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Abstract. We introduce an infinite class of elementary knots in the solid torus, together with general
recursive and explicit formulas of the values of these knots under the generalized invariant of Jones
polynomial to the solid torus. These values can be used as an infinite set of initial data for this
invariant. We also introduce a procedure of resolving certain knots called spiral knots into these
elementary knots. We show that our explicit formulas involve exactly n+1 terms for an elementary
knot with n crossings, which reduces the calculations needed to compute the invariant for spiral knots
and arbitrary knots and links in the solid torus.
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1. Introduction
The Jones polynomial invariant for knots and links, which was discovered by V. Jones in 1984,
has been a leading invariant over the last three decades (see [6]). Many generalizations of
the Jones polynomial were discovered, and much of work has been done to investigate the
ramifications of this invariant. The first well-known generalization of the Jones polynomial
appeared in [3]. These efforts created the theory of quantum invariants, which is one of the
most active fields of research in knot theory.

One important generalization of the Jones polynomial was the polynomial invariant of
Hoste and Przytycki d̃ for 1-trivial dichromatic links in [5]. In [1], Bataineh and Hajij defined
and studied this invariant for knots and links in the solid torus and generalized it to links in
a handlebody. As Kauffman showed in [7], computing such polynomial invariants for one given
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knot or link projection with n crossings involves computing the invariant for 2n states, and the
result involves 2n terms.

In [2], we noticed the importance of a sequence of elementary knots in the solid torus. In this
article we introduce an infinite class of elementary knots including those in [2]. The importance
of these elementary knots is that their appearance is very frequent in the process of computing
d̃ and their values can be used as initial data for d̃. We give recursive and explicit formulas
of the values of these elementary knots in the invariant d̃. We also determine the number of
terms of d̃ at an elementary knot with n crossings. We show that our explicit formulas involve
only n+1 terms for an elementary knot with n crossings, which reduces the calculations needed
to compute the invariant for arbitrary knots. We define spiral knots in the solid torus, which
generalize our sequences of elementary knots and we give examples to show the use of our
explicit values of the sequences of elementary knots in the procedure of resolving spiral knots
to compute d̃ for these spiral knots.

In Section 2 we give basic concepts and terminology. In Section 3 we introduce the elementary
knots and their values in d̃. In Section 4 we show that these values of the elementary knots can
be written explicitly as Laurent polynomials with number of terms of n+1 for an elementary
knot with n crossings. In Section 5 we introduce spiral knots and give applications of our results
on these knots.

2. Basic Concepts and Terminology
Hoste and Przytycki in [5] introduced the two-variable Laurent polynomial invariants d(L) and
d̃(L) of 1-trivial dichromatic links in R3. These invariants can be viewed as invariants of links
in the solid torus.

Theorem 1. Let D denote a figure of an oriented 1-trivial dichromatic link L in R3, and let
〈|D|〉 be determined by the following formulas:〈 〉

= A
〈 〉

+ A−1 〈 〉
,〈

|D|∪
〉
= (−A2 − A−2)〈|D|〉 ,〈

|D|∪
〉
= (−A2 − A−2)h 〈|D|〉 ,〈 〉
= 1 ,

〈 〉
= h .

Then

(i) d(L) = (−A3)−sw(D) 〈|D|〉 is a Laurent polynomial invariant in Z[A, A−1,h] of unoriented
links, where sw(D) is the sum of the signs of those crossings between strands belonging to
the same component.

(ii) d̃(L) = (−A3)−w(D) 〈|D|〉 is a Laurent polynomial invariant in Z[A, A−1,h] of oriented
links, where w(D) is the sum of the signs of all crossings of D. In other words d̃(L) =
(−A3)−2lk(L)d(L), where lk(L) denotes the sum of the linking numbers between each pair of
the components.

For the following two theorems see [4].
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Theorem 2. The invariant d̃(L) is determined by the following skein relation and initial data

(a) A4d̃

( )
− A−4d̃

( )
= (

A−2 − A2) d̃

( )
.

(b) d̃ (U1)= A−6h, d̃ (U−1)= A6h, d̃ (U0)= 1.

In the local graphs of the skein relation above, (b) is necessary if we are dealing with 1-trivial
dichromatic links, but it is not necessary if we are dealing with links in the solid torus.

Theorem 3. The invariant d̃(L) satisfies the following clasp rules:

(I) A8d̃

( )
+ A−8d̃

( )
= h

(
A2 + A−2) d̃

( )
.

(II) A4d̃

( )
+ A−4d̃

( )
= h

(
A2 + A−2) d̃

( )
.

3. Elementary Sequences of Knots and their Values in d̃
Let n ∈Z. Let Un be the knot with winding number equal to n given in the following figure.

And, let U∗
n be the knot with winding number equal to n given in the following figure.

Also, let Vn be the knot with winding number equal to n given in the following figure.

And, let V∗
n be the knot with winding number equal to n given in the following figure.
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In all of the punctured diagrams above, the puncture represents an oriented trivial
component, which is pointing up to the eye of the reader.

Lemma 1. For every n ∈Z; Un is isotopy equivalent to U∗
n , and Vn is isotopy equivalent to V∗

n .

Proof. In the following figure, think of the knot Un (n = 4 for simplicity) starting at the point B,
then winding 4 times counter-clockwise around the puncture to get to the point A, then
proceeding on the line segment from A to B from right to left with 3 over-crossings. To see
U4 as 1-trivial dichromatic two-component link, again start at the point B, then wind 4 times
counter-clockwise around the trivial component to get to the point A, then proceed on the line
segment from A to B from back to front with 3 over-crossings.

Now, it is obvious that the 1-trivial dichromatic two-component link above is isotopy
equivalent to the 1-trivial dichromatic two-component link in the following figure. This can be
seen by stretching the strands at the right and compressing the strands at the left. Finally, U∗

4
can be obtained from the resulting 1-trivial dichromatic two-component link as in the following
figure.

Showing that Vn is isotopy equivalent to V∗
n can be done in a similar way.

For computing purposes, we will mostly view these knots in the solid torus as 1-trivial
two-component links. See the following figure for U4.
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See also the following figure for V4.

Next, we will accomplish our computations for d̃ (Un) and d̃ (Vn) for a positive winding
number n. We will see later that the values of d̃ (Un) and d̃ (Vn) for a negative winding number
n can be deduced easily.

Lemma 2. For n ≥ 0, d̃ (Un) is given recursively by
d̃ (Un)+ A−16d̃ (Un−2)= h

(
A2 + A−2) A−8d̃ (Un−1) , for n ≥ 2,

d̃ (U1)= A−6h ,

d̃ (U0)= 1 .

Proof. d̃ (U0)= 1 and d̃ (U1)= A−6h are already known as initial data.
By the clasp rule (I), we have

A8d̃

 + A−8d̃

 = h
(
A2 + A−2) d̃

  .

Multiplying both sides by A−8, we get

d̃

 + A−16d̃

 = h
(
A2 + A−2) A−8d̃

  .

We apply the last rule on the clasp in the rectangle of the following figure of Un (n = 4 for
simplification).

Note that the local graph inside this rectangle is . The graphs of and

applied on Un are given respectively by:
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which are isotopy equivalent to Un−2 and Un−1, respectively. By substituting in the rule above,
the recursion follows.

For Vn, the following lemma can be proved in a similar way.

Lemma 3. For n ≥ 0, d̃ (Vn) is given recursively by
d̃ (Vn)+ A−8d̃ (Vn−2)= h

(
A2 + A−2) A−4d̃ (Vn−1) , for n ≥ 2 ,

d̃ (V1)= A−6h ,

d̃ (V0)= 1 .

Theorem 4. For n ≥ 2, d̃ (Un) is given explicitly by

d̃ (Un)= A−6h−R2

A−8
√

h2
(
A2 + A−2

)2 −4
Rn

1 + R1 − A−6h

A−8
√

h2
(
A2 + A−2

)2 −4
Rn

2 ,

where

R1,R2 = 1
2

h
(
A2 + A−2) A−8 ± 1

2
A−8

√
h2

(
A2 + A−2

)2 −4 .

Proof. From the previous lemma, for n ≥ 2, we have the recursive equation
d̃ (Un)+ A−16d̃ (Un−2)= h

(
A2 + A−2) A−8d̃ (Un−1) .

Let d̃ (Un)= Rn to get
Rn + A−16Rn−2 = h

(
A2 + A−2) A−8Rn−1

or
R2 −h

(
A2 + A−2) A−8R+ A−16 = 0

Solving for R, we get

R1 = 1
2

h
(
A2 + A−2) A−8 + 1

2
A−8

√
h2

(
A2 + A−2

)2 −4 ,

R2 = 1
2

h
(
A2 + A−2) A−8 − 1

2
A−8

√
h2

(
A2 + A−2

)2 −4 .

Therefore the solution of the recursive equation is
d̃ (Un)=αRn

1 +βRn
2 .

To determine the values of α and β, we use the initial data
d̃ (U0)= 1, d̃ (U1)= A−6h

which gives the following two equations:
α+β= 1 ,

αR1 +βR2 = A−6h .
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The solution of this system is

α= A−6h−R2

R1 −R2
, β= R1 − A−6h

R1 −R2
.

Note that R1 −R2 = A−8
√

h2
(
A2 + A−2

)2 −4 .
Therefore

α= A−6h−R2

A−8
√

h2
(
A2 + A−2

)2 −4
, β= R1 − A−6h

A−8
√

h2
(
A2 + A−2

)2 −4
,

and hence

d̃ (Un)= A−6h−R2

A−8
√

h2
(
A2 + A−2

)2 −4
Rn

1 + R1 − A−6h

A−8
√

h2
(
A2 + A−2

)2 −4
Rn

2 ,

where

R1 = 1
2

h
(
A2 + A−2) A−8 + 1

2
A−8

√
h2

(
A2 + A−2

)2 −4 ,

R2 = 1
2

h
(
A2 + A−2) A−8 − 1

2
A−8

√
h2

(
A2 + A−2

)2 −4 .

The following theorem for Vn can be proved in a similar way.

Theorem 5. For n ≥ 2, d̃ (Vn) is given explicitly by

d̃ (Vn)= A−6h−S2

A−4
√

h2
(
A2 + A−2

)2 −4
Sn

1 + S1 − A−6h

A−4
√

h2
(
A2 + A−2

)2 −4
Sn

2 ,

where

S1 = 1
2

h
(
A2 + A−2) A−4 + 1

2
A−4

√
h2

(
A2 + A−2

)2 −4 ,

S2 = 1
2

h
(
A2 + A−2) A−4 − 1

2
A−4

√
h2

(
A2 + A−2

)2 −4 .

4. Explicit Formulas as Laurent Polynomials

One disadvantage of the last two theorems is that they do not give us d̃ (Un) and d̃ (Un) as
Laurent polynomials, because of the radical in the denominators in the formulas. Next, we will
explore more explicit formulas for d̃ (Un) and d̃ (Vn) as Laurent polynomials in A and h.

Let δ = (
A2 + A−2) , then R1,R2 = 1

2 hδA−8 ± 1
2 A−8

p
h2δ2 −4. In fact δ is a commonly used

notation for
(
A2 + A−2).

Theorem 6. For n ≥ 2, d̃ (Un) is given explicitly as a Laurent polynomial in A and h as:

d̃ (Un)= hA−6

⌊ n+1
2

⌋∑
j=1

(
n

2 j−1

)(
1
4

A−16 (
h2δ2 −4

)) j−1 (
1
2

hδA−8
)n−2 j+1

− A−16
b n

2 c∑
j=1

(
n−1
2 j−1

)(
1
4

A−16 (
h2δ2 −4

)) j−1 (
1
2

hδA−8
)n−2 j

,

where δ= A2 + A−2.
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Proof. To simplify the calculations we will let X = 1
2 hδA−8, and Z = 1

2 A−8
p

h2δ2 −4, then
R1,R2 = X ±Z. Therefore, by the last theorem, we have

d̃ (Un)= A−6h−R2

2Z
Rn

1 + R1 − A−6h
2Z

Rn
2

= A−6hR1 −R1R2

2Z
Rn−1

1 + R1R2 − A−6hR2

2Z
Rn−1

2 .

Recall that R2−h
(
A2 + A−2) A−8R+A−16 = (R−R1)(R−R1)= 0, hence R1R2 = A−16. Therefore

d̃ (Un)= A−6hR1 − A−16

2Z
Rn−1

1 + A−16 − A−6hR2

2Z
Rn−1

2

= 1
2Z

[(
A−6hR1 − A−16)Rn−1

1 + (
A−16 − A−6hR2

)
Rn−1

2
]

= 1
2Z

[
A−6hRn

1 − A−16Rn−1
1 + A−16Rn−1

2 − A−6hRn
2
]

= 1
2Z

[
A−6h

(
Rn

1 −Rn
2
)+ A−16 (

Rn−1
2 −Rn−1

1
)]

= 1
2Z

[
A−6h

(
Rn

1 −Rn
2
)− A−16 (

Rn−1
1 −Rn−1

2
)]

.

Therefore

d̃ (Un)= hA−6

2Z
(
Rn

1 −Rn
2
)− A−16

2Z
(
Rn−1

1 −Rn−1
2

)
.

Now, by Binomial Theorem, we have
Rn

1 −Rn
2 = (X +Z)n − (X −Z)n

=
n∑

i=0

(
n
i

)
Z i X n−i −

n∑
i=0

(
n
i

)
(−1)i Z i X n−i

=
n∑

i=0

(
n
i

)
Z i X n−i −

(
n
i

)
(−1)i Z i X n−i

=
n∑

i=0

((
n
i

)
−

(
n
i

)
(−1)i

)
Z i X n−i.

Note that (
n
i

)
−

(
n
i

)
(−1)i =

{
2
(n

i
)
, if i is odd,

0, if i is even.
Therefore

Rn
1 −Rn

2 =
2

(n
1

)
Z1X n−1 +2

(n
3

)
Z3X n−3 +·· ·+2

(n
n
)
ZnX0, if n is odd,

2
(n

1

)
Z1X n−1 +2

(n
3

)
Z3X n−3 +·· ·+2

( n
n−1

)
Zn−1X1, if n is even.

Therefore

Rn
1 −Rn

2 =
⌊ n+1

2
⌋∑

j=1
2

(
n

2 j−1

)
Z2 j−1X n−2 j+1,

because ⌊
n+1

2

⌋
=


n+1

2 , if n is odd,
n
2 , if n is even.
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Similarly

Rn−1
1 −Rn−1

2 =
b n

2 c∑
j=1

2

(
n−1
2 j−1

)
Z2 j−1X n−2 j.

Therefore

d̃ (Un)= hA−6

2Z
(
Rn

1 −Rn
2
)− A−16

2Z
(
Rn−1

1 −Rn−1
2

)
= hA−6

2Z

⌊ n+1
2

⌋∑
j=1

2

(
n

2 j−1

)
Z2 j−1X n−2 j+1 − A−16

2Z

b n
2 c∑

j=1
2

(
n−1
2 j−1

)
Z2 j−1X n−2 j

= hA−6

⌊ n+1
2

⌋∑
j=1

(
n

2 j−1

)
Z2 j−2X n−2 j+1 − A−16

b n
2 c∑

j=1

(
n−1
2 j−1

)
Z2 j−2X n−2 j .

Note that Z has an even power in both terms, which will eliminate the square root from the
expressions, and gives us the Laurent polynomial explicitly.

d̃ (Un)= hA−6

⌊ n+1
2

⌋∑
j=1

(
n

2 j−1

)(
Z2) j−1 X n−2 j+1 − A−16

b n
2 c∑

j=1

(
n−1
2 j−1

)(
Z2) j−1 X n−2 j

= hA−6

⌊ n+1
2

⌋∑
j=1

(
n

2 j−1

)(
1
4

A−16 (
h2δ2 −4

)) j−1 (
1
2

hδA−8
)n−2 j+1

− A−16
b n

2 c∑
j=1

(
n−1
2 j−1

)(
1
4

A−16 (
h2δ2 −4

)) j−1 (
1
2

hδA−8
)n−2 j

.

This completes the proof.

The following theorem for Vn can be proved in a similar way.

Theorem 7. For n ≥ 2, d̃ (Vn) is given explicitly as a Laurent polynomial in A and h as:

d̃ (Vn)= hA−6

⌊ n+1
2

⌋∑
j=1

(
n

2 j−1

)(
1
4

A−8 (
h2δ2 −4

)) j−1 (
1
2

hδA−4
)n−2 j+1

− A−8
b n

2 c∑
j=1

(
n−1
2 j−1

)(
1
4

A−8 (
h2δ2 −4

)) j−1 (
1
2

hδA−4
)n−2 j

,

where δ= (
A2 + A−2) .

The number of terms in calculating d̃ of Un or Vn is 2n, while our formulas give explicitly
the values of d̃ (Un) and d̃ (Vn) in only n terms as illustrated in the following corollary.

Corollary 1. The explicit formulas of the values of d̃ (Un) and d̃ (Vn) involve n terms.

Proof. It is obvious that in the explicit formula of the value of d̃ (Un) or d̃ (Vn) we have⌊n+1
2

⌋+⌊n
2

⌋= n terms, because⌊
n+1

2

⌋
+

⌊n
2

⌋
=

{n+1
2 + n−1

2 , if n is odd,
n
2 + n

2 , if n is even.
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Note that the number of terms is more than the number of crossings by 1, because each of
Un or Vn involves n−1 crossings.

The following theorem gives the values of d̃ (Un) and d̃ (Vn) for negative values of n.

Theorem 8. For n ≥ 0, we have
d̃ (U−n)= A12nd̃ (Un) ,

d̃ (V−n)= A12nd̃ (Vn) .

Proof. We prove the first formula only, as the proof of the second formula is similar.
By Theorem 1, note that

d̃ (Un)= (−A3)−2lk(L) d (Un)

= (−A3)−2n d (Un)

= A−6nd (Un) .
Therefore

d (Un)= A6nd̃ (Un) .
On the other hand

d̃ (U−n)= (−A3)−2lk(L) d (U−n)

= (−A3)2n d (U−n) .
However, since d is an invariant of unoriented links, we have d (U−n)= d (Un). Therefore

d̃ (U−n)= (−A3)2n d (Un)

= A6nd (Un) .
Consequently

d̃ (U−n)= A12nd̃ (Un) .

5. Disjoint Connected Sums and Spiral Knots
Definition 1. If K1 and K2 are two knots (or links) in the solid torus realized by their punctured
diagrams, then their disjoint connected sum K1#K2 is defined to be the link resulting from their
disjoint union with a common puncture as in the following figure.

The following formula follows from Theorem 5.1 and Theorem 5.2 in [4].

Theorem 9. If K1 and K2 are two knots (or links) in the solid torus, then
d̃ (K1#K2)=−δd̃ (K1) d̃ (K2)=−(

A2 + A−2) d̃ (K1) d̃ (K2) .

Communications in Mathematics and Applications, Vol. 7, No. 4, pp. 291–302, 2016



On the Jones Polynomial in the Solid Torus: K. Bataineh 301

Obviously, this formula is very useful now in computing d̃ for disjoint connected sums of
knots from the families {Un} and {Vn}.

We define spiral knots in the solid torus as follows.

Definition 2. A spiral knot K in the solid torus is defined to be the result of changing some of
the crossings of a knot from {Un}∪ {Vn} in their diagrams given in Section 2.

In the following example, we illustrate a procedure of computing d̃ for a spiral knot getting
use of the results in Section 4.

Example 1. Let the following two spiral knots be denoted by K and L, respectively.

We compute d̃ (K) using the skein relation and our results as follows. At first we apply the skein
relation on the second closest crossing to the puncture in K to get

A4d̃ (K)− A−4d̃ (L)= (
A−2 − A2) d̃ (U6#V2) .

Therefore
d̃ (K)= A−8d̃ (L)+ A−4 (

A−2 − A2) d̃ (U6#V2) .
Now we apply the skein relation on the closest crossing to the puncture in L to get

d̃ (K)= A−8 [
A−8d̃ (U8)+ A−4 (

A−2 − A2) d̃ (U7#V1)
]+ A−4 (

A−2 − A2) d̃ (U6#V2)

= A−16d̃ (U8)− A−12 (
A−2 − A2)δd̃ (U7) d̃ (V1)− A−4 (

A−2 − A2)δd̃ (U6) d̃ (V2) .
Finally, the value of d̃ (K) can be obtained by substituting for d̃ (U8) , d̃ (U7) , d (U6) , d̃ (V2) and
d̃ (V1) from Theorem 6 and Theorem 7.

Example 2. Let the following spiral knot be denoted by M.
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We compute d̃ (M) using the skein relation and our results as follows. At first we apply the
skein relation on the fifth closest crossing to the puncture in M to get

A4d̃ (M)− A−4d̃ (U8)= (
A−2 − A2) d̃ (U5#U3) .

Therefore
d̃ (M)= A−8d̃ (U8)+ A−4 (

A−2 − A2) d̃ (U5#U3)

= A−8d̃ (U8)−δA−4 (
A−2 − A2) d̃ (U5) d̃ (V3) .

Finally, the value of d̃ (M) can be obtained by substituting for d̃ (U8) , d̃ (U5) and d̃ (U3) from
Theorem 6 and Theorem 7.

6. Conclusion
Unlike knots in the three spheres, knots in the solid torus have infinitely many homotopy
classes. We characterized the simplest knots in these classes and gave their values explicitly
in Jones polynomial. These values can work as an infinite class of initial data for spiral and
arbitrary knots.
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