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1. Introduction
Given a function f :R−→R (or C), its Fourier transform can be defined in ω ∈R if the function
f (·)e−i(·)ω is integrable. In this case, its Fourier transform is defined as

f̂ (ω)=
∫ ∞

−∞
f (x)e−ixωdx. (1.1)

The existence of the Fourier transform of a function is dependent upon the type integral
employed. We know that with respect to Lebesgue integral it satisfies: f ∈ L1(R) if and only if
f̂ (ω) is defined for all ω ∈R. Even with the Lebesgue integral, the previous proposition is not
always true if the function belongs to other spaces, for example, if it is of bounded variation on R.
In this case we must use nonabsolute improper integrals, like the Henstock-Kurzweil integral.
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In this paper we present new proofs of the Riemann-Lebesgue lemma and the Dirichlet-
Jordan theorem for bounded variation functions which vanish at infinity, BV0(R). In summary,
we present a new proof of the following theorem.

Theorem. If f ∈ BV0(R), then its Fourier transform f̂ is defined on R\{0}, belongs to C0(R\{0})
and for each x ∈R :

lim
M→∞,δ→0

1
2π

∫
δ<|ω|<M

eixω f̂ (ω)dω= f (x+)+ f (x−)
2

.

C0(R\{0}) is the space of continuous functions on R\{0} which vanish at infinity, and f (x±) are
the lateral limits of f at x.

The space of bounded variation functions which vanish at infinity is not contained in any
Lp(R) when p ∈ [1, ∞). For example, f :R→R defined by

f (x)=


1

|x|
1
p

if x ∉ [−1,1],

0 if x ∈ [−1,1],

belongs to BV0(R)\Lp(R).

Other examples are the functions fαχ[
π

1
α ,∞

), with 0 < α < 1, where fα (t) = [ sen(tα)
t

] 1
p and

χ[
π

1
α ,∞

) is the characteristic function of [π
1
α ,∞). In [5] it is proved that the functions within

parenthesis are not Lebesgue integrable. They are improper Lebesgue integrable and belong
to BV0([π

1
α ,∞)). Therefore, the functions fαχ[

π
1
α ,∞

] are Henstock-Kurzweil integrables and

belong to BV0(R). On this space, the Riemann-Lebesgue lemma is proved in [4] and [12], and
the Dirichlet-Jordan theorem is proved in [4], [8], [11] and [12]. We prove these theorems of a
different way to those references, and employ the Henstock-Kurzweil integral. This helps us
carry out the proofs in an easier way.

2. Preliminaries
We provide some basic definitions and results to develop our exposition.

2.1 Functions of Bounded Variation
A closed interval I ⊆R may be bounded or unbounded. The function f is of bounded variation
on a closed interval I if the set defined by the total variations of f over the compact intervals
J ⊂ I is uniformly bounded. The total variation of f on I is defined as

Var( f ; I)= sup {Var( f ; J) : J is a compact interval contained in I} .

We denoted by BV (I) the vector space of bounded variation functions on I . Some
characteristics of BV (I) are the following:

• Jordan decomposition: f ∈ BV (I) if and only if there exist f1 and f2 which are increasing
bounded functions such that f = f1 − f2.

• If I is an unbounded interval, then lim
t→±∞ f (t) exists.

We will refer to BV0(I) as the subspace of functions f ∈ BV (I) such that vanishing at ±∞.
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2.2 The Henstock-Kurzweil Integral
The definition of Henstock-Kurzweil integral is available in [2] and [9]. We denote by HK(I) the
vector space of Henstock-Kurzweil integrable functions on I . In this section we present some
basic concepts related to this integral which also are taken from the above references. To simplify,
sometimes we say that a function is HK integrable. Over intervals, any Lebesgue integrable
function is HK integrable and their values are equal. This inclusion is proper. The HK(I) space
is a semi-normed space with the Alexiewicz semi-norm

‖ f ‖A = sup
[c,d]⊂I

∣∣∣∣∫ d

c
f (t)dt

∣∣∣∣ . (2.1)

Hake’s theorem plays an important role in the HK-integral theory. We expose the case for
[a,∞]. The other cases are analogous.

Theorem 1 (Hake’s Theorem). f ∈HK([a,∞]) if and only if, for all c, ε such that c>a, c−a>ε>0,
it holds that f ∈ HK([a+ε, c]) and

lim
ε→0;c→∞

∫ c

a
f (t)dt

exists. The limit will be
∫ ∞

a f (t)dt.

As a consequence of this theorem, the integrals in the improper Lebesgue sense will be
integrable in the HK sense. Also the Cauchy principal value of a Henstock-Kurzweil integrable
function and its HK-integral are equals. The reciprocal result is not true.

We say that a function, defined on the closed interval I , is locally Henstock-Kurzweil
integrable if it is integrable on every compact interval contained in I . The class of these
functions is denoted by HKloc(I).

The multipliers in HK(I) are the functions of bounded variation. That is , if f ∈ HK(I) and
ϕ ∈ BV (I), then fϕ ∈ HK(I). The product of two HK -integrable functions is not necessarily
HK -integrable. With respect to this fact and for the case [a,∞] we give the next theorem.
The results on [−∞,b] and [−∞,∞] are analogous.

Theorem 2 (Multiplier Theorem). Let [a,b] be a compact interval. If f ∈HK([a,b]), ϕ∈BV ([a,b])
and F(x)=∫ x

a f (t), for x ∈ [a,b], then fϕ ∈ HK([a,b]) and∫ b

a
fϕ= F(b)ϕ(b)−

∫ b

a
Fdϕ . (2.2)

If f ∈ HK([a,∞]) and ϕ ∈ BV ([a,∞]), then fϕ ∈ HK([a,∞]) and∫ ∞

a
fϕ= lim

b→∞

[
F(b)ϕ(b)−

∫ b

a
Fdϕ

]
. (2.3)

The integral on the right is a Stieljes integral.

Theorem 3 (Chartier-Dirichlet Test). Let f , ϕ : [a,∞]→R and suppose that: (a) f ∈ HK([a, c])
for each c ≥ a, and F(x) = ∫ x

a f is bounded on [a,∞); and (b) ϕ is monotone with lim
x→∞ϕ (x) = 0.

Then fϕ ∈ HK([a,∞]).

The next result is in [6].
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Lemma 4. Let I ⊂ R be a closed interval. Let f : R× I → R and ϕ : R→ R functions such that
f (·, t) ∈ HKloc(R) and ϕ ∈ BV0(R). Suppose that exists A > 0 such that for all t ∈ I and for all
interval [a,b]⊂R:∣∣∣∣∫ b

a
f (x, t)dx

∣∣∣∣≤ A.

Then
∫ b

a f (x, t)ϕ(x)dx converges uniformly to
∫ ∞
−∞ f (x, t)ϕ(x)dx, with respect to t ∈ I , when

a →−∞ and b →∞.

We recall the following two lemmas, see [1, Theorem 9.16; Theorem 11.8] and [3, Theorem 1].

Lemma 5 (Moore-Osgood Theorem). Let s(m,n) be a double sequence in a complete metric space
X . Assume that:

(1) lim
n→∞ s(m,n) exists uniformly in m;

(2) lim
m→∞ s(m,n) exists for each n.

Then lim
m→∞ lim

n→∞ s(m,n)= lim
n→∞ lim

m→∞ s(m,n)= lim
m,n→∞ s(m,n).

Lemma 6. Let δ> 0 be. If g is of bounded variation on [0,δ], then

lim
M→∞

2
π

∫ δ

0
g(t)

sin Mt
t

dt = g(0+) .

3. Our Classical Theorems in BV0

The existence of the Fourier transform for functions in BV0(R) is proved in [4] and [10]. The
respective Riemann-Lebesgue Lemma in R\ {0} is proved in [4] and [12]. We recall the proof
on its existence. By Jordan decomposition, there exist f1 and f2 increasing bounded functions
that tend to zero, when x →∞, such that f = f1− f2. For each ω 6= 0 fixed and for any compact
interval [a,b], the function ϕ(t)= e±itω satisfies∣∣∣∣∫ b

a
e−itωdt

∣∣∣∣= ∣∣∣∣−e−ibω+ e−iaω

ω

∣∣∣∣≤ 2
ω

. (3.1)

Then, by Chartier-Dirichlet theorem, f (·)e±i(·)ω = f1e±i(·)ω − f2e±i(·)ω ∈ HK([0,∞]). The case
[−∞,0] is analogous. Therefore f̂ (ω) is defined for all ω ∈R\{0}. In general the Fourier transform
for functions in BV0(R) is not defined at ω= 0. For example, if f (t)= 1

t for t ∈ (−∞,−1)∪ (1,∞)
and f (t)= 0 for t ∈ [−1,1], then f belongs to BV0(R) and f̂ (0) does not exist.

The Riemann-Lebesgue Lemma
From Lemma 4, Hake’s Theorem and inequality (3.1) the following corollaries are obtained.

Corollary 7. If f ∈ BV0(R) and I is an interval contained in R\{0}, then the convergence from∫ a
−a e−iωt f (t)dt to f̂ (ω), as a →∞, is uniform with respect to ω ∈ I .

Corollary 8. Let f ∈ BV0(R) and β > 0. For any compact interval I contained in R\ {0}, it
satisfies

lim
a→∞

∫
I

∫ a

−a
f (u)e−iuωeiβωdudω=

∫
I

f̂ (ω)eiβωdω .
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Lemma 9. Let f ∈ BV0(R) and ω 6= 0, then

f̂ (ω)=− i
ω

∫ ∞

−∞
e−iuωd f (u).

Proof. Since h(u)= e−iuω belongs to HKloc(R), then using the Multiplier Theorem on [a,b]:∫ b

a
f (u)e−iuωdu = i

ω

{
(e−ibω− e−iaω) f (b)−

∫ b

a

[
e−iuω− e−iaω]

d f (u)
}

= i(e−ibω− e−iaω) f (b)
ω

+ ie−iaω

ω
[ f (b)− f (a)]− i

ω

∫ b

a
e−iuωd f (u).

Since f̂ (ω) is defined as a Henstock-Kurzweil integral, then the proof is obtained when a →−∞
and b →∞.

From this result we obtain the following corollary.

Corollary 10. If f ∈ BV0(R), then for all ω ∈R\{0} :∣∣ f̂ (ω)
∣∣= ∣∣∣∣∫ ∞

−∞
e−iωt f (t)dt

∣∣∣∣≤ V ( f ;R)
|ω| .

Proof. From equality∣∣ f̂ (ω)
∣∣= 1

|ω|
∣∣∣∣∫ ∞

−∞
e−iuωd f (u)

∣∣∣∣ ,

and from [7, p. 232] the proof is obtained.

Now we prove the Riemann-Lebesgue Lemma in a different way as in [4] and [12].

Theorem 11. If f ∈ BV0(R), then f̂ is continuous on R\{0} and lim
|ω|→∞

f̂ (ω)= 0.

Proof. By Hake’s Theorem:

f̂ (ω)= lim
a→∞

∫ a

−a
e−iωt f (t)dt. (3.2)

By Corollary 7, the convergence on the right side of (3.2) is uniform with respect to ω ∈R\{0}.
Furthermore, it is clear that for each a > 0 :

lim
ω′→ω

∫ a

−a
e−iω′t f (t)dt =

∫ a

−a
e−iωt f (t)dt. (3.3)

Considering the equalities (3.2), (3.3) and using Lemma 5 we can interchange the limits.
Therefore

lim
ω′→ω

f̂ (ω′)= lim
ω′→ω

lim
a→∞

∫ a

−a
e−iω′t f (t)dt

= lim
a→∞ lim

ω′→ω

∫ a

−a
e−iω′t f (t)dt

= lim
a→∞

∫ a

−a
e−iωt f (t)dt

= f̂ (ω).

Communications in Mathematics and Applications, Vol. 7, No. 2, pp. 73–80, 2016



78 A Note on Two Classical Theorems of the Fourier Transform for BVF: F.J. Mendoza-Torres

So, f̂ is continuous on R\ {0}. The convergence to zero of f̂ (ω), as ω→ ±∞, it follows from
Corollary 10.

3.1 The Dirichlet-Jordan theorem
Suppose that f ∈ BV0(R), M > δ> 0 and β ∈R. Since∫

0<|δ|<M
eix(−u+β) dx =

(∫ −δ

−M
+

∫ M

δ

)
eix(−u+β) dx

= 2
sin M(−u+β)−sinδ(−u+β)

(−u+β)
,

and taking into account the Corollaries 7 and 8, it gets∫
0<|δ|<M

∫ ∞

−∞
f (u)e−iuxeiβx du dx = lim

a→∞

∫
0<|δ|<M

∫ a

−a
f (u)e−iuxeiβx du dx

= lim
a→∞

∫ a

−a
f (u)

∫
0<|δ|<M

[
eix(−u+β) dx

]
du

= lim
a→∞ 2

∫ a

−a
f (u)

sin M(−u+β)
(−u+β)

du

+ lim
a→∞ 2

∫ a

−a
f (u)

sinδ(−u+β)
(−u+β)

du. (3.4)

The previous expression is interesting because it shows us a relation between a principal value
and integrals that exist in the HK sense.

Lemma 12. If f ∈ BV0(R), then

lim
ε→0

∫ ∞

−∞
f (t)

sinε(t− x)
t− x

dt = 0 .

Proof. We know that sin(·)/(·) ∈ HK(R). Therefore for any ε ∈ [−1,1], x ∈R, and b < c:∣∣∣∣∫ c

b

sinε(t− x)
(t− x)

dx
∣∣∣∣= ∣∣∣∣∫ ε(c−x)

ε(b−x)

sin t
t

dx
∣∣∣∣≤ ∥∥∥∥sin(·)

(·)
∥∥∥∥

A
.

By Lemma 4, the convergence

lim
a→∞

∫ a

−a
f (t)

sinε(t− x)
t− x

dt =
∫ ∞

−∞
f (t)

sinε(t− x)
t− x

dt

is uniform with respect to ε ∈ [−1,1]. The function sinε(t− x)/(t− x) is uniformly bounded with
respect to ε ∈ [−1,1], over any interval [−a,a], and converge to 0 when ε→ 0. By Lebesgue
Dominated Convergence theorem:

lim
ε→∞

∫ a

−a
f (t)

sinε(t− x)
t− x

dt = 0. (3.5)

Then, by Moore-Osgood theorem,

lim
ε→0

∫ ∞

−∞
f (t)

sinε(t− x)
t− x

dt = lim
ε→0

lim
a→∞

∫ a

−a
f (t)

sinε(t− x)
t− x

dt

= lim
a→∞ lim

ε→0

∫ a

−a
f (t)

sinε(t− x)
t− x

dt

= 0 .
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Remark 13. Since sin(·)/(·) ∈ HK(R) and taking into account the relation (3.4), then from above
lemma we have

lim
δ→0

∫
0<|δ|<α

∫ ∞

−∞
f (u)e−iuxeiβx du dx = 2

∫ ∞

−∞
f (u)

sin M(−u+β)
(−u+β)

du

= 2
∫ ∞

−∞
f (−u+β)

sin Mu
u

du. (3.6)

Now, we prove the Dirichlet-Jordan theorem.

Theorem 14. If f ∈ BV0(R), then, for each β ∈R:

lim
M→∞,δ→0

1
2π

∫
δ<|ω|<M

eiβx f̂ (x)dx = f (β+)+ f (β−)
2

. (3.7)

Proof. Let γ> 0 be. Because of f (−·+β)χ(−∞,−γ]∪[γ,∞)/(·) belongs to BV0(R), then by the Riemann-
Lebesgue lemma:

lim
M→∞

∫ ∞

−∞

f (−u+β)χ(−∞,−γ]∪[γ,∞)(u)
u

sin Mudu = 0. (3.8)

On the other hand∫ ∞

−∞
f (−u+β)χ(−γ,γ)

sin Mu
u

du =
∫ 0

−γ
f (−u+β)

sin Mu
u

du+
∫ γ

0
f (−u+β)

sin Mu
u

du (3.9)

=
∫ γ

0

[
f (u+β)+ f (−u+β)

] sin Mu
u

du.

From (3.8), (3.9) and by Lemma 6, we get

lim
M→∞

2
∫ ∞

−∞
f (−u+β)

sin Mu
u

du =π[
f (β+)+ f (β−)

]
.

Applying (3.6) we then conclude the proof.

4. Conclusion
The integral of Henstock-Kurzweil has been little used in the Fourier Analysis. It is possible that
E. Talvila [10] was the first who made one study over this subject employing the HK integral. At
this paper we show the application from this integral in the proof of two fundamental theorems
of this important area. An intention is to spread the use of this integral.
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