonempty subset of S such that the
identity of G lies in p1(A). If H is a subgroup of G with a maximum cardinality and contained
in p1(A), then |G|

|p1(A)| ≤
γ(D)
|Lm| ≤ [G : H] where [G : H] is the index of H in G.

Communications in Mathematics and Applications, Vol. 8, No. 3, pp. 271–287, 2017



280 Domination in Cayley Digraphs of Right and Left Groups: N. Nupo and S. Panma

Proof. Suppose that H is the subgroup of G with a maximum cardinality such that H ⊆ p1(A).
We will show that γ(D) ≤ [G : H]|Lm|. Let [G : H] = k for some k ∈ N. Consider the set of
all left cosets of H in G, {g1H, g2H, . . . , gkH}. Choose only one element from each left coset
g1H, g2H, . . . , gkH, say g1h1, g2h2, . . . , gkhk, respectively. Let D i = Cay(G × {l i}, p1(A)× {l i})
and Yi = {g1h1, g2h2 , . . . , gkhk}× {l i}⊆G× {l i}. We prove that Yi is a dominating set of D i . Let

(g, l i) ∈ (G×{l i})\Yi . Since g ∈G =
k⋃

t=1
gtH, we get that g ∈ g jH for some 1≤ j ≤ k. Then g = g jh

for some h ∈ H. Thus (g jh j, l i) ∈ Yi and h−1
j h ∈ H ⊆ p1(A). So there exists lq ∈ p2(A) such

that (h−1
j h, lq) ∈ A and we have (g, l i) = (g jh, l i) = ((g jh j)(h−1

j h), l i) = (g jh j, l i)(h−1
j h, lq) ∈ Yi A.

Hence Yi is the dominating set of D i and then γ(D i) ≤ |Yi| = k = [G : H]. By Lemma 2.3,

we can conclude that γ(D) =
m∑

i=1
γ(D i) = γ(D i)|Lm| ≤ [G : H]|Lm|. Now, we will prove that

γ(D)≥ |G|
|p1(A)| |Lm|. By Lemma 2.3(1), we have

Cay(G× {l i}, p1(A)× {l i})∼=Cay(G× {l j}, p1(A)× {l j}) for all l i, l j ∈ Lm.

For each 1≤ i ≤ m, we will consider the domination number of D i and let X i be the dominating
set of D i such that X i is a γ-set. Since the identity of G lies in p1(A) and X i is the dominating
set of D i , we get that (X i)(p1(A)× {l i}) = G × {l i}. Hence |G| = |G × {l i}| = |(X i)(p1(A)× {l i})| ≤
|X i||p1(A)× {l i}| = |X i||p1(A)|. Thus γ(D i) = |X i| ≥ |G|

|p1(A)| . By Lemma 2.3(2), we obtain that

D =
·⋃

1≤i≤m
D i . Then we conclude that γ(D)= γ(

·⋃
1≤i≤m

D i)=
m∑

i=1
γ(D i)= γ(D i)|Lm| ≥ |G|

|p1(A)| |Lm|.

Corollary 3.14. Let S =G×Lm be a left group and A = K ×Lm a nonempty subset of S where
K is any subgroup of G. Then γ(D)= [G : K]|Lm|.

Proof. Since A = K ×Lm where K is any subgroup of G, we obtain that the identity e of G lies
in K = p1(A). Moreover, we get that K is the subgroup of G with a maximum cardinality that
contained in p1(A). By Theorem 3.13, we obtain that |G|

|K | |Lm| ≤ γ(D)≤ [G : K]|Lm|. Therefore,
γ(D)= [G : K]|Lm| since [G : K]= |G|

|K | .

The following example gives the sharpness of bounds given in Theorem 3.13.

Example 3.15. Let Z6 ×L2 be a left group where Z6 is a group of integers modulo 6 under the
addition and L2 = {l1, l2} is a left zero semigroup.

(1) Consider the Cayley digraph Cay(Z6 ×L2, {(0̄, l1), (2̄, l1), (4̄, l1)}).

b b b

b b b

0̄l1 1̄l1 2̄l1

1̄l2 2̄l20̄l2

b b b

b b b

3̄l1 4̄l1 5̄l1

3̄l2 4̄l2 5̄l2

Figure 5. Cay(Z6 ×L2, {(0̄, l1), (2̄, l1), (4̄, l1)}).
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We have X = {(0̄, l1), (0̄, l2), (1̄, l1), (1̄, l2)} is a γ-set of Cay(Z6 ×L2, {(0̄, l1),
(2̄, l1), (4̄, l1)}). Thus γ(Cay(Z6 × L2, {(0̄, l1), (2̄, l1), (4̄, l1)})) = |X | = 4 = 2(2) = [Z6 : H]|L2|
where H = {0̄, 2̄, 4̄} is the subgroup with a maximum cardinality of Z6 that contained in
p1({(0̄, l1), (2̄, l1), (4̄, l1)}).

Similarly, if A = {(0̄, l1), (2̄, l1), (4̄, l1), . . . , (2k−2, l1)} is a nonempty subset of Z2k × L2

where k ∈ N, then {(0̄, l1), (0̄, l2), (1̄, l1), (1̄, l2)} is a γ-set of Cay(Z2k × L2, A). Hence
γ(Cay(Z2k ×L2, A))= 4= [Z2k : H]|L2| where H = {0̄, 2̄, 4̄, . . . ,2k−2} is the subgroup with a
maximum cardinality of Z2k that contained in p1(A).

(2) Consider the Cayley digraph Cay(Z6 ×L2, {(0̄, l1), (3̄, l2)}).

0̄l1 1̄l1 2̄l1

1̄l2 2̄l20̄l2

3̄l1 4̄l1 5̄l1

3̄l2 4̄l2 5̄l2

b b b b b b

b b b b b b

Figure 6. Cay(Z6 ×L2, {(0̄, l1), (3̄, l2)}).

We have Y = {(0̄, l1), (1̄, l1), (2̄, l1), (0̄, l2), (1̄, l2), (2̄, l2)} is a γ-set of Cay(Z6×L2, {(0̄, l1), (3̄, l2)})
and γ(Cay(Z6 ×L2, {(0̄, l1), (3̄, l2)}))= |Y | = 6= 6

2 ×2= |Z6|
|p1({(0̄,l1),(3̄,l2)})| ×|L2|.

Similarly, if A = {(0̄, l1), (k̄, l2)} is a nonempty subset of Z2k × L2 where k ∈ N, then
{0̄, 1̄, 2̄, . . . ,k−1}× {l1, l2} is a γ-set of Cay(Z2k ×L2, A). Hence γ(Cay(Z2k ×L2, A)) = 2k =
2k
2 ×2= |Z2k|

|p1(A)| ×|L2|.
Now, we show other results of the domination number of Cayley digraphs of Zn, the group of

integers modulo n, with a connection set {1̄, t̄}⊆Zn in order to apply to the domination number
of Cayley digraphs of left groups Zn ×L where L is a left zero semigroup. Furthermore, let
(V ,E) be a digraph and for each x ∈V , let N(x)= {y ∈V |(x, y) ∈ E} be the set of all neighbours of
x and let N[x]= N(x)∪ {x}.

In general, it is easy to verify that dn
3 e ≤ γ(Cay(Zn, {1̄, t̄}))≤ dn

2 e.
Proposition 3.16. Let n ≥ 2 be a positive integer.
Then γ(Cay(Zn, {1̄, 2̄}))= dn

3 e.
Proof. We will consider the case n ≡ 1 (mod3).
It is easy to see that {1̄, 4̄, 7̄, . . . ,n−3, n̄} is a dominating set of Cay(Zn, {1̄, 2̄}).
Hence γ(Cay(Zn, {1̄, 2̄}))≤ |{1̄, 4̄, 7̄, . . . ,n−3, n̄}| = n+2

3 = dn
3 e.

Suppose that there exists a dominating set X such that |X | < n+2
3 , that is, |X | ≤ n−1

3 . Since
|N[x]| ≤ 3 for all x ∈ X , we obtain that | ⋃

x∈X
N[x]| ≤ 3|X | ≤ n−1 < n which is a contradiction.

Therefore, γ(Cay(Zn, {1̄, 2̄}))= dn
3 e and we can prove other cases similarly.

Lemma 3.17. Let n ≥ 3 be a positive integer and X a dominating set of Cay(Zn, {1̄, 3̄}). For each
x ∈ X , |N[x]∩N[v]| ≥ 1 for some v ∈ X \{x}.
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Proof. Let X be a dominating set of Cay(Zn, {1̄, 3̄}) and x ∈ X .
Then N[x]= {x, x+1, x+3}. Since x+2 ∉ N[x] and x+2 has to be dominated, we can conclude
that x+2 ∈ X or x+2 ∈ N[y] for some y ∈ X .
If x+2 ∈ X , then N[x+2]= {x+2, x+3, x+5}, that is, x+3 ∈ N[x]∩N[x+2] which implies that
|N[x]∩N[x+2]| ≥ 1.
If x+2 ∈ N[y], then y= x+1 or y= x−1.
If y= x+1, then x+1 ∈ X . Thus x+1 ∈ N[x]∩N[x+1] which leads to |N[x]∩N[x+1]| ≥ 1.
If y= x−1, then x−1 ∈ X . Thus x ∈ N[x]∩N[x−1] which implies that |N[x]∩N[x−1]| ≥ 1.

Proposition 3.18. Let n ≥ 3 be a positive integer.

Then γ(Cay(Zn, {1̄, 3̄}))=
{

2dn
5 e−1 if n ≡ 1,2 (mod5),

2dn
5 e if n ≡ 0,3,4 (mod5).

Proof. We will consider the case n ≡ 1 (mod5). In this case, we can conclude that T =
{1̄, 2̄, 6̄, 7̄,11,12, . . . ,n−5,n−4, n̄} is a dominating set which implies that γ(Cay(Zn, {1̄, 3̄}))≤ |T| =
2n+3

5 = 2dn
5 e−1. Next, suppose that there exists a dominating set X such that |X | ≤ 2dn

5 e−2=
2(n−1)

5 . For each x ∈ X , we have by Lemma 3.17 that N[x]∩N[y]≥ 1 for some y ∈ X \{x}. Since
|N[x]| ≤ 3, we have | ⋃

x∈X
N[x]| ≤ 3|X |− d |X |

2 e ≤ 5|X |
2 ≤ n−1 < n, that is,

⋃
x∈X

N[x]( Zn. Hence X

does not dominate Zn which is a contradiction. Therefore, γ(Cay(Zn, {1̄, 3̄}))= |T| = 2dn
5 e−1.

Similarly, we can prove the case n ≡ 2 (mod5).
Now, we will consider the case n ≡ 3 (mod5). We can obtain that T =

{1̄, 2̄, 6̄, 7̄,11,12, . . . ,n−2,n−1} is a dominating set. Then γ(Cay(Zn, {1̄, 3̄})) ≤ |T| = 2n+4
5 = 2dn

5 e.
Assume in the contrary that there exists a dominating set X such that |X | ≤ 2dn

5 e−1 = 2n−1
5 .

Again by Lemma 3.17, we have | ⋃
x∈X

N[x]| ≤ 5|X |
2 ≤ 2n−1

2 < 2n
2 = n. Whence X does not dominate

Zn which contradicts to the property of the dominating set X . So we can conclude that
γ(Cay(Zn, {1̄, 3̄}))= |T| = 2dn

5 e. For the cases n ≡ 0,4 (mod5), we can prove them similarly.

Proposition 3.19. Let n ≥ 4 be a positive integer.

Then γ(Cay(Zn, {1̄, 4̄}))≤


3dn

7 e if n ≡ 0,6 (mod7),
3dn

7 e−1 if n ≡ 4,5 (mod7),
3dn

7 e−2 if n ≡ 1,2,3 (mod7).

Proof. Let n ≥ 4 be a positive integer.

For n ≡ 0 (mod7), we obtain that X0 is a dominating set where
X0 = {1,8,15,22, . . . ,n−6}∪ {3,10,17,24, . . . ,n−4}∪ {6,13,20,27, . . . ,n−1}

which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X0| = 3dn
7 e.

For n ≡ 1 (mod7), we obtain that X1 is a dominating set where
X1 = {1,8,15,22, . . . ,n}∪ {3,10,17,24, . . . ,n−5}∪ {6,13,20,27, . . . ,n−2}

which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X1| = 3dn
7 e−2.

For n ≡ 2 (mod7), we obtain that X2 is a dominating set where
X2 = {1,8,15,22, . . . ,n−1}∪ {3,10,17,24, . . . ,n−6}∪ {6,13,20,27, . . . ,n−3}
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which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X2| = 3dn
7 e−2.

For n ≡ 3 (mod7), we obtain that X3 is a dominating set where
X3 = {1,8,15,22, . . . ,n−2}∪ {3,10,17,24, . . . ,n−7}∪ {6,13,20,27, . . . ,n−4}

which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X3| = 3dn
7 e−2.

For n ≡ 4 (mod7), we obtain that X4 is a dominating set where
X4 = {1,8,15,22, . . . ,n−3}∪ {3,10,17,24, . . . ,n−1}∪ {6,13,20,27, . . . ,n−5}

which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X4| = 3dn
7 e−1.

For n ≡ 5 (mod7), we obtain that X5 is a dominating set where
X5 = {1,8,15,22, . . . ,n−4}∪ {3,10,17,24, . . . ,n−2}∪ {6,13,20,27, . . . ,n−6}

which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X5| = 3dn
7 e−1.

For n ≡ 6 (mod7), we obtain that X6 is a dominating set where
X6 = {1,8,15,22, . . . ,n−5}∪ {3,10,17,24, . . . ,n−3}∪ {6,13,20,27, . . . ,n}

which implies that γ(Cay(Zn, {1̄, 4̄}))≤ |X6| = 3dn
7 e.

Proposition 3.20. Let n ≥ 5 be a positive integer. Then γ(Cay(Zn, {1̄, 5̄}))≤ dn
3 e+1.

Proof. Let n ≥ 5 be a positive integer.

For n ≡ 0 (mod3), we obtain that X0 = {1,2,4,7,10,13, . . . ,n−2} is a dominating set which leads
to γ(Cay(Zn, {1̄, 5̄}))≤ |X0| = dn

3 e+1.

For n ≡ 1 (mod3), we obtain that X1 = {1,2,4,7,10,13, . . . ,n} is a dominating set which leads to
γ(Cay(Zn, {1̄, 5̄}))≤ |X1| = dn

3 e+1.

For n ≡ 2 (mod3), we obtain that X2 = {1,2,4,7,10,13, . . . ,n−1} is a dominating set which leads
to γ(Cay(Zn, {1̄, 5̄}))≤ |X2| = dn

3 e+1.

Since a Cayley digraph of a left group can be considered as the disjoint union of Cayley
digraphs of groups as shown in Lemma 2.3, we can directly obtain some results for the
domination number of Cayley digraphs of left groups as follows.

Theorem 3.21. Let n ≥ 2 be a positive integer. If p1(A)= {1,2}, then γ(Cay(Zn ×L, A))= |L|dn
3 e.

Theorem 3.22. Let n ≥ 3 be a positive integer.

If p1(A)= {1̄, 3̄}, then γ(Cay(Zn ×L, A))=
{
|L|(2dn

5 e−1) if n ≡ 1,2 (mod5),
2|L|dn

5 e if n ≡ 0,3,4 (mod5).

Theorem 3.23. Let n ≥ 4 be a positive integer.

If p1(A)= {1̄, 4̄}, then γ(Cay(Zn ×L, A))≤


3|L|dn

7 e if n ≡ 0,6 (mod7),
|L|(3dn

7 e−1) if n ≡ 4,5 (mod7),
|L|(3dn

7 e−2) if n ≡ 1,2,3 (mod7).

Theorem 3.24. Let n ≥ 5 be a positive integer. If p1(A) = {1̄, 5̄}, then γ(Cay(Zn × L, A)) ≤
|L|(dn

3 e+1).
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Next, we give some results of the total domination number in Cayley digraphs of left groups
with connection sets. We start with the lemma which gives the condition for the existence of the
total dominating set in Cayley digraphs of left groups.

Lemma 3.25. Let S = G ×Lm be a left group and A a nonempty subset of S. Then the total
dominating set of D exists if and only if A 6= ;.

Proof. Suppose that the total dominating set of D exists, say T . By the definition of T , we
obtain that for each (g, l) ∈ S, (g, l) is dominated by (g1, l1) for some (g1, l1) ∈ T , that is,
((g1, l1), (g, l)) ∈ E(D). Then (g, l)= (g1, l1)(a1, l2) where (a1, l2) ∈ A which implies that A 6= ;.

Conversely, assume that the connection set A 6= ;, that is, there exists (a, l) ∈ A. Hence
for each (g1, l1) ∈ S, we have (g1, l1) = (g1a−1, l1)(a, l) where (g1a−1, l1) ∈ S. Thus (g1, l1) is
dominated by (g1a−1, l1) in S. If we take T = S, then we can conclude that T is a total
dominating set of D, that is, the total dominating set of D always exists when A 6= ;.

The following result gives us the total domination number of a Cayley digraph of a left group
G×Lm with a connection set A in the term of a total domination number of a Cayley digraph of
the subgroup 〈p1(A)〉 of G.

Theorem 3.26. Let S = G ×Lm be a left group, A a nonempty subset of S, and G/〈p1(A)〉 =
{g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉}. Then γt(D)= m ·k ·γt(Cay(〈p1(A)〉, p1(A))).

Proof. The proof of this theorem is similar to the proof of Theorem 3.12.

Proposition 3.27. Let n ≥ 3 be an odd integer and c = n−1
2 . Let S =Zn ×Lm be a left group and

A a nonempty subset of S such that p1(A)= {c,n− c, c−1,n− (c−1), . . . , c− (k−1),n− (c− (k−1))}
where 1≤ k ≤ c. Then γt(D)= md n

2k e.

Proof. The result of this proposition follows from Lemma 2.3 and Lemma 2.5, directly.

Proposition 3.28. Let n ≥ 3 be an even integer and c = bn−1
2 c. Let S =Zn×Lm be a left group and

A a nonempty subset of S such that p1(A)= { n
2 , c,n−c, c−1,n−(c−1), . . . , c−(k−1),n−(c−(k−1))}

where 1≤ k ≤ c. Then γt(D)= md n
2k+1e.

Proof. This proposition follows from Lemma 2.3 and Lemma 2.6, directly.

Before we give the next lemmas, we will define some notations which are used in the proof.
Let I = [a,b] be an interval of consecutive integers x such that a ≤ x ≤ b. Recall that N(u) is
the set of all neighbours of a vertex u and N(A)= ⋃

a∈A
N(a) where A is a nonempty subset of a

vertex set of any digraph.

Lemma 3.29. Let n ≥ 3 be an odd integer. Let m = n−1
2 and k be a fixed number such that

1≤ k ≤ m. If A = {m,m−1,m−2, . . . ,m− (k−1)}⊆Zn, then γt(Cay(Zn, A))= dn
k e.
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Proof. Assume that A = {m,m−1,m−2, . . . ,m− (k−1)} and let l = dn
k e. Since every vertex in

D has an out-degree k, from the definition of the total domination number, it follows that
γt(Cay(Zn, A)) ≥ l. Let x = m+ k+1 and X t = {x, x+ k, x+2k, . . . , x+ (l−1)k}. Note that |X t| = l.
Since l = dn

k e, we get that n = (l−1)k+ j for some j ∈N with 1≤ j ≤ k. Thus V (Cay(Zn, A)) can
be partitioned into l intervals as follows:

I1 = [1,k], I2 = [k+1,2k], I3 = [2k+1,3k], . . . , I l−1 = [(l−2)k+1, (l−1)k], and I l = [(l−1)k+1,n].

Note that |I i| = k for all i with 1 ≤ i ≤ l −1 and 1 ≤ |I l | ≤ k. For any 0 ≤ i ≤ l −2, we have
x+ ik ∈ X t and I i+1 = [ik+1, (i+1)k]. Since (x+ ik)+ (m− (k−1))≡ ik+1 (modn) and A is a set
of k consecutive integers with the least element m− (k−1), we have N(x+ ik)= I i+1. Therefore,

(x+ (l−1)k)+m− (k−1)≡ (l−1)k+1 (modn) and so I l ⊆ N(x+ (l−1)k).

Consequently,

V (Cay(Zn, A))= I1 ∪ I2 ∪ . . .∪ I l−1 ∪ I l

⊆ N(x)∪N(x+k)∪ . . .∪N(x+ (l−2)k)∪N(x+ (l−1)k)

= ⋃
y∈X t

N(y)

= N(X t).

Thus X t is a total dominating set of Cay(Zn, A). Hence γt(Cay(Zn, A)) ≤ |X t| = l and then
γt(Cay(Zn, A))= l = dn

k e.

Lemma 3.30. Let n ≥ 3 be an even integer. Let m = bn−1
2 c and k be a fixed number such that

1≤ k ≤ m. If A = { n
2 ,m,m−1, . . . ,m− (k−1)}⊆Zn, then γt(Cay(Zn, A))= d n

k+1e.

Proof. Suppose that A = { n
2 ,m,m−1, . . . ,m−(k−1)}. Then |A| = k+1 and let l = d n

k+1e. Since every
vertex of Cay(Zn, A) has an out-degree k+1, we also have γt(Cay(Zn, A))≥ l. Let x = m+k+2
and X t = {x, x+ (k+1), x+2(k+1), . . . , x+ (l−1)(k+1)}. By partitioning the set of all vertices in
Cay(Zn, A) into l intervals as follows:

I1 = [1,k+1], I2 = [(k+1)+1,2(k+1)], . . . , I l−1 = [(l−2)(k+1)+1, (l−1)(k+1)], and
I l = [(l−1)(k+1)+1,n],

we can prove the remaining part of this lemma by applying the proof of the previous lemma,
similarly. We also have γt(Cay(Zn, A))≤ |X t| = l. Thus γt(Cay(Zn, A))= l = d n

k+1e.

Now, we apply the above two lemmas to obtain the results for the total domination number
of Cayley digraphs of left groups Zn ×Lm with respect to according connection sets.

Theorem 3.31. Let n ≥ 3 be an odd integer. Let c = n−1
2 and k be a fixed number such

that 1 ≤ k ≤ c. Let S = Zn × Lm be a left group and A a nonempty subset of S. If p1(A) =
{c, c−1, c−2, . . . , c− (k−1)}, then γt(D)= mdn

k e.

Proof. This theorem is a direct result from Lemma 2.3 and Lemma 3.29.

Communications in Mathematics and Applications, Vol. 8, No. 3, pp. 271–287, 2017



286 Domination in Cayley Digraphs of Right and Left Groups: N. Nupo and S. Panma

Theorem 3.32. Let n ≥ 3 be an even integer. Let c = bn−1
2 c and k be a fixed number such

that 1 ≤ k ≤ c. Let S = Zn ×Lm be a left group and A a nonempty subset of S. If p1(A) =
{ n

2 , c, c−1, . . . , c− (k−1)}, then γt(D)= md n
k+1e.

Proof. This theorem follows from Lemma 2.3 and Lemma 3.30.

4. Conclusion
In this paper, we give the backgrounds of the research and some preliminaries together with
the notations in Section 1 and Section 2, respectively. In the third section, some results of the
domination number and total domination number of Cayley digraphs of right groups and left
groups with appropriate connection sets are obtained. In addition, we have the conditions for
the existence of the total dominating sets of Cayley digraphs of right groups and left groups.
Moreover, the sharpness of bounds for domination parameters in Cayley digraphs of right
groups and left groups are also shown.
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