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Abstract. In this paper we study on the neural field model of two neuron populations. We make
the stability analysis of the linearized model by considering the effect of the synaptic connectivity
function. We separate the plane into regions on which we find the number of roots with positive real
parts. Hence we find the asymptotic stability region. To separate the plane we use the D-curves and
we determine some properties of these curves.
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1. Introduction
The neural field models are considered very frequently in neuroscience. They model the activity
of a large neuron populations in the brain in a continuous space. Hence they are described
by using the integral equations or integro differential equations. The most important studies
for these models are made by Wilson and Cowan, Amari [13], [1]. These models describe the
mean activity of neural populations. For some biological reasons such as the finite speed of
propagation of an action potential and the release of neurotransmitter, a delay term is added to
these models. These delay terms may affect the location of the characteristic roots on the plane
and hence the stability of the systems. Hence these effects on the stability and the existence of
the solutions of the system is investigated in many papers [3], [4], [6], [9], [10], [12].
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The stability of the neural field models is also considered in many articles. Some scientists
used numerical techniques as in [2], [5], a center manifold result is given by Veltz and
Faugeras [11], a study for the existence and uniqueness of the solution for these models
is made by Faye and Faugeras [5].

In this study we focus on the stability regions of a neural field model for two neuron
populations by using D-subdivision method. Also we study on some properties of D-curves. In
Section 2.1, we consider the case that the synaptic connectivity function J21(x, y) = 0 and we
study on the stability properties by determining the D-curves. In Section 2.2 we consider that
J21(x, y) 6= 0 and we show the stability regions by sketching the D-curves.

2. Stability Analysis of the Model

Consider the neural field model for p neural population on the space Ω⊂ Rd which presenting
the dynamics of mean membran potential(

d
dt

+ l i

)
Vi(t, r)=

p∑
j=1

∫
Ω

Ji j(r, r)S[σ j(Vj(t−τi j(r, r), r)−h j)]dr+ I ext
i (r, t), t ≥ 0,1≤ i ≤ p

Vi(t, r)=φi(t, r), t ∈ [−T,0]

 (2.1)

given in [11], [12].

In this study we study on the linear neural field model for two neural population (p = 2).
Here V1(x, t) and V2(x, t) describe the synaptic inputs for a large group of neurons at position
x and time t, and d

dtV1(x, t) and d
dtV2(x, t) describe time derivative. The synaptic connectivity

function Ji j(x, y) which is π periodic even function describes how neurons in the jth population
at position y influence the neurons in the ith population at position x, i.e., determines the
coupling between the neurons. The stability of these solutions can be determined by examining
the linearized system and using the D-partition method. We consider that the delay term is
constant, hence we take the maximum delay as τ(x− y)= τ. We assume that x, y ∈ [−π

2 , π2
]

and
the boundary conditions are periodic. Hence the model we considered is the following

d
dt

U1(x, t)+ l1U1(x, t)

=σ1s1

∫ π
2

−π
2

J11(x, y)U1(y, t−τ(x− y))dy+σ2s1

∫ π
2

−π
2

J12(x, y)U2(y, t−τ(x− y))dy, (2.2)

d
dt

U2(x, t)+ l2U2(x, t)

=σ1s1

∫ π
2

−π
2

J21(x, y)U1(y, t−τ(x− y))dy+σ2s1

∫ π
2

−π
2

J22(x, y)U2(y, t−τ(x− y))dy. (2.3)

2.1 The Case: J21(x, y)= 0

In this section, we study the case where neurons in the first population excite each other but
inhibit the neurons in the second one. Moreover, neurons in the second neuron population excite
each other and the neurons in the first population.
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To get the characteristic equation, we take U1(x, t) = u1(t)eikx, U2(x, t) = u2(t)eikx as in
Fourier method and then writing u1(t)= c1eλt and u2(t)= c2eλt we get the following equations

λeikxu1(t)+ l1eikxu1(t)−K1e−λτu1(t)
∫ π

2

−π
2

J11(x, y)eikydy−K2e−λτu2(t)
∫ π

2

−π
2

J12(x, y)eikydy= 0 ,

λeikxu1(t)+ l2eikxu2(t)−K2e−λτu2(t)
∫ π

2

−π
2

J22(x, y)eikydy= 0 .

The solutions of this system are functions cos(2nx) and sin(2nx) [10]. Hence the equations
for the characteristic values λ are

λu1(t)+ l1u1(t)−K1e−λτu1(t)
∫ π

2

−π
2

J11(y)eikydy−K2e−λτu2(t)
∫ π

2

−π
2

J12(y)eikydy= 0 ,

λu2(t)+ l2u2(t)−K2e−λτu2(t)
∫ π

2

−π
2

J22(y)eikydy= 0 . (2.4)

Here we consider F1 =
∫ π

2−π
2

J11(y)eikydy, F2 =
∫ π

2−π
2

J12(y)eikydy and F3 =
∫ π

2−π
2

J22(y)eikydy.

Considering this system of equations for functions u1(t) and u2(t) we get the following
equation

λ2+λl2−λK2e−λτF3+λl1+l1l2−l1K2e−λτF3−K1e−λτF1λ−K1e−λτF1l2+K1K2e−2λτF1F3=0. (2.5)

We choose the parameter space as (l1,K1). Writing λ=µ+ iν and taking µ= 0 we split the
real and imaginary parts of (2.5) we have

P :−ν2−νK2 sin(τν)+ l1l2−l1K2 cos(τν)F3−K1νsin(τν)F1

−K1l2 cos(τν)F1+K1K2 cos(2τν)F1F3= 0 , (2.6)

R :−νK2F3 cos(τν)+νl2+νl1+l1K2 sin(τν)F3−K1νcos(τν)F1

+K1l2 sin(τν)F1−K1K2 sin(2τν)F1F3= 0 . (2.7)

To sketch the boundaries of subregions on the parameter space we have the expressions for l1

and K1 depending on the parameter ν.

l1 = −ν3 cos(τν)F1−ν2K2 sin(2τν)F1F3+νK2l2F1F3(
l2
2F1 sin(τν)− l2K2 sin(2τν)F1F3+K2νF1F3−K2

2 sin(τν)F2
3F1

+ν2F1 sin(τν)−νK2 cos(2τν)F1F3

)

+ −νK2
2 cos(τν)F2

3F1−νl2
2 cos(τν)F1+νK2l2 cos(2τν)F1F3(

l2
2F1 sin(τν)− l2K2 sin(2τν)F1F3+K2νF1F3−K2

2 sin(τν)F2
3F1

+ν2F1 sin(τν)−νK2 cos(2τν)F1F3

) , (2.8)

K1 =
2νl2K2F3 cos(τν)−2ν2K2 sin(τν)F3 −νK2

2F2
3 −νl2

2 −ν3(
l2
2F1 sin(τν)− l2K2 sin(2τν)F1F3 +K2νF1F3 −K2

2 sin(τν)F2
3 F1

+ν2F1 sin(τν)−νK2 cos(2τν)F1F3

) (2.9)
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and the line

(l2 −K2F3)l1 + (K2F1F3 −F1l2)K1 = 0 (2.10)

for ν= 0 is the singular line.

Now we give two theorems about the D-curves. The D-curves sketched for values θ = τν and
chosen in the Jn = (nπ, (n+1)π), n = 0,1,2, . . . are called by Cn(F1,F3,K2, l2) in the parameter
space (l1,K1).

Theorem 1. The curves Cn(F1,F3,K2, l2) do not intersect each other.

Proof. Assume that l1(θ1) = l1(θ2) and K1(θ1) = K1(θ2) for θ1 ∈ Ja, θ2 ∈ Jb, a 6= b. This yield
cos(θ1) = cos(θ2) and sin(θ1) = sin(θ2) and for the choose of θ1 ∈ Ja and θ2 ∈ Jb, a 6= b we get
θ1 = θ2. Hence we conclude that the curves Cn(F1,F3,K2, l2) do not intersect each other.

Theorem 2. The curves Cn(F1,F3,K2, l2) intersect the line l1 = 0 only once.

Proof. Taking θ = τν we get

l1(θ)=

 −θ3

τ3 cos(θ)F1 − θ2

τ2 K2 sin(2θ)F1F3 + θ
τ
K2l2F1F3

−θ
τ
K2

2 cos(θ)F2
3 F1 − θ

τ
l2
2 cos(θ)F1 + θ

τ
K2l2 cos(2θ)F1F3


(

l2
2F1 sin(θ)− l2K2 sin(2θ)F1F3 +K2

θ
τ
F1F3 −K2

2 sin(θ)F2
3 F1

+θ2

τ2 F1 sin(θ)− θ
τ
K2 cos(2θ)F1F3

) (2.11)

The roots for l1(θ) = 0 are θ = π
2 + nπ, n = 0,1,2, . . .. For the values θ = τν chosen in the

regions Jn = (nπ, (n+1)π) the coordinates K1(θ) are determined uniquely. Hence the curves
Cn(F1,F3,K2, l2) intersect the line l1 = 0 only once.

To sketch the D-curves in the parameter space (l1,K1) we choose the parameters as
K2 = F1 = l2 = τ= 1 and F3 = 2. Hence we have

l1 = −ν3 cos(ν)−2ν2 sin(2ν)+2ν−5νcos(ν)+2νcos(2ν)
5sin(ν)−2sin(2ν)+2ν+2ν2 sin(ν)−2νcos(2ν)

, (2.12)

K1 = 4νcos(ν)−4ν2 sin(ν)−5ν−ν3

5sin(ν)−2sin(2ν)+2ν+2ν2 sin(ν)−2νcos(2ν)
. (2.13)

The limit point for the intersection of the singular line and the D-curve is
(
lim
ν→0

l1, lim
ν→0

K1

)
=

(−1,−1).

To determine the asymptotic stability and unstability regions we choose any point B(l0,K0)
in any subregion separated by the D-curves. Then we use the following Stépán’s formula [8], [7]

k = m+ (−1)m
s∑

j=1
(−1) j+1sgn(R(ρ j, l0,K0)) (2.14)

where d = 2m, m ∈ Z+, and ρ js, j = 1, . . . , s are the positive real roots of P(ν, l0,K0) such
ρ1 ≥ . . .≥ ρs. Here k denotes the number of characteristic roots with positive real parts.
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Now we have the graph representing the regions of asymptotic stability (where k = 0) and
unstability (where k > 0).

Figure 1. Stability chart for the system

2.2 The Case: J21(x, y) 6= 0

In this section, we study the case where neurons in each population excite nearby neurons and
more distant neurons.

We have the following characteristic equations after using the Fourier transformations

λeikxu1(t)+ l1eikxu1(t)−K1e−λτu1(t)
∫ π

2

−π
2

J11(x, y)eikydy−K2e−λτu2(t)
∫ π

2

−π
2

J12(x, y)eikydy= 0 ,

(2.15)

λeikxu2(t)+ l2eikxu2(t)−K1e−λτu1(t)
∫ π

2

−π
2

J21(x, y)eikydy−K2e−λτu2(t)
∫ π

2

−π
2

J22(y)eikydy= 0 .

(2.16)

Hence for characteristic values λ we have the following equations

λu1(t)+ l1u1(t)−K1e−λτu1(t)
∫ π

2

−π
2

J11(y)eikydy−K2e−λτu2(t)
∫ π

2

−π
2

J12(y)eikydy= 0 , (2.17)

λu2(t)+ l2u2(t)−K1e−λτu1(t)
∫ π

2

−π
2

J21(y)eikydy−K2e−λτu2(t)
∫ π

2

−π
2

J22(y)eikydy= 0 . (2.18)

Then we have the following condition

λ2+λl2−λK2e−λτF4 +λl1+l1l2−l1K2e−λτF4−K1e−λτF1λ−K1e−λτF1l2

+K1K2e−2λτF1F4−K1K2e−2λτF2F3 = 0 (2.19)

where F1=
∫ π

2−π
2

J11(y)eikydy, F2=
∫ π

2−π
2

J12(y)eikydy, F3=
∫ π

2−π
2

J21(y)eikydy and F4=
∫ π

2−π
2

J22(y)eikydy.
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As in the previous case we study on the stability on the parameter space (l1,K1). Writing
λ=µ+ iν and taking µ= 0 we write the real and imaginary parts of (2.19) and we have

P :−ν2−νK2F4 sin(τν)+ l1l2−l1K2 cos(τν)F4−K1νsin(τν)F1

−K1l2 cos(τν)F1+K1K2 cos(2τν)F1F4−K1K2 cos(2τν)F2F3= 0 , (2.20)

R :−νK2F4 cos(τν)+νl2+νl1+l1K2 sin(τν)F4−K1νcos(τν)F1

+K1l2 sin(τν)F1−K1K2 sin(2τν)F1F4+K1K2 sin(2τν)F2F3= 0 . (2.21)

To sketch the D-curves on the parameter space we have the expressions for l1 and K1 depending
on the parameter ν.

l1 =

( −ν3 cos(τν)F1+(F1F4−F2F3)(−ν2K2 sin(2τν)−νK2
2 sin(τν)sin(2τν)F4

+νK2l2 cos(2τν)−νK2
2 cos(τν)cos(2τν))

)
(

(l2
2−ν2)F1 sin(τν)+ (F1F4−F2F3)(−l2K2 sin(2τν)+K2

2 sin(τν)F4

−νK2 cos(2τν))+K2νF1F4

)

+ −νl2
2 cos(τν)F1 +νK2l2F1F4(

(l2
2 −ν2)F1 sin(τν)+ (F1F4 −F2F3)(−l2K2 sin(2τν)

+K2
2 sin(τν)F4 −νK2 cos(2τν))+K2νF1F4

) , (2.22)

K1 =
2νl2K2F4 cos(τν)−2ν2K2 sin(τν)F4 −νK2

2F2
4 −νl2

2 −ν3(
(l2

2 −ν2)F1 sin(τν)+ (F1F4 −F2F3)(−l2K2 sin(2τν)

+K2
2 sin(τν)F4 −νK2 cos(2τν))+K2νF1F4

) (2.23)

and the line

(l2−K2F4)l1+(K2F1F4−l2F1 −K2F2F3)K1= 0 (2.24)

for ν= 0 is the singular line.

For the D-curves we consider the parameters as K2 = F1 = F2 = l2 = τ= 1 and F3 = F4 = 2.
Hence we have the expressions depending on the parameter ν as given below:

l1 = −ν3 cos(ν)−νcos(ν)+2ν
sin(ν)−ν2 sin(ν)+2ν

, (2.25)

K1 = 4νcos(ν)−4ν2 sin(ν)−5ν−ν3

sin(ν)−ν2 sin(ν)+2ν
(2.26)

and the singular line as −l1 −K1 = 0.

The limit point for the intersection of the singular line and the D-curve is
(
lim
ν→0

l1, lim
ν→0

K1

)
=(1

3 ,−1
3

)
. In this case we have the following

P :−ν2 −2νsin(ν)+ l1 −2l1 cos(ν)−K1νsin(ν)−K1 cos(ν)= 0 ,

R :−2νcos(ν)+νl1 +ν+2l1 sin(ν)−K1νcos(ν)+K1 sin(ν)= 0 .
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Now we have the following graph representing the regions of asymptotic stability (where
k = 0) and unstability (where k > 0).

Figure 2. Stability chart for the system

3. Conclusion
In this study we consider the neural field model for two neural populations. First we assume
that the term J21(x, y)= 0, i.e. the neurons in the first population do not influence the ones in
the second population. For the stability analysis we consider the linear system and by using
the D-subdivision method we determine the D-regions. Then we find the asymptotic stability
region via the Stépán’s formula. Also we determine some important properties of D-curves. For
a further analysis, we assume that J21(x, y) 6= 0 and we use the same process to investigate the
stability of the system. According to the graphs given in Figure 1 and Figure 2, we show how
the change in the term J21(x, y) affects the stability of the system.
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