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1. Introduction
For basic definitions and results not mentioned in this paper, we refer to [1–3,5]. A Jaco graph
Jn( f (1)) as defined in the earlier work is exactly a linear Jaco graph Jn( f (x)) with f (x) = x
(see [1,3]). Also the definition of a linear Jaco graph (all Jaco graphs for that matter) incorporates
an integer valued linear function. The function value of the vertex subscript say, f (i) of vertex
vi determines the total vertex degree d(vi).

Completely separate (in definition) from linear Jaco graphs we have Jaco-type graphs. These
are the graphs for which a non-negative integer sequence defines only the out-degree of a vertex.
So entry ai of a non-negative integer sequence is the out-degree, d+(vi) of vertex vi .

The graphs generally show diagrammatical resemblance to linear Jaco graphs when sketched
and many similar results hold between them. In fact there is a non-empty intersection between
the sets of these graphs. It means some (perhaps all, but not proven yet) linear Jaco graphs are
Jaco-type graphs. It was found that the linear Jaco graph Jn(x) (remember now f (x)= x) is also
a Jaco-type graph and the sequence defining the out-degrees is found in paper [5].
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For many Jaco-type graphs one cannot find a linear function defining the total vertex degree.
For example, a linear function defining the total vertex degrees of the Fibonacci Jaco-type graph
is not yet found. So until proven otherwise the Fibonacci Jaco-type graph is considered not to be
a linear Jaco graph.

2. Jaco-Type Graphs and Clique Parameters

2.1 Basic Results for Certain Jaco-type Graphs

The linear Jaco graph for f (x)= x is indeed a Jaco-type graph on the sequence, {an}= n−
⌊

2(n+1)
3+p5

⌋
,

n = 1,2,3, . . .. A closely related Jaco-type graph is that on the positive integer sequence
s1 = {an} = 1,2,3, . . . and for brevity be denoted, J∞(s1) or Jn(s1) for the infinite and finite
Jaco-type graphs respectively. Figures 2.1 and 2.2 below depict the Jaco-type graphs for J8(s1)
and J12(s2) respectively, with s2 = { f i}, for f0 = 0, f i = 1, f2 = 1, f3 = 2, . . .. The aforesaid
sequence is the well-known Fibonacci sequence (also see [5]).

Figure 2.1. [5]

Figure 2.2. [5]
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The underlying Jaco-type will be denoted J∗
n (sk) and when the context is clear we refer to

both graphs as Jaco-type graphs. Also the use of terminology such as arc versus edge will be
understood to refer to the directed Jaco-type graph versus its underlying graph, respectively.

The Jaco-type graph J8(s1) has ∆(J8(s1)) = 6 and J(J8(s1)) = {v4}. It has girth 3 and
circumference 5.

Similarly, the Jaco-type graph J12(s2) has ∆(J12(s2)) = 8 and J(J12(s2)) = {v6,v7}. It has
girth 3 and circumference 7.

2.1.1 Basic Properties and Results of Jaco-type Graphs

A comprehensive study of the properties of Jn(s1) is found in [5]. Properties for the Jaco-type
graph are given without proof in [5] because they can easily be verified against the definition of
infinite Jaco-type graph, J∞(an).

Lemma 2.1.1. The in-degree d−(v1) for any vertex vi found in both J∞(sk) and Jn(sk) remains
a constant for any given integer sequence, {sk}.

Proof. Consider Jn(sk) for any integer sequence {sk} and any integer n ∈ N . Also consider
any vertex vi with d−(vi) = l > 0. Now extend to the Jaco-type graph Jn+1(sk). Clearly,
d−(vn+1)= t > 0 and d+(vn+1)= t > 0. Hence, only out-arcs were added to some corresponding
vertices, possibly vi as well, but vi did not get an additional in-arc. Therefore, in the Jaco-
type graph Jn−1(sk) we have d−(vi) = l. Hence, through immediate induction it follows that
d−(vi)= 1, a constant in all Jaco-type graphs corresponding to the integer sequence, {sk}.

Proposition 2.1.2. A Jaco-type graph Jn(sk) which, for the smallest i has a vertex vi with
d+(vi)> 1 and n ≥ i+2, has girth, g(Jn(sk)))= 3.

Proof. It follows from definition of J∞({an}) that a Jaco-type graph Jn(sk) which, for the smallest
i has a vertex vi with d+(vi)> 1 and n = i+2 has exactly one smallest cycle C3. This cycle will
remain the shortest cycle in all Jaco-type graphs, Jn(sk), n ≥ i+2. Hence, the result.

Proposition 2.1.3. For any given integer sequence {sk} the circumference of the Jaco-type graph
Jn(sk) which, for the smallest i has a vertex vi with d+(vi)> 1 and n ≥ i+2 is equal to the clique
number ω(Jn(sk)).

Proof. In general, the clique number equals the order of a maximum clique which in itself is
maximal, such maximum clique perse has circumference of maximum cycle length. Because
the largest hole (chordless cycle) of a Jaco-type graph, if it exists, is C3 it follows that
the circumference of such maximum clique is equal to the circumference of its supergraph,
Jn(sk).

Proposition 2.1.4. For any given non-decreasing integer sequence sk the Jaco-type graph Jn(sk)
which, for the smallest i has the arc (vi,vn), has clique cover number, c(Jn(sk))= i.

Proof. From the definition of infinite Jaco-type graph, J∞({an}) it follows that the
vertex set {vi,vi+1,vi+2, . . . ,vn} induces a maximal clique. Similarly the vertex sets,
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{vi−1,vi,vi+1, . . . ,v(i−1)+a(i−1)}, {vi−2,vi−1,vi, . . . ,v(i−2)+a(i−2)}, . . . , {v1,v2,v3, . . . ,v1+a1} all induce
maximal cliques. Clearly the union of the corresponding clique vertex sets covers V (Jn(sk)).
Therefore, c(Jn(sk))≤ i.

Assume, c(Jn(sk)) < i, it implies that at least two of the cliques must form a single
clique which implies not all cliques were maximal. The aforesaid is a contradiction hence,
c(Jn(sk))= i.

2.2 On l-Cliques in Jaco-type Graphs
It is noted from Figures 2.1 and 2.2 that Jaco-type graphs are typically a structural combination
of numerous complete graphs or put differently, of numerous k-cliques. Therefore, a good
understanding of clique parameters related to complete graphs is important before analyzing
same for Jaco-type graphs.

From the definition of a complete graph it follows immediately that the induced subgraph
〈X 〉, X ⊆V (Kn) is a complete graph as well. Denote the number of distinct l-cliques imbedded
in Kn by ηK l (Kn).

Proposition 2.2.1 shows that the result stated in WolframMathWorld.com [8] is incorrect.

Proposition 2.2.1. The total number of distinct l-cliques l =,1,2,3, . . . ,n imbedded in a complete
graph Kn is

∑n
l=1

(n
l
)
.

Proof. The number of ways to select l-subsets (cardinality l) for a set with cardinality n is given
by

(n
l
)
. Because l-cliques, l = 1,2,3, . . . ,n exist in Kn the result follows immediately.

Definition 2.2.2. The join of graphs G and H is the graph obtained by adding edges to link
each vertex of G to all vertices of H.

Proposition 2.2.3 (Generalized Clique Theorem). For any finite graph of order, n ≥ 1, we have
ηK l+1(G+K1)= ηK l+1(G)+ηK l (G), 0≤ l ≤ n.

Proof. (i) Because all graphs have an empty clique ηK0(G)= 1.
Therefore, ηK1(G+K1)= ηK1(G)+1= n+1.

(ii) Consider any clique Ci = K i , 0≤ l ≤ n and 1≤ i ≤ ηK l (G) of G.
Clearly Ci +K1 = K l+1. Hence in G +K +1, exactly ηK l (G) new cliques of order l +1 will be
created. Since, the graph G itself has ηK l+1(G) ≥ 0 such cliques we have that ηK l+1(G +K1) =
ηK l+1(G)+ηK l (G). The general result follows through immediate induction.

Note that a complete graph of order n is the special case: Kn = ((((K1+K1)+K1)+K1)+ . . .+
K +1), a (n−1)-fold join. Applying Proposition 2.2.3 to a complete graph, Kn+1, n ≥ 0 offers
a complete graph specific proof. We present it as a corollary together with alternative proof
technique.

Corollary 2.2.4. For a complete graph Kn, n ≥ 1 we have, ηK l+1(Kn)= ηK l+1(Kn−1)+ηK l (Kn−1)
with 0≤ l ≤ n.
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Proof. Consider any complete graph Km, m ≥ 1. Now consider

(
m
l

)
+

(
m

l−1

)
.

(
m
l

)
+

(
m

l−1

)
= m!

l!(m− l)!
+ m!

(l−1)!(m− l+1)!

= m!(m− l+1)
l!(m− l+1)(m− l)!

+ m!
l(l−1)!(m− l+1)!

=
(
m+1

l

)
.

Hence, through immediate induction we have, ηK l+1(Kn)= ηK l+1(Kn−1)+ηK l (Kn−1), n ≥ 1 with
0≤ l ≤ n.

Theorem 2.2.5. For any complete graph Kn, n ≥ 1, we have, ηK j (Kn) = ηKn− j (Kn), 1 ≤ j ≤ n
(inclusive of the empty-clique).

Proof. By the Proposition 2.2.3, ηK j (Kn)= (n
J)= (n

j
)
, for 1≤ j ≤ n.

We have,
(n

j
)= n!

j!(n− j)! = (n!)
(n− j)!(n−(n− j))! =

( n
n− j

)
, and since ηKn− j (Kn)= ( n

n− j
)

by definition, the result
that ηK j (Kn)= ηKn− j (Kn) for 1≤ j ≤ n follows.

Table 2.1 below depicts the number of cliques (excluding the empty clique) of complete
graphs Kn, 1≤ n ≤ 10 and 1≤ l ≤ 10. Important matrix properties will follow Table 2.1.

Table 2.1

Kn, ηK1 ηK2 ηK3 ηK4 ηK5 ηK6 ηK7 ηK8 ηK9 ηK10

n =
1 1 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0
3 3 3 1 0 0 0 0 0 0 0
4 4 6 4 1 0 0 0 0 0 0
5 5 10 10 5 1 0 0 0 0 0
6 6 15 20 15 6 1 0 0 0 0
7 7 21 35 35 21 7 1 0 0 0
8 8 28 56 70 56 28 8 1 0 0
9 9 36 84 126 126 84 36 9 1 0

10 10 45 120 210 252 210 120 45 10 1

The entries of Table 2.1 can be written in matrix form as:

A =



1 0 0 0 · · · 0
2 1 0 0 · · · 0
3 3 1 0 · · · 0
4 6 4 1 · · · 0
...

...
...

... . . . ...
n an−1,1 +an−1,2 an−1,2 +an−1,3 · · · . . . 1
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Note that the first column has the entries, ai,1 = i, i = 1,2,3, . . . ,n. All other entries
ai, j = ai−1, j−1+a1−1, j . Note that matrix A is a lower triangular matrix. Since the determinant
of a lower triangular matrix is the product of the diagonal elements of the matrix we have:
det(A)= 1. Because of Corollary 2.2.4, inverse matrix, A−1 follows remarkably easily.

Proposition 2.2.6. The inverse of matrix A is given by:

A−1 =



+1 0 0 0 · · · 0
−2 +1 0 0 · · · 0
+3 −3 +1 0 · · · 0
−4 +6 −4 +1 · · · 0
...

...
...

... . . . ...
+n −(an−1,1 +an−1,2) +(an−1,2 +an−1,3) · · · · · · +1


if n is odd

and

A−1 =



+1 0 0 0 · · · 0
−2 +1 0 0 · · · 0
+3 −3 +1 0 · · · 0
−4 +6 −4 +1 · · · 0
...

...
...

... . . . ...
−n +(an−1,1 +an−1,2) −(an−1,2 +an−1,3) · · · · · · +1


if n is even.

Proof. All entries of matrix A has the form ai, j = al, j−1 +ai−l, j . The validity of the entry form
follows directly from Proposition 2.2.6 applied to the complete graph, Kn, n ≥ 1.
Case 1: If n is odd, let

A−1 =



+1 0 0 0 · · · 0
−2 +1 0 0 · · · 0
+3 −3 +1 0 · · · 0
−4 +6 −4 +1 · · · 0
...

...
...

... . . . 0
+n −(an−1,1 +an−1,2) +(an−1,2 +an−1,3) · · · · · · +1


.

(i) The first n-row (al, j), 1≤ j ≤ n in matrix A has the form r1 = (1,0,0, . . . ,0) and all other n-
row in matrix A has the form r1 = (i,ai, j), 2≤ i ≤ n, 2≤ j ≤ n with ai, j = a(i−1),( j−1)+a(i−1), j .
Every column ci, j , 1 ≤ i ≤ n, 1 ≤ j ≤ n of matrix A−1 has the entries of the columns of
matrix A together with alternating + and − sign beginning from each diagonal entry +1.
Clearly, r i, j · ci, j = 1 and r i, j · ck, j = 0, i 6= k. Therefore, A, A−1 = I .

(ii) The first n-row (a1, j), 1≤ j ≤ n in matrix A−1 has the form r1 = (1,0,0, . . . ,0) and all other
n-rows in matrix A−1 has the form r i = (±i,ai, j), 2 ≤ i ≤ n, 2 ≤ j ≤ n and if and only +i
if i is odd with |ai, j| = |a(i−1),( j−1)|+ |a(i−1), j|. Clearly, r i, j · ci, j = 1 and r i, j · ck, j = 0, i 6= k.
Therefore, A−1A = I .
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Case 2: If n is even, let

A−1 =



+1 0 0 0 · · · 0
−2 +1 0 0 · · · 0
+3 −3 +1 0 · · · 0
−4 +6 −4 +1 · · · 0
...

...
...

... . . . 0
−n +(an,−1,1 +an−1,2) −(an−1,2 +an−1,3) · · · · · · +1


if n is even.

This case follows similar to Case 1. Therefore, A · A−1 = A−1 · A = I .

2.3 Vertex Clique Degrees of Certain Jaco-type Graphs

We begin this section by stating certain important results in respect of vertex clique degrees
for complete graphs. This is followed by applications to the sequence of positive integers, the
Fibonacci Jaco-type graph, modulo k Jaco-type graph and the set Jaco-type graph. We begin
with an important theorem.

Theorem 2.3.1. For a complete graph Kn, n ≥ 1, we have that dK1(vi)= l·ηKl (Kn)
n .

Proof. For the complete graph K1 we have dK1(v1)= 1·1
1 = 1. For the complete graph K2 we have

that dK1(vi)= 1·2
2 = 1, i = 1,2 and dK2(vi)= 2·1

2 = 1, i = 1,2. Hence, the result holds for n = 1,2.

Assume the result holds for 1≤ l ≤ m. So, dK l (vi)= l·ηKl (Kn)
n , 1≤ l ≤ m.

Consider the complete graph Km+1. Clearly, dK1(vi)= 1·(m+1)
m+1 = 1, 1≤ i ≤ m+1. By the definition

of a complete graph all vertex degrees are equal.

(i.e)., dK2(vi)= m, 1≤ i ≤ m+1.

Also, dK2(vi)= 2·ηK2 (KM+1)
m+1 = 2· 1

2 (m+1)m
m+1 = m.

Therefore, dK2(vi) = 2·ηK2 (Km+1)
m+1 , 1 ≤ i ≤ m + 1. Thus the result holds for the complete

graph Km+1 in respect of dK1(vi) and dK2(vi), 1 ≤ i ≤ m + 1. Now consider any l ≤ m.
We have that vertex vm+1 induces

( m
l−1

)
complete graphs K l . Hence, dK l (vi) = m!

(l−1)!(m−l+1)! ,

1 ≤ i ≤ m+ 1. Also, l·ηKl (Km+1)
m+1 = l(m+1

l )
m+1 = l(m+1)!

(m+1)l!(m+1−l)! = m!
(l−1)!(m−l+1)! = dK l (vi), l ≤ i ≤ m+ 1.

Finally, dKn+1(vi)= 1,1≤ i ≤ m+1 in Km+1. Therefore, through imbedded induction the result
holds for all complete graphs Kn, n ∈ N .

Note that applying Theorem 2.3.1 to a complete graph Kn, n ≥ 1, in respect of edges
(2-cliques) re-establishes the well-known result that the degree of each vertex is dK2(vi) =
2·nK2 (Kn)

n = 1
2 n(n−1). In fact the inverse formula may serve as an generalization to obtain the

number of edges of a graph on n vertices is given by 1
2
∑n

i=1 deg(vi).

Table 2.2 depicts the vertex clique degrees corresponding to Table 2.1. Note that for a given
Kn, symmetry ensures that all vertices v ∈V (Kn) have equal vertex clique degree in respect of
a specific clique size.
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Table 2.2. Vertex Clique Degrees

Kn, dK1(v) dK2(v) dK3(v) dK4(v) dK5(v) dK6(v) dK7(v) dK8(v) dK9(v) dK10(v)
n =
1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 2 1 0 0 0 0 0 0 0
4 1 3 3 1 0 0 0 0 0 0
5 1 4 6 4 1 0 0 0 0 0
6 1 5 10 10 5 1 0 0 0 0
7 1 6 15 20 15 6 1 0 0 0
8 1 7 21 35 35 21 7 1 0 0
9 1 8 28 56 70 56 28 8 1 0

10 1 9 36 84 126 126 84 36 9 1

From Table 2.2 an interesting theorem follows.

Theorem 2.3.2. For a complete graph Kn we have: dK l (vi)=
∏l−1

j=1 n− j
n! , n = 1,2,3, . . ., with 2≤ l ≤ n

and 1≤ i ≤ n.

Proof. Clearly by default the clique degree, dK1(vi)= 1 for all Kn, n = 1,2,3, . . .. It follows easily
that:

dK2(vi)= n−1, n ≥ 2,

dK3(vi)= (n−1)(n−2)
2!

, n ≥ 3,

dK4(vi)= (n−1)(n−2)(n−3)
3!

, n ≤ 4.

Assume the result holds for dK1(vi), n ≥ l. So by the induction assumption dK l (vi) =
∏l=1

j=1 n− j
n! ,

n ≥ l. Now consider, K l+1 and it follows that:

dK2(vi)= (l−1)+1= (l+1)−1,

dK3(vi)= ((l−1)+1)((l−2)+1)
2!

= ((l+1)−1)((l+1)−2)
2!

,

dK4(vi)= ((l−1)+1)((l−2)+1)((l−3)+1)
3!

= ((l+1)−1)((l+1)−2)((l+1)−3)
3!

,

...

dK l+1(vi)=
∏l

j=1(l+1)− j

(l+1)!
.

Through immediate induction it follows that it also holds for the clique degrees of K l+t,
t = 2,3,4 . . ..
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Hence through induction we have for Kn, n ≥ 1, for all vi ∈V (Kn), n = 1,2,3, . . . that:

dK l (vi)=
∏l−1

j=1 n− j

n!
.

Proposition 2.3.3. For a complete graph, Kn, n ≥ 1, the maximum clique degree is dK t(vi) with:

t =


⌈n

2

⌉
, if n is odd,

n
2

or
n
2
+1, if n is even.

Proof. From the definition of the entries of matrix A in the proof of Proposition 2.2.6 it follows
immediately that the maximum number of cliques for a complete graph Kn is given by ηK t(Kn)
with:

t =


⌈n

2

⌉
, if n is odd,

n
2

or
n
2
+1, if n is even.

Hence, the result follows directly from Theorem 2.3.1.

2.3.1 Application to the finite positive integer sequence Jaco-type Graph: Jn(s1) [5]

The infinite Jaco-type graph J∞(s1) is the graph with vertex set V (J∞(s1)) = {vi : i ∈ N} and
the arc set A(J∞(s1))= {(vi,v j) : i, j ∈ N, i < j} such that (vi,v j) ∈ A(J∞(s1)) if and only if 2i ≥ j.
Note that a finite Jaco-type graph Jn(s1) in this family is obtained from J∞(s1) by lobbing off
all vertices vk, for all k > n (with incident arcs).

Theorem 2.3.4. The finite integer Jaco-type graph Jn(s1) can be decomposed in exactly the
number of maximal cliques K2,K3, . . . ,K( n

2 ), n ≥ 2 and even into K2,K3, . . . ,Kb n
2 c+1,Kb n

2 c+1, n ≥ 1
and odd corresponding to the clique cover number c(Jn(s!))= n

2 or n+1
2 .

Proof. For J1(s1) we have K1. For J1(s1) we have the path which is the one maximal clique P2.
For J3(s1) we have the path P3 therefore the decomposition into maximal cliques corresponding
to the clique cover number is the two cliques K2,K2 on vertices v1, v2 and v2,v3. For (J4(s1))
the decomposition into maximal cliques corresponds to K2, K3. For J5(s1) the decomposition
into maximal cliques corresponds to K2, K3, K3. For J6(s1) the decomposition into maximal
cliques corresponds to K2, K3, K4. Clearly the result holds for Jl(s1), 1 ≤ l ≤ 6. Assume the
result holds for 1≤ l ≤ m and without loss of generality assume that the prime Jaconian vertex
say, vp has defined maximum out-degree d+(vp)= p and the arc (vp,vm) exists.

Now extend to Jm+1(s1). Clearly, a new maximal clique is created.

If m is even then c(Jm(s1))+1= m
2 +1= (m+1)+1

2 = c(Jm+1(s1)). By similar reasoning the case for,
m is odd, follows. Hence, through induction the result follows.

Corollary 2.3.5. For Jn(s1), n odd and for Jn+1(s1) the number of maximal cliques in the
decomposition is equal.

Communications in Mathematics and Applications, Vol. 7, No. 4, pp. 329–342, 2016



338 A Study on Clique Invariants of Jaco-Type Graphs: M.J. Seles, U. Mary and J. Kok

Proof. The result is an immediate consequence of the immediate induction in the proof of
Theorem 2.3.4.

By applying Theorem 2.3.4 it is possible to determine the number of cliques of any order in
the integer Jaco-type to the maximum order that exists for a given n namely, ( n

2 ) for even n and
bn

2 c+1 for odd n. Because certain pairs of maximal cliques have non-empty vertex intersection
the determining of distinct cliques and vertex clique degrees must discount multiple counting.

Example 2.3.1. Figure 2.1 depicts J8(s1) [5]. The decomposition into maximal cliques results
in 8

2 = 4 cliques (i.e.), K2 on vertices v1, v2; K3 on vertices; v2,v3,v4; K4 on vertices v3,v4,v5,v6

and K5 on vertices v4,v5,v6,v7,v8. We know that ηK1 = (J8(s1))= 8. If the counting was through
the number of maximal cliques then a double count at vertex v2(common to K2 and K3) must
be discounted by 1. The double count of vertex v3(common to K3 and K4) and the triple count of
vertex v4(common to K3, K4 and K5) must be discounted for by 1 and 2 respectively. Also the
double count of vertices v5,v6(common to K4 and K5) must be discounted for by 1 in each count
to yield the correct count.

Similarly, ηK2(J8(s1))= 16. If the counting was through the number of maximal cliques the
initial count would be 20. Then discounting for the double count of arc (v3,v4) (common to K3

and K4 and for arcs (v4,v5), (v4,v6), (v5,v6) (common to K4 and K5) renders the correct result.

For the 3-cliques we have ηK3(J8(s1))= 14. Counting through the distinct maximal cliques
amounts to 15 cliques, K3. After discounting the double count of the triangle on the vertices
v4,v5,v6 the correct ηK3(J8(s1))= 14 is obtained.

Finally, in respect of ηK4(J8(s1)) and ηK5(J8(s1)) no double count occurs.

Lemma 2.3.6. In the root integer Jaco-type graph J∞(s1) a maximal say, K l , l ≥ 2, intersects
with L l+1 in respect of l − 1 vertices, intersects with K l+2 in respect of l − 2 vertices, and
consecutively so on, until the intersection with K l+(l−1), with which it intersects in respect
of a single vertex.

Proof. From definition of infinite Jaco-type graph, J∞({an}) it follows that for any vertex
vl ∈ V (J∞(s1)) the arcs (vl ,vl+1), (vl ,vl+2), (vl ,vl+3), . . . , (vl ,v2l) exist. Hence, the result follows
immediately.

In applying Lemma 2.3.6 care must be taken to discount maximal cliques which were lobbed
off as well as arcs which were lobbed off to reduce the order of certain maximal cliques.

2.3.2 Application to the Finite Fibonacci Jaco-type Graph: Jn(s2) [6]

The infinite Jaco-type graph corresponding to Fibonacci sequence, which is also called the
Fibonaccian Jaco-type graph J∞(s2) and is defined by the vertex set V (J∞(s2)) = {vi : i ∈ N}
and the arc set A(J∞(s2))= {(vi,v j) : i, j ∈ N, i < j} and (vi,v j) ∈ A(J∞(s2)) if and only if i+ f i ≥ j.
Note that a finite Jaco-type graph Jn(s2) in this family is obtained from J∞(s2) by lobbing off
all vertices vk, for all k > n. Figure 2.2 depicts J12(s2). The table below depicts the number of
cliques of all cliques sizes found in Fibonaccian Jaco-type graphs, 1≤ n ≤ 12.
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Table 2.3

Jn(s2), ηK1 ηK2 ηK3 ηK4 ηK5 ηK6 ηK7

n =
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 2 0 0 0 0 0
4 4 3 0 0 0 0 0
5 5 5 1 0 0 0 0
6 6 7 2 0 0 0 0
7 7 10 5 1 0 0 0
8 8 13 8 2 0 0 0
9 9 17 12 6 1 0 0

10 10 22 22 16 6 1 0
11 11 27 32 26 11 1 0
12 12 33 47 46 17 7 1

Lemma 2.3.7. For the Fibonaccian Jaco-type graph Jn+1(s2) with d−(vn+1)= 1 then

η(Jn+1(s2))=
(
n+1

i

)
+ηK i (Jn(s2)), 2≤ i ≤ l.

Proof. Clearly, the number of combinations,
(n+1

i
)

of in-arcs of vertex vn+1 corresponds to the
additional cliques, K i on expanding from Jn(s2) to Jn+1(s2). Therefore, the result follows as a
derivative of Theorem 2.2.5.

2.3.3 Application to the Finite Modulo k Jaco-type Graph: Jn(s3) [6]

The notion of modular Jaco-type graph was introduced and studied further in [6]. It is well
known that for the set N0 of all non-negative integers and n,k ∈ N , k ≥ 2 modular arithmetic
allows an integer mapping in respect of modulo k as follows:

0 7−→ 0= m0

1 7−→ 1= m1

2 7−→ 2= m2
...

...

k−1 7−→ k−1= mk−1

k 7−→ k = mk

k+1 7−→ k+1= mk+1
...

...

Note that this new family of Jaco-type graphs, also called the modular Jaco-type graphs,
resulting from k, k ∈ N utilizes a modular non-negative, non-decreasing integer sequence. Let
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s3 = {an}, an ≡ n(mod k)= mn. Consider the infinite root-graph J∞(s3) and define d+(vi)= mi ,
for i = 1,2,3. Figure 2.3 depicts J18(s3) (also see [4]).

Figure 2.3

Table 2.4. Number of cliques in Figure 2.3

Jn(s3), ηK1(Jn(s3)) ηK2(Jn(s3)) ηK3(Jn(s3))
n =
1 1 0 0
2 2 1 0
3 3 2 0
4 4 4 1
5 5 6 2
6 6 8 3
7 7 10 4
8 8 12 5
9 9 14 6
10 10 16 7
11 11 18 8
12 12 20 9
13 13 22 10
14 14 24 11
15 15 26 12
16 16 28 13
17 17 30 14
18 18 32 15

It has been shown in [4] that d−(vn) = 2, n ≥ 4 in Jn(s3). So on each expansion to the
next order n+1, exactly one addition vertex (clique k1) and one addition clique K3 are added.
Therefore, ηK3(Jn(s3))= 2ηK3(Jn(s3))+1, n ≥ 3.
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2.3.4 Application to the Set Jaco-type Graph: Jn(s4)

We introduce the concept of a set Jaco-type graph. For the set say A = {1,2,3, . . . ,n} we
have the non-empty subsets by convention in the order {1}, {2}, {3}, . . . , {n}, {1,2}, {1,3}, . . . , {1,n},
{2,3}, . . . , {2,n}, . . . , {1,2,3, . . . ,n}. Map the vertices, v1 7→ {1}, v2 7→ {2}, v3 7→ {3}, v4 7→ {1,2},
v5 7→ {1,3}, . . . ,v2n−1 7→ {1,2,3, . . . ,vn}. Define the out-degree of vertex vi to be sum of elements of
subset i. Let the vertex degree of vertex v j , j > 2n −1 mapped onto corresponding vertex degree
of vertex subscript i = 1+ ( j−1)mod(2n −1).

This graph is called the set Jaco-type graph. Figure 2.4 depicts the set Jaco-type graph
J13(s4) with the terms of the sequence {s4} corresponding to a1 7→ 1, a2 7→ 2, a3 7→ 3, a4 7→ 4,
a5 7→ 4, a6 7→ 5, a7 7→ 6, a8 7→ 1, a9 7→ 2, ai 7→ 1+ ( j−1)mod(2n −1).

Figure 2.4

Table 2.5. Number of cliques in Figure 2.4

Kn, ηK1(Jn(s4)) ηK2(Jn(s4)) ηK3(Jn(s4)) ηK4(Jn(s4)) ηK5(Jn(s4))
n = 1

1 1 0 0 0 0
2 2 1 0 0 0
3 3 2 0 0 0
4 4 3 1 0 0
5 5 5 2 0 0
6 6 8 5 1 0
7 7 11 8 2 0
8 8 14 11 3 0
9 9 18 17 7 1

10 10 21 20 8 1
11 11 25 26 12 2
12 12 28 29 13 2
13 13 32 36 17 3
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Note that because the vertex degrees are specifically defined as the sum of the elements
of proper subsets which is a function of the cardinality of a given set, it is not possible to
determine a closed formula for ηK i (Jn(s4)) in general. The modular Jaco-type graph has a
similar limitation on generality.

3. Conclusion

This paper discusses the introduction to the concept of Jaco-type graphs with clique parameters.
It includes theorems to find l-cliques in certain Jaco-type graphs. Applications to certain
Jaco-type graphs in respect of the concept of vertex clique degrees were also presented.
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