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1. Introduction

In all that follows, unless specially stated, R always denotes an associative ring with centre
Z(R). As usual the symbols s◦t and [s, t] will denote the anti-commutator st+ts and commutator
st− ts, respectively. A ring equipped with involution ∗ is called ring with involution or ∗-ring
(cf. [18]). Also H(R) and S(R) represent the sets of all hermitian and skew-hermitian elements
of R.

An additive mapping δ : R → R is said to be a derivation of R if δ(st) = δ(s)t+ sδ(t) for all
s, t ∈ R. A derivation δ is said to be inner if there exists a ∈ R such that δ(s)= as−sa for all s ∈ R.
Following Brešar [14], an additive mapping F : R → R is said to be a generalized derivation of R
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with an associated derivation δ if F(st)= F(s)t+ sδ(t) for all s, t ∈ R. It is clear that the concept
of generalized derivation covers both the concept of derivation and the concept of left multiplier
(i.e., an additive mapping T : R → R satisfies T(st)= T(s)t for all s, t ∈ R). Over the last 30 years,
several authors have investigated the relationship between the commutativity of the ring R
and certain special types of maps on R. This line of study was originated by Posner [20], who
proved that the existence of a nonzero centralizing derivation on a prime ring forces the ring to
be commutative. Several other papers studying commutativity of prime and semiprime rings
admitting derivations or generalized derivations satisfying certain identities can be found in [5],
[6], [7], [8], [9],[10], [12], [14], [19], [21], where further references can be found. In [17], Herstein
proved that a prime ring R of characteristic not two with a nonzero derivation δ satisfying
δ(s)δ(t)= δ(t)δ(s) for all s, t ∈ R, must be commutative. Further, Daif [15] studied this result in
the setting of semiprime rings. In [10], Bell and Daif showed that if R is a prime ring admitting
a nonzero derivation δ such that δ(st)= δ(ts) for all s, t ∈ R, then R is commutative. This result
was extended for semiprime rings by Daif [15]. Bell and Kappe [11] proved that if a derivation
δ of a prime ring R can act as homomorphism or anti-homomorphism on a nonzero right ideal
of R, then δ= 0 on R. These results were studied in the setting of generalized derivations by
many authors (viz.; [1], [13], [16], [22]). Very recently, Ali et al. [2, 3], studied these results in
the setting of rings with involution involving derivations.

In this paper, our intent is to investigate certain identities involving generalized derivations
in prime rings with involution. Finally, an example is given to demonstrate that the restrictions
imposed on the hypothesis of our result are not superfluous.

Throughout the paper, we denote by I id the identity map of a ring R (i.e., the map I id : R → R
defined by I id(s) = s for all s ∈ R). At the same time, the map −I id : R → R defined by
(−I id)(s)=−s for all s ∈ R. We will use the following facts in the proofs below.

Fact 1 ([2, Lemma 2.1]). Let R be a prime ring with involution such that char(R) 6= 2.
If S(R)∩Z(R) 6= (0) and R is normal, then R is commutative.

Fact 2. The center of a prime ring is free from zero divisors.

Fact 3. Let R be a 2-torsion free ring with involution. Then every s ∈ R can be uniquely
represented as 2s = h+k, where h ∈ H(R) and k ∈ S(R).

Fact 4. Let n be any integer. If F : R → R is a generalized derivation with an associated
derivation δ, then F ±nI id is also a generalized derivation on R.

2. The Results

In 1995, Bell and Daif [10] showed that if R is a prime ring admitting a nonzero derivation
δ such that δ([s, t]) = 0 for all s, t ∈ R, then R is commutative. This result was extended for
semiprime rings in [15] by Daif. Further, for semiprime rings, Andima and Pajoohesh [4] showed
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that an inner derivation satisfying the above mentioned condition on a nonzero ideal of R must
be zero on that ideal. Moreover, for semiprime rings with identity, they generalized this result
to inner derivations of powers of s and t. Recently, Ali et al. [3], studied the above mentioned
result in the setting of prime rings with involution by replacing t by s∗. Precisely, they proved
the following theorem:

Theorem 2.1. Let R be a prime ring with involution such that char(R) 6= 2. If δ is a nonzero
derivation of R such that δ([s, s∗])= 0 for all s ∈ R and S(R)∩Z(R) 6= (0), then R is commutative.

We extend the above theorem for generalized derivation in rings with involution as follows:

Theorem 2.2. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a generalized derivation F : R → R such that F([s, s∗])= 0 for all s ∈ R, then one of
the following holds:

(i) F(s)= 0 for all s ∈ R;

(ii) R is commutative.

Proof. In view of our hypothesis, we have

F([s, s∗])= 0 for all s ∈ R. (2.1)

Replacing s by a+b in (2.1), where a ∈ H(R) and b ∈ S(R), we get

F([a,b])= 0 for all a ∈ H(R) and b ∈ S(R). (2.2)

Taking a = b0b1 in above expression, where b0 ∈ S(R) and b1 ∈ S(R)∩Z(R), we get

F([b0,b])b1 + [b0,b]δ(b1)= 0 (2.3)

for all b0,b ∈ S(R) and b1 ∈ S(R)∩Z(R). Substituting a0b1 for b in (2.3), we obtain

F([b0,a0])b2
1 +2[b0,a0]δ(b1)b1 = 0 (2.4)

for all b0 ∈ S(R), a0 ∈ H(R) and b1 ∈ S(R)∩Z(R). In view of (2.2), we have

2[b0,a0]δ(b1)b1 = 0

for all b0 ∈ S(R), a0 ∈ H(R) and b1 ∈ S(R)∩Z(R). Since char(R) 6= 2, so the last expression yields
that

[b0,a0]δ(b1)b1 = 0 (2.5)

for all b0 ∈ S(R), a0 ∈ H(R) and b1 ∈ S(R)∩Z(R). In view of Fact 2, we conclude that either
[b0,a0]= 0 or δ(b1)b1 = 0. First assume that [b0,a0]= 0 for all b0 ∈ S(R), a0 ∈ H(R) and hence R
is commutative by Fact 1. On the other hand, we assume that δ(b1)b1 = 0 for all b1 ∈ S(R)∩Z(R).
This further implies that δ(b1)= 0 or b1 = 0. Since b1 = 0 also implies that δ(b1)= 0 for some
b1 ∈ S(R)∩Z(R). Thus the relation (2.3) reduces to

F([b0,b])b1 = 0 for all b0,b ∈ S(R) and b1 ∈ S(R)∩Z(R). (2.6)
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Application of Fact 2 yields that

F([b0,b])= 0 for all b0,b ∈ S(R). (2.7)

In view of Fact 3, (2.2) and (2.7), we are force to conclude that

F([s,b])= 0 for all b ∈ S(R) and s ∈ R.

Substituting hb1 for b in the above expression, where a ∈ H(R) and b1 ∈ S(R)∩Z(R), and
proceeding as above we arrive at F([s, t]) = 0 for all s, t ∈ R. This gives 0 = F([s, ts]) = [s, t]δ(s)
for all s, t ∈ R. This implies that [s, t]Rδ(s)= (0) for all s, t ∈ R. Hence, by the primeness of R, we
have either R is commutative or δ(s)= 0 for all s ∈ R. Thus we assume that δ(s)= 0 for all s ∈ R.
This implies that F(st)= F(s)t for all s, t ∈ R. Hence 0= F([s, tu])= F([s, t]u+ t[s,u])= F(t)[s,u]
for all s, y,u ∈ R and hence F(t)R[s,u]= (0) for all s, t,u ∈ R. Primeness of R forces that either
F(t)= 0 for all t ∈ R or R is commutative. This proves the theorem completely.

The following are immediate consequences of Theorem 2.2.

Corollary 2.3. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a nonzero derivation d : R → R such that δ([s, s∗]) = 0 for all s ∈ R, then R is
commutative.

Corollary 2.4. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a nonzero left multiplier T : R → R such that T([s, s∗]) = 0 for all s ∈ R, then R is
commutative.

If we replace commutator by anti-commutator in Theorem 2.2, we get the following result:

Theorem 2.5. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a generalized derivation F : R → R such that F(s◦ s∗)= 0 for all s ∈ R, then F = 0.

Proof. By the given hypothesis, we have

F(s◦ s∗)= 0 for all s ∈ R. (2.8)

This can be further written as

F(s)s∗+ sδ(s∗)+F(s∗)s+ s∗δ(s)= 0 for all s ∈ R. (2.9)

Replacing s by a1 in (2.9), where a1 ∈ H(R)∩Z(R) and using the fact that char(R) 6= 2, we get

(F(a1)+δ(a1))a1 = 0 for all a1 ∈ H(R)∩Z(R). (2.10)

In view of Fact 2, we conclude that F(a1)+δ(a1)= 0 for all a1 ∈ H(R)∩Z(R). Substituting b2
1 for

a1 in the last expression, where b1 ∈ S(R)∩Z(R), we obtain

F(b1)b1 +3δ(b1)b1 = 0 for all b1 ∈ S(R)∩Z(R). (2.11)
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Now taking s = b1 in (2.9), where b1 ∈ S(R)∩Z(R) and using the fact that char(R) 6= 2, we get

F(b1)b1 +δ(b1)b1 = 0 for all b1 ∈ S(R)∩Z(R). (2.12)

Combining (2.11) and (2.12), we obtain

2δ(b1)b1 = 0 for all b1 ∈ S(R)∩Z(R). (2.13)

Since char(R) 6= 2, the last expression yields that

δ(b1)b1 = 0 for all b1 ∈ S(R)∩Z(R). (2.14)

This further implies that δ(b1)= 0 for all b1 ∈ S(R)∩Z(R). Thus (2.12) reduces to F(b1)b1 = 0
and hence F(b1)= 0 for all b1 ∈ S(R)∩Z(R). Next, linearize (2.9), we find that

0= F(s)t∗+F(t)s∗+ sδ(t∗)+ tδ(s∗)+F(s∗)t+F(t∗)s+ s∗δ(t)+ t∗δ(s) for all s, t ∈ R.
(2.15)

Substituting b1 for s in (2.15), where b1 ∈ S(R)∩Z(R), we get

(F(t∗− t)+δ(t∗− t))b1 = 0 (2.16)

for all t ∈ R and b1 ∈ S(R)∩Z(R). Application of Fact 2 yields that

F(t∗− t)+δ(t∗− t)= 0 for all t ∈ R. (2.17)

Substituting a−b for t in (2.17), where a ∈ H(R) and b ∈ S(R) and using the fact that char(R) 6= 2,
we get F(b)+δ(b) = 0 for all b ∈ S(R). Now replacing b by b1a in the last expression, where
a ∈ H(R) and b1 ∈ S(R)∩ Z(R) and making use of F(b1) = δ(b1) = 0, we obtain δ(a)b1 = 0
for all a ∈ H(R) and b1 ∈ S(R)∩ Z(R) and hence δ(a) = 0 for all a ∈ H(R). Since bb1 ∈ H(R),
where b ∈ S(R) and b1 ∈ S(R)∩Z(R), so we obtain δ(bb1) = 0. Hence, δ(b) = 0 for all b ∈ S(R).
Application of Fact 3 yields that δ(s)= 0 for all s ∈ R. Thus in view of (2.15), we have

F(s)t∗+F(t)s∗+F(s∗)t+F(t∗)s = 0 for all s, t ∈ R. (2.18)

Taking t = b1 in (2.18), where b1 ∈ S(R)∩Z(R), we get

F(s∗− s)b1 = 0 for all s ∈ R and b1 ∈ S(R)∩Z(R). (2.19)

Again application of Fact 2 forces that F(s∗− s) = 0 for all s ∈ R. Substituting a− b for s in
the last expression, we arrive at F(b) = 0 for all b ∈ S(R). This further yields that F(a) = 0
for all a ∈ H(R). By Fact 3, we conclude that F(s) = 0 for all s ∈ R. This proves the theorem
completely.

Application of Theorem 2.5 and Fact 4 leads the following:

Corollary 2.6. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a generalized derivation F : R → R such that F(ss∗)+ ss∗ = 0 for all s ∈ R or
F(ss∗)− ss∗ = 0 for all s ∈ R, then either F =−I id or F = I id .

Proof. By the assumption we have F(ss∗)+ ss∗ = 0 for all s ∈ R or F(ss∗)− ss∗ = 0 for all s ∈ R.
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In view of Fact 4, we easily see that the map G(s)= F(s)+ s (respectively, G(s)= F(s)− s) for all
s ∈ R is a generalized derivation and satisfying G(ss∗)= 0 for all s ∈ R. This also implies that
G(s◦ s∗)= 0 for all s ∈ R. By Theorem 2.5, we conclude that G(s)= 0 for all s ∈ R, i.e., F(s)=∓s
for all s ∈ R. Hence, we obtain either F =−I id or F = I id . This completes the proof.

Corollary 2.7. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If δ : R → R is a derivation on R such that δ(ss∗)+ ss∗ = 0 for all s ∈ R or δ(ss∗)− ss∗ = 0 for all
s ∈ R, then either R is commutative or δ= 0.

3. Generalized Derivation Acting as Homomorphism
or Anti-Homomorphism in Rings with Involution

An additive mapping f : R → R is called a homomorphism (resp. anti-homomorphism) of
R if f (st) = f (s) f (t) (resp. f (st) = f (t) f (s)) for all s, t ∈ R. In [11], Bell and Kappe initiated
the study of mapping which acts as a homomorphism or as an anti-homomorphism on a
prime ring and proved that if R is a semiprime ring and δ a derivation on R, which is
either an endomorphism or an anti-endomorphism, then δ = 0. This result was generalized
by Rehman [22] by replacing derivation δ with a generalized derivation F . Recently, Gusic
[16] proved the result in more complete form by replacing the generalized derivation F by
multiplicative(generalized)-derivation of R. Here, we study a similar problem in more general
setting in case of rings with involution.

Theorem 3.1. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a generalized derivation F : R → R such that F(ss∗)= F(s)F(s∗) for all s ∈ R, then
one of the following hold:

(i) F = I id ;

(ii) R is commutative.

Proof. By the assumption, we have

F(ss∗)−F(s)F(s∗)= 0 for all s ∈ R. (3.1)

Taking s = a+b in (3.1), where a ∈ H(R) and b ∈ S(R), we get

F([b,a])− [F(b),F(a)]= 0 for all a ∈ H(R) and b ∈ S(R). (3.2)

Let b1 ∈ S(R)∩Z(R) and substituting b+b1 for b in (3.2), we have

[F(b1),F(a)]= 0 for all a ∈ H(R) and b1 ∈ S(R)∩Z(R). (3.3)

Again replacing a by a+a1 in (3.2), where a1 ∈ H(R)∩Z(R), we arrive at

[F(b),F(a1)]= 0 for all b ∈ S(R) and a1 ∈ H(R)∩Z(R). (3.4)

Since b1 ∈ S(R) ∩ Z(R), so b2
1 ∈ H(R) ∩ Z(R). Thus, the last expression yields that 0 =

[F(b),F(b2
1)] = [F(b),F(b1)b1 + b1δ(b1)] = [F(b),F(b1)]b1. That is, [F(b),F(b1)]b1 = 0 for all

Communications in Mathematics and Applications, Vol. 9, No. 1, pp. 87–97, 2017



Generalized Derivations on Prime Rings with Involution: A. Alahmadi et al. 93

b ∈ S(R) and b1 ∈ S(R)∩Z(R). In view of Fact 2, we obtain

[F(b),F(b1)]= 0 for all b ∈ S(R) and b1 ∈ S(R)∩Z(R). (3.5)

In view of Fact 3, (3.3) and (3.5), we are force to conclude that

[F(s),F(b1)]= 0 for all s ∈ R and b1 ∈ S(R)∩Z(R). (3.6)

Replacing s by sb1 in (3.6), where b1 ∈ S(R)∩Z(R), we get δ(b1)[s,F(b1)]= 0 for all s ∈ R and
b1 ∈ S(R)∩Z(R). Using the primeness of R, we have either F(b1) ∈ Z(R) or δ(b1)= 0. Suppose
F(b1) ∈ Z(R) and replacing b1b for a, in (3.2), where b ∈ S(R) and b1 ∈ S(R)∩Z(R), we get

[F(b),b]δ(b1)= 0 for all b ∈ S(R) and b1 ∈ S(R)∩Z(R). (3.7)

This further implies that either [F(b),b] = 0 or δ(b1) = 0. Suppose that [F(b),b] = 0 for all
b ∈ S(R). Substituting b1a for b, where a ∈ H(R) and b1 ∈ S(R)∩Z(R), we get

[F(b1)a+b1δ(a),b1a]= 0 for all a ∈ H(R) and b1 ∈ S(R)∩Z(R). (3.8)

Since F(b1) ∈ Z(R) and b1 ∈ S(R)∩Z(R), so we have

[a,δ(a)]= 0 for all a ∈ H(R). (3.9)

On linearizing (3.9), we obtain

[δ(a),a0]+ [δ(a0),a]= 0 for all a,a0 ∈ H(R). (3.10)

Which can be further written as

[δ(a0),a]= [a0,δ(a)] for all a,a0 ∈ H(R). (3.11)

Substituting a2 for a in the above expression, we obtain

[δ(a0),a2]= [a0,δ(a)]a+a[a0,δ(a)]+δ(a)[a0,a]+ [a0,a]δ(a) (3.12)

for all a,a0 ∈ H(R). Also, we have

[δ(a0),a2]= [δ(a0),a]a+a[δ(a0),a]= [a0,δ(a)]a+a[a0,δ(a)] (3.13)

for all a,a0 ∈ H(R). Combining (3.12) and (3.13), we obtain

δ(a)[a0,a]+ [a0,a]δ(a)= 0 for all a,a0 ∈ H(R). (3.14)

Now, taking a0 = bb1 in (3.14), where b ∈ S(R) and b1 ∈ S(R)∩Z(R), and using the fact that
S(R)∩Z(R) 6= (0), we arrive at

δ(a)[b,a]+ [b,a]δ(a)= 0 for all a ∈ H(R) and b ∈ S(R). (3.15)

Replacing a by a+a1 in (3.15), where a1 ∈ H(R)∩Z(R), we get

δ(a)[b,a]+δ(a1)[b,a]+ [b,a]δ(a)+ [b,a]δ(a1)= 0 (3.16)

for all a ∈ H(R) and b ∈ S(R). In view of (3.15), the last relation reduces to

2[b,a]δ(a1)= 0
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for all a∈H(R), b∈S(R) and a1∈H(R)∩Z(R). Since char(R) 6= 2, the above expression gives us

[b,a]δ(a1)= 0 (3.17)

for all a ∈ H(R), b ∈ S(R) and a1 ∈ H(R)∩ Z(R). Since R is prime, this yields that either
[b,a]= 0 or δ(a1)= 0. If [b,a]= 0 for all a ∈ H(R) and b ∈ S(R), then in view of Fact 1, R must
be commutative. Now assume that δ(a1)= 0 for all a1 ∈ H(R)∩Z(R). This further implies that
δ(b2

1) = 0 and hence δ(b1) = 0 for all b1 ∈ S(R)∩ Z(R). Finally assume that δ(b1) = 0 for all
b1 ∈ S(R)∩Z(R). Replacing a by b0b1 in (3.2) and using δ(b1)= 0, we get

F([b,b0])− [F(b),F(b0)]= 0 (3.18)

for all b,b0 ∈ S(R). Since char(R) 6= 2, every t ∈ R can be written as 2t = a+b0, where a ∈ H(R)
and b0 ∈ S(R), so in view of (3.2) and (3.18), we obtain

F([b, t])− [F(b),F(t)]= 0 for all t ∈ R and b ∈ S(R). (3.19)

Next, replacing b by a0b1 in (3.19), where a0 ∈ H(R) and b1 ∈ S(R)∩Z(R) and proceeding as
above, we arrive at

F([s, t])− [F(s),F(t)]= 0 for all s, t ∈ R. (3.20)

Hence, in view of [1, Theorem 1] either R is commutative or F(s)= s for all s ∈ R i.e., F = I id .
This proves the theorem.

Theorem 3.2. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If F is a nonzero generalized derivation of R such that F(ss∗) = F(s∗)F(s) for all s ∈ R, then
F =−I id .

Proof. By the assumption, we have

F(ss∗)−F(s∗)F(s)= 0 for all s ∈ R. (3.21)

Replacing s by a+b, where a ∈ H(R) and b ∈ S(R), we get

F([b,a])+ [F(b),F(a)]= 0 for all a ∈ H(R) and b ∈ S(R). (3.22)

for all a ∈ H(R) and b ∈ S(R). Proceeding on similar lines as in the proof of Theorem 3.1, we
arrive at

F([s, t])+ [F(s),F(t)]= 0 for all s, t ∈ R. (3.23)

Hence, in view of [1, Theorem 1] we get the required result. This completes the proof of the
theorem.

Corollary 3.3. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a derivation δ : R → R such that δ(ss∗) = δ(s)δ(s∗) for all s ∈ R (δ acts as a
homomorphism), then either R is commutative or δ= 0.
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Corollary 3.4. Let R be a prime ring with involution of the second kind such that char(R) 6= 2.
If R admits a derivation δ : R → R such that δ(ss∗) = δ(s∗)δ(s) for all s ∈ R (δ acts as an
anti-homomorphism), then either R is commutative or δ= 0.

The following example shows that the restriction of the second kind involution in the
hypotheses of Theorem 2.2 cannot be relaxed.

Example 3.1. Let

R =
{(

a b
c d

) ∣∣a,b, c,d ∈ Z
}

.

Of course, R is a prime ring with matrix addition and matrix multiplication. Define mappings
δ : R → R, F : R → R and ∗ : R → R such that

δ

(
a b
c d

)
=

(
0 −b
c 0

)
for all

(
a b
c d

)
∈ R,(

a b
c d

)∗
=

(
d −b
−c a

)
for all

(
a b
c d

)
∈ R

and

F
(
a b
c d

)
=

(
a 0
c 0

)
for all

(
a b
c d

)
∈ R.

Obviously, Z(R) =
{(

a 0
0 a

) ∣∣∣ a ∈ Z
}

. Then s∗ = s for all s ∈ Z(R), and hence Z(R) ⊆ H(R),

which shows that the involution is of the first kind. This implies that S(R)∩ Z(R) = (0). It
is straightforward to check that the mappings δ and F are nonzero derivation and generalized
derivation on R. Further, the condition F([s, s∗])= 0 for all s ∈ R, is satisfied. However, neither
F = 0 nor R is commutative. Hence, the condition of the second kind involution in Theorem 2.2
is essential.

4. Conclusion

The paper deals with the study of some commutativity criteria for rings with involution. The
main objective of the this paper is to solve some ∗-differential identities involving generalized
derivations in prime rings. In particular, we describe the structure of prime rings and the form
of generalized derivations satisfying certain ∗-differential identities. Further, we provide an
example to show that the restriction imposed on the hypothesis of our main theorem is not
superfluous.
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