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1. Introduction
For a general reference to notation and concepts of graph and digraphs werefer to [1].
In the early work the family of finite Jaco graphs (order 1) and (order a) were finite directed
graphs derived from an infinite directed graph (order 1) and (order a) called the 1-root digraph
and a-root digraph, respectively [4, 5]. Later the concept of linear Jaco graphs was introduced
by Kok et al. [6] and it effectively redefined the initial concept. Linear Jaco graphs are a family
of finite directed graphs which are derived from an infinite directed graph called the f (x)-root
digraph. The incidence function is a linear function f (x)= mx+ c, x ∈ N , m, c ∈ N0. The f (x)-root
digraph is denoted by, J∞( f (x)). We note that no classification for the special case m = 0 has
been considered. For m = 0 and c > 0, the corresponding finite Jaco graph is the union (disjoint
union) of complete digraphs. Also the components are of maximum order, c+1. We will call
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these Jaco graphs, constant Jaco graphs denoted, c-Jaco graphs.

For m > 0, finite Jaco graphs are simple, connected and directed graphs. We will call these
connected linear Jaco graphs denoted, l-Jaco graphs. Unless stated otherwise the l-Jaco graph
will mean a finite, connected linear Jaco graph. This classification clarifies the distinction
between other polynomial incidence functions such as quadratic functions which will be the
main study area.

2. Quadratic Jaco Graph

2.1 On q-Jaco graphs for f (x)= ax2 +bx+ c

In this section we report on properties, results and concepts related to the family of quadratic
Jaco graphs, also called q-Jaco graphs. These digraphs have the incidence function f (x) =
ax2 +bx+ c, with a, x ∈ N , b, c ∈ N0.

Definition 2.1.1. The infinite q-Jaco graph or root q-Jacograph J∞( f (x)), x ∈ N is defined by
V (J∞( f (x))) = {vi : i ∈ N}, A(J∞( f (x))) ⊆ {(vi,v j) : i, j ∈ N, i < j} and (vi,v j) ∈ A(J∞( f (x))) if and
only if [ai2 + (b+1)i+ c]−d−(vi)≥ j.

Definition 2.1.2. The family of finite q-Jaco graphs denoted by {Jn( f (x)) : f (x) = ax2 + bx+ c;
x,m ∈ N and c ∈ N0} is defined by V (Jn( f (x))) = {vi : i ∈ N, i ≤ n}, A(Jn( f (x))) ⊆ {(vi,v j) : i, j ∈
N, i < j ≤ n} and (vi,v j) ∈ A(Jn( f (x))) if and only if [ai2 + (b+1)i+ c]−d−(vi)≥ j.

Definition 2.1.3. Vertices with degree ∆(Jn( f (x))) are called Jaconian vertices and the set of
vertices with maximum degree is called the Jaconian set of a q-Jaco graph Jn( f (x)) and denoted
by J(Jn( f (x))).

Definition 2.1.4. The lowest numbered (indexed) Jaconian vertex is called the prime Jaconian
vertex of a q-Jaco graph.

Definition 2.1.5. If vi is the prime Jaconian vertex the complete subgraph on vertices
vi+1,vi+2, . . . ,vn is called the Hope subgraph of a q-Jaco graph.

2.2 Basic Properties of q-Jacograph
Property 2.2.1. From the definition of a q-Jaco graph Jn( f (x)) it follows that, if for the prime
Jaconian vertex vi , we have d(vi)= f (i), then in the underlying q-Jaco graph denoted J∗

n ( f (x))
we have d(vm)= f (m) ∀ m ∈ {1,2,3, . . . , i}.

Property 2.2.2. From the definition of a q-Jaco graph Jn( f (x)), it follows that ∆(Jk( f (x))) ≤
∆(Jn( f (x))) ∀ k ≤ n.

Property 2.2.3. From the definition of a q-Jaco graph Jn( f (x)), it follows that the lowest degree
attained by all Jaco graphs is 0≤ δ(Jn( f (x)))≤ f (1).
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Property 2.2.4. The d−(vk) for any vertex vk of a q-Jaco graph Jn( f (x)), n ≥ k is equal to d(vk)
in the underlying Jaco graph J∗

k ( f (x)).

2.3 Results on q-Jaco Graphs
Our first result addresses some distinction between constant, linear and quadratic Jaco graphs.

Lemma 2.3.1. A complete graph Kn, n ≥ 1 can be described by the underlying graph of some
finite Jaco graph, Jn( f (x)) such as:

(i) f (x)= c, c ≥ n−1 (c-Jaco graph) or,

(ii) f (x)= mx+ c, m ∈ N , c ∈ N0 with m+ c ≥ n−1 (l-Jaco graph) or,

(iii) f (x)= ax2 +bx+ c, a ∈ N , b, c ∈ N0 with a+b+ c ≥ n−1 (q-Jaco graph).

Proof. Let us consider f (x)= c, c ≥ n−1.

(i) Clearly for c = 0 the complete graph K1 is described. For f (1) = c ≥ 1, the arc (v1,vc+1)
exists, as the maximum reach of vertex v1 in accordance with Definition 2.1.1. Therefore,
all arcs (v1,v j), 2≤ j ≤ c+1 exist. Similarly, all arcs (vi,v j), 2≤ i ≤ c and i+1≤ j ≤ c+1
exist. Clearly, the underlying finite constant Jaco graph is the complete graph Kc+1. Hence,
for Jl( f (x)), 1≤ l ≤ c+1 the underlying finite constant Jaco graphs are complete graphs.

Now consider f (x)= mx+ c, m ∈ N , c ∈ N0 with m+ c ≥ n−1.

(ii) Since f (1) = m+ c, the arc (v1,vm+c+1) exists as the maximum reach of vertex v1 in
accordance with Definition 2.1.1. Therefore, all arcs (v1,v j), 2≤ j ≤ m+ c+ exist. Similarly,
all arcs (vi,v j), 2≤ i ≤ m+ c and i+1≤ j ≤ m+ c+1 exist. Clearly, the underlying finite
linear Jaco graph is the complete graph Km+c+1. Hence, for Jl( f (x)), 1≤ l ≤ m+ c+1, the
underlying finite linear Jaco graphs are complete graphs.

Finally, consider f (x)= ax2 +bx+ c, m ∈ N , c ∈ N0 with a+b+ c ≥ n−1.

(iii) Since f (1)= a+b+ c, the arc (v1,va+b+c+1) exists as the maximum reach of vertex v1 in
accordance with Definition 2.1.1. Therefore, all arcs (v1,v j), 2≤ j ≤ a+b+ c+1 exist.
Similarly all arcs (vi,v j), 2 ≤ i ≤ a+ b+ c and i+1 ≤ j ≤ a+ b+ c+1 exist. Clearly, the
finite underlying quadratic Jaco graph is the complete graph Ka+b+c+1. Hence, for Jl( f (x)),
1≤ l ≤ a+b+ c+1 the underlying finite quadratic Jaco graphs are complete graphs.

Hence, a complete graph Kn, n ≥ 1 can be described by some finite underlying Jaco Graph,
Jn( f (x)) where f (x)= c, c ≥ n−1 or f (x)= mx+ c, m ∈ N , c ∈ N0

or f (x)= ax2 +bx+ c, a ∈ N , b, c ∈ N0.

Lemma 2.3.2. For the q-Jaco graphs Ji( f (x)), i ∈ {1,2,3, . . . , f (1)+1}, we have ∆(Ji( f (x)))= i−1
and J(Ji( f (x)))= {vk : 1≤ k ≤ i}=V (Ji( f (x))).

Proof. Clearly, for i = 1 the corresponding q-Jaco graph is an isolated vertex v1 or put differently,
the complete graph K1. Therefore, the result holds for i = 1.
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For any 2 ≤ i ≤ f (1)+1 it follows from Definition 2.1.2 that the arcs (v1,v2), (v1,v3), . . . , (v1,vi)
and (v2,v3), (v2,v4), . . . , (v2,vi) and (v3,v4), (v3,v5), . . . , (v3,vi) and . . . and (vi−1,vi) exist. Hence,
the underlying graph is a complete graph and all vertices vk, 1 ≤ k ≤ i have degree i−1. So
in terms of the corresponding q-Jaco graph we have J(Ji( f (x))) = {vk : 1 ≤ k ≤ i} = V (Ji( f (x))).
Finally, since no arc (v1, vi), i > f (1)+1 is defined the range i ∈ {1,2,3, . . . , f (1)+1} holds.

Proposition 2.3.3. For the q-Jaco graphs Jf (i)+1( f (x)), 1≤ i ≤ f (1)+1 the prime Jaconian vertex
is the vertex vi and J(Jf (i)( f (x)))= {vl : i ≤ l ≤ f (1)+1}.

Proof. From Definition 2.1.2 it follows that Jf (1)+1( f (x)) is a complete digraph K f (1)+1. Therefore,
J(Jf (1)+1( f (x)))= {vl : 1≤ l ≤ f (1)+1}. Now, for any 2≤ i ≤ f (1)+1 it follows from Definition 2.1.2
that d(vi) = d(vi+1) = ·· · = d(v f (1)+1) = ∆(Jf (i)+1( f (x))) and d(v f (1)+1) > d(v j) ≥ d(v j+1) ≥
d(v j+1) · · · ≥ d(v f (i)+1), f (i)+2≤ j ≤ f (i)+1.

Hence, vi is the prime Jaconian vertex of Jf (1)+1( f (x)) and J(Jf (1)+1( f (x))) = {vl : 1 ≤ l ≤
f (1)+1}.

Lemma 2.3.4. If in a q-Jaco graph Jn( f (x)), and for the smallest i, we have d(vi)= f (i) and the
arc (vi,vn) is defined, then vi is the prime Jaconian vertex of Jn( f (x)).

Proof. If in the construction of the q-Jaco graph Jn( f (x)) and for the smallest i we have
d(vi)= f (i) and the arc (vi,vn) is defined, then d(v j)= f ( j)< d(vi), 1≤ j < i. Also, d(vk)≤ d(vi),
i < k ≤ n. Therefore, vi is the prime Jaconian vertex of Jn( f (x)).
Observe that ∆(Ji( f (x))) and d−(vi) might repeat as i increases to i+1 and on an increase, the
increase is always +1.

Lemma 2.3.5. For all q-Jaco graphs, Jn( f (x)), n ≥ 2 and, vi,vi−1 ∈V (Jn( f (x))) we have in the
underlying q-Jaco graph J∗

n ( f (x)), that |d(vi)−d(vi−1)| ≤ a(2i−1)+b.

Proof. Clearly,

max |d(vi)−d(vi−1)| =max | f (i)− f (i−1)| = f (i)− f (i−1)

= ai2 +bi+ c− (a(i−1)2 +b(i−1)+ c)

= ai2 +bi+ c−ai2 +2ai−a−bi+b− c

= a(2i−1)+b.

Hence, |d(vi)−d(vi−1)| ≤ a(2i−1)+b.

Theorem 2.3.6. The q-Jaco Graph Jk( f (x)), k = f ( f (1))− f (1)+1, is the smallest q-Jaco graph
in {Jn( f (x)) : n ∈ N} which has ∆(Jk( f (x)))= f ( f (1)) with the prime Jaconian vertex v(a+b+c).

Proof. Clearly, d−(v f (1))= f (1)−1. Furthermore, the maximum defined degree for vertex v f (1)

is f ( f (1)). Hence, at vertex v f ( f (1))− f (1)+1 in a sufficient large finite q-Jaco graph the defined out-
arcs of vertex v f (1) including the arc (v f (1), v f ( f (1))− f (1)+1) ensure d(v f (1))= f ( f (1)). Hence, the
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q-Jaco graph Jk( f (x)), k = f ( f (1))− f (1)+1 is the smallest q-Jaco graph having d(v f (1))= f ( f (1)).
Now, since d(vi) < f ( f (1)), 1 ≤ i ≤ f (1)−1 and d(v j) ≤ f ( f (1)), f (1)+1 ≤ j ≤ f ( f (1))− f (1)+1,
we have ∆(Jk( f (x))) = f ( f (1)) with the prime Jaconian vertex v(a+b+c) for Jk( f (x)), k =
f ( f (1))− f (1)+1.

2.4 q-Jacographs for f (x)= x2

Unless mention otherwise, we shall in the main limit this section to the case f (x)= x2.
Table 1 shows the results for the application of the Fisher algorithm, for i ≤ 35.

Table 1

φ(vi)→ i ∈ N d−(vi) d+(vi)= i−d−(vi) J(Ji(x2)) ∆(Ji(x2)) dJi (x2)(v1,vi)

1 0 1 {v1} 0 0

2 1 3 {v1,v2} 1 1

3 1 8 {v2} 2 2

4 2 14 {v2} 3 2

5 3 22 {v2} 4 2

6 3 33 {v2,v3,v4,v5} 4 3

7 4 45 {v3,v4,v5} 5 3

8 5 59 {v3,v4,v5} 6 3

9 6 73 {v3,v4,v5} 7 3

10 7 93 {v3,v4,v5} 8 3

11 8 113 {v3,v4,v5} 9 3

12 8 136 {v4,v5} 10 4

13 9 160 {v4,v5} 11 4

14 10 186 {v4,v5} 12 4

15 11 214 {v4,v5} 13 4

16 12 244 {v4,v5} 14 4

17 13 276 {v4,v5} 15 4

18 14 310 {v4,v5} 16 4

19 14 347 {v5} 17 5

20 15 385 {v5} 18 5

21 16 425 {v5} 19 5

22 17 467 {v5} 20 5

23 18 511 {v5} 21 5

24 19 557 {v5} 22 5

25 20 605 {v5} 23 5

26 21 655 {v5} 24 5

27 22 707 {v5} 25 5

28 22 762 {v5,v6,v7,v8,v9,v10,v11} 25 6

29 23 818 {v6,v7,v8,v9,v10,v11} 26 6

30 24 876 {v6,v7,v8,v9,v10,v11} 27 6

31 25 959 {v6,v7,v8,v9,v10,v11} 28 6

32 26 998 {v6,v7,v8,v9,v10,v11} 29 6

33 27 1062 {v6,v7,v8,v9,v10,v11} 30 6

34 28 1128 {v6,v7,v8,v9,v10,v11} 31 6

35 29 1196 {v6,v7,v8,v9,v10,v11} 32 6
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Proposition 2.4.1. If for n ∈ N the in-degree d−(vn) = l = d−(vn+1) then, |J(Jn(x2))| 6=
|J(Jn+1(x2))|.

Proof. Assume that for n ∈ N the in-degree d−(vn)= l = d−(vn+1). We consider two cases.
Case 1. Let |J(Jn(x2))| ≥ 2. Let vertex vi be the prime Jaconian vertex of Jn(x2). Now, expand to
the Jacograph Jn+1(x2). Since, d−(vn)= l = d−(vn+1) the arc (vi, vn+1) cannot exist. Therefore,
|J(Jn(x2))| 6= |J(Jn+1(x2))|.
Case 2. Let |J(Jn(x2))| = 1. Let vertex vi be the unique prime Jaconian vertex of Jn(x2). It implies
that d(vi)> d(vi+1)≥ d(vi+2)≥ . . .≥ d(vk) for some k. It also implies that d(vi)= d(vi+1)+1.
Expand to the Jacograph Jn+1(x2). Since, d−(vn)= l = d−(vn+1) the arc (vi, vn+1) cannot exist.
This implies that in Jn+1(x2), d(vi) = d(vi+1) ≥ d(vi+2) ≥ . . . ≥ d(vk) for some k. Therefore,
|J(Jn+1(x2))| ≥ 2. Hence, |J(Jn(x2))| 6= |J(Jn+1(x2))|.

Lemma 2.4.2. The in-degrees of the q-Jaco graphs for the incidence function f (x) = x2 are
stepwise consecutive non-negative integers.

Proof. The result holds asthe q-Jaco graph expands from order i = 1 to i = 2. Assume it
holds for the q-Jaco graphs as the order expands from i = k − 1 to i = k. It means that
d−(vk) ∈ {d−(vk−1), d−(vk−1)+1}.
Now, let the q-Jaco graph expand to order i = k + 1. Clearly, N−(vk+1) = N−(vk)∪ {vk} or
(N−(vk)− vi)∪ {vk} , with i the minimum for which arc (vi, vk) exists. Whichever the case,
it implies that d−(vk+1) ∈ {d−(vk), d−(vk)+1}. Hence, the result holds for q-Jaco graphs of any
order i ∈ N .

We now state a general result which follows from Lemma 2.4.2.

Corollary 2.4.3. The result in Lemma 2.4.2 holds for all q-Jaco graphs with the incidence of
the form f (x)= ax2 +bx+ c, with a, x ∈ N , b, c ∈ N0.

Proof. The proof is similar to that of Lemma 2.4.2.

For the root l-Jaco graph we observed occasional repetition of the out-degree d+(vi). We show
that such repetition does not occur in the root q-Jaco graph for f (x)= x2.

Proposition 2.4.4. Consider a q-Jaco graph J∞(x2), n, x ∈ N then d+(vi) 6= d+(vi+1), ∀ i ∈ N .

Proof. From the previous table it follows that the result holds for i = 1,2. Assume the result
holds for 1≤ l ≤ k. Now, consider i = k+1.
Case 1. Let d−(vk) = d−(vk+1). Since, k2 − d−(vk) = k2 − d−(vk+1) < k2 − d−(vk+1)+ (2k+1) =
(k+1)2 −d−(vk+1), it follows that d+(vk) 6= d+(vk+1). Hence, the result holds for this case.
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Case 2. Let d−(vk) 6= d−(vk+1). Then from Lemma 2.4.2 we have that d−(vk+1) = d−(vk)+1.
Therefore, k2−d−(vk)< k2−d−(vk)−1+2k+1= (k+1)2−(d−(vk)+1)= (k+1)2−d−(vk+1). Hence,
the result holds for this case.
Therefore, d+(vi) 6= d+(vi+1), ∀ i ∈ N .

We now state a general result which follows from Proposition 2.4.4.

Corollary 2.4.5. The result in Proposition 2.4.4 holds for all q-Jaco graphs with the incidence
of the form f (x)= ax2 +bx+ c, with a, x ∈ N , b, c ∈ N0.

Proof. The proof is similar to that of Proposition 2.4.4.

2.5 Minimum and Maximum Chromatic sum of q-Jaco graphs
We begin with the concept of chromatic sums which were introduced by Kok et al. [8]. For
concepts and notation not defined or explained in this section see [2, 7, 8].

2.5.1 The χ′-Chromatic Sum and χ+-Chromatic Sum of Jaco Graphs [8]

If the colours represent different technology types and the configuration requirement is that
at least one unit per technology type must be placed at a point in a network without similar
technology types being adjacent, two further considerations come into play. Firstly, if the higher
indexed colours represent technology types with higher failure rate (risk) then the placement
of the maximal number of higher indexed colours units is the solution to ensure a functional
network. On the other hand, if the lower indexed colours represent a less costly (procurement,
installation, commissioning and maintenance) technology type, and minimising total cost is the
priority, then the placement of maximal number of lower indexed units is the desired solution.

Let C = {c1, c2, c3, . . . , ck} allow a colouring S of G. As stated in [2] there are k! ways of allocating
the colours to the vertices of G. Let the colour weight θ(ci) be the number of times a colour ci is
allocated to vertices. In general we refer to the colour sum of a colouring S and define it,

ω(S)=
k∑

i=1
i ·θ(ci).

An interesting new invariant in respect of graph colouring was introduced in [8].

Definition 2.5.1. For a graph G the χ′-Chromatic sum is defined to be:

χ′(G)=min

{
k∑

i=1
i θ(ci) :∀ min proper colourings of G

}
.

Such a minimum colouring sum is obtain by a greedy algorithm, i.e. colour the maximum
number of vertices, allowed by the definition of a proper colouring, the colour c1. This is followed
by colouring the maximum number of the uncoloured vertices allowed by the definition of
a proper colouring, the colour c2, and so on. Iteratively complete the colouring of the graph.
The colouring obtained is a proper colouring corresponding to the minimum colouring sum.
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Example 1.

Figure 2.1. Minimum chromatic sum

Definition 2.5.2. For a graph G the χ+-Chromatic sum is defined to be:

χ′(G)=max

{
k∑

i=1
i θ(ci) :∀ min proper colourings of G

}
.

A maximum colouring sum is obtain by considering the colour set C = {c1, c2, c3, . . . , ck} which
allows a minimum colouring sum and then, to recolour the vertices according to the colour
mapping ci 7→ ck−i+1.

Example 2.

Figure 2.2. Maximum chromatic sum

Theorem 2.5.3. For a complete graph Kn, the χ′-chromatic sum and χ+-chromatic sum are
given by

χ′(Kn)= χ+(Kn)= n(n+1)
2

.

Proof. Let C be a proper colouring of the complete graph. Then C must contain at least n colors
say, c1, c2, c3, . . . , cn. Because every vertex is adjacent to every other vertex in complete graph
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we have:

θ(c1)= θ(c2)= . . .= θ(cn)= 1,

meaning that, θ(ci)= 1, ∀ ci , 1≤ i ≤ n.

Therefore, 1(1)+2(1)+3(1)+ . . .+n(1)⇒ χ′(Kn)= n(n+1)
2

.

Similarly, χ+(Kn)= n(n+1)
2

. Hence, χ′(Kn)= χ+(Kn)= n(n+1)
2

.

2.6 Arithmetic Mean and Variance of Chromatic Parameters
Colouring the vertices of a graph G can be considered as a random experiment and a discrete
variable X can be defined. Correspondingly, the two major statistical (probability) parameters,
the arithmetic mean and variance can be determined for the minimum and the maximum
chromatic sums. This new concept was introduced by Sudev et al. in [9]. Following the probability
mass function (pmf) the two probability parameters are defined as follows.

f (i)=
{

θ(ci)
|V (G)| , i = 1,2,3, . . . ,k,
0, elsewhere,

and

µC(G)=

k∑
i=1

i θ(ci)

k∑
i=1

θ(ci)
and σ2

C(G)=

k∑
i=1

i2θ(ci)

k∑
i=1

θ(ci)
−


k∑

i=1
i θ(ci)

k∑
i=1

θ(ci)


2

.

Lemma 2.6.1. The-chromatic mean, the χ+-chromatic mean, the χ′-chromatic variance and the
χ+-chromatic variance of a complete graph Kn, n ≥ 1, are:

µχ+(Kn)=µχ′(Kn)= n+1
2

and σ2
χ+(Kn)=σ2

χ′(Kn)= n2 −1
12

.

Proof. For a complete graph Kn a proper colouring is allowed by n colours {c1, c2, c3, . . . , cn}.
Therefore, θ(ci)= 1, ∀ ci , 1≤ i ≤ n. By symmetry argument we have: χ(Kn)= χ′(Kn)= χ+(Kn).
Also the probability mass function (pmf) is defined by

f (i)=
{

1
n , i = 1,2,3, . . . ,n,
0, elsewhere.

It implies that for the χ′-chromatic mean and the χ′-chromatic variance of Kn we have

µχ′(Kn)= n+1
2

and σ2
χ′(Kn)= n2 −1

12
.

By symmetry argument it also follows that:

µχ+(Kn)= n+1
2

and σ2
χ+(Kn)= n2 −1

12
.

2.6.1 Braided Complete Graphs

Figure 2.3 depicts G = K7⊕3K5 where Kn⊕lKm means that l ≤ m and l ≤ n and Kn ∩Km = K l .
We say that the two complete graphs are 1-braided. It is easy to see that the operation is
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commutative for two 1-braided complete graphs. For three or more 1-braided complete graphs
we consider the graphs to be an ordered string of 1-braided complete graphs with the further
condition that, if for Kn⊕l1 Km⊕l2 K t we have that Kn ∩ Km = K l1 and Km ∩ K t = K l2 then,
K l1 ∩K l2 =;.

Figure 2.3

The probability mass function for the minimum chromatic sum χ′ is

f (i)=


2

n+m−l = 2
9 , i = 1,2,

1
n+m−l = 1

9 , i = 3,4,5,6,7,
0, elsewhere.

Therefore, µχ′(G)= 1 · 2
n+m−l +2 · 2

n+m−l +
7∑

i=3
i · 1

n+m−l = 6
9 + 25

9 = 31
9 .

The probability mass function for the minimum chromatic sum χ+ is

f (i)=


2

n+m−l = 2
9 , i = 6,7,

1
n+m−l = 1

9 , i = 1,2,3,4,5,
0, elsewhere.

Therefore, µχ+(G)= 6 · 2
n+m−l +7 · 2

n+m−l +
5∑

i=1
i · 1

n+m−l = 26
9 + 15

9 = 41
9 .

Furthermore,

σ2
χ′(G)= 12 · 2

n+m− l
+22 · 2

n+m− l
+

7∑
i=3

i2 · 1
n+m− l

−
(
31
9

)2
= 145

9
− 961

81
= 344

81
and

σ2
χ+(G)= 62 · 2

n+m− l
+72 · 2

n+m− l
+

5∑
i=1

i2 · 1
n+m− l

−
(
41
9

)2
= 255

9
− 1681

81
= 614

81
.
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Lemma 2.6.2. For two 1-braided complete graphs, we have

µχ′(G)= 2(n+1)(m− l)+ (n−m+ l)(n−m+ l+1)
2(n+m− l)

and

µχ+(G)= (n− l)(n− l+1)+4l(n− l)+2l(l+1)
2(n+m− l)

.

Proof. Part 1: Without loss of generality assume m ≤ n. The probability mass function for
minimum chromatic sum χ′ is

f (i)=


2

n+m−l , i = 1,2, . . . ,m− l,
1

n+m−l , i = (m− l)+1, (m− l)+2, . . . ,n,
0, elsewhere.

Therefore,

µχ′(G)= 1 · 2
n+m− l

+2
2

n+m− l
+ . . .+ (m− l)

2
n+m− l

+
{

[(m− l)+1]
1

n+m− l
+ [(m− l)+2]

1
n+m− l

+ . . .+n
1

n+m− l

}
= 2

n+m− l
[1+2+3+ . . .+ (m− l)]+ 1

n+m− l
[(m− l)+1+ (m− l)+2+ . . .+n]

= 2
n+m− l

[
(m− l)(m− l+1)

2

]
+ 1

n+m− l
[(n−m+ l)(m− l)+1+2+3+ . . .+ (n−m+ l)]

= (m− l)(m− l+1)
n+m− l

+ 1
n+m− l

[
(n−m+1)(m− l)+ (n−m+ l)(n−m+ l+1)

2

]
= 1

n+m− l

{
(m− l)(m− l+1)+ (n−m+ l)(m− l)+ (n−m+ l)(n−m+ l+1)

2

}
.

Therefore,

µχ′(G)= 2(m− l)(n+1)+ (n−m+ l)(n−m+ l+1)
2(n+m− l)

.

Part 2: Without loss of generality assume m ≤ n. The probability mass function (pmf) for
maximum chromatic sum χ+ is

f (i)=


2

n+m−l , i = (n− l+1), (n− l+2), (n− l+3), . . . , ((n− l)+ l),
1

n+m−l , i = 1,2,3, . . . ,n− l,
0, elsewhere.

Therefore

µχ+(G)=
{

1 · 1
n+m− l

+2.
1

n+m− l
+ . . .+ (n− l) · 1

n+m− l

}
+

{
(n− l+1) · 2

n+m− l
+ (n− l+2) · 2

n+m− l
+ . . .+ ((n− l)+ l) · 2

n+m− l

}
= 1

n+m− l
{1+2+3+ . . .+ (n− l)}
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+ 2
n+m− l

{(n− l+1)+ (n− l+2)+ . . .+ ((n− l)+ l)}

= 1
n+m− l

{
(n− l)(n− l+1)

2

}
+ 2

n+m− l
{l(n− l)+1+2+3+ . . .+ l}

= 1
n+m− l

{
(n− l)(n− l+1)

2

}
+ 2

n+m− l

{
l(n− l)+ l(l+1)

2

}
= 1

n+m− l

{
(n− l)(n− l+1)

2

}
+ 2

n+m− l

{
2l(n− l)+ l(l+1)

2

}
Therefore,

µχ+(G)= (n− l)(n− l+1)+4l(n− l)+2l(l+1)
2(n+m− l)

.

2.6.2 Application to q-Jaco Graph for: f (x)= x2

Informally stated, it is noted that q-Jaco graphs have the structural property that they are
typically a string of intersecting complete graphs with the complete graphs following in non-
decreasing order as n increases. In this section the introductory results are applied to the q-Jaco
graph for f (x)= x2.
The corresponding colouring sum weights for χ′(Ji( f (x))), χ+(Ji( f (x))), are depicted in Table 2.

Table 2

φ(vi)→ i ∈ N Minimum Chromatic Sum Colour Weights Maximum Chromatic Sum Colour Weights

1 θ(c1)= 1 θ(c1)= 1

*2 θ(c1)= 1, θ(c2)= 1 θ(c1)= 1, θ(c2)= 1

3 θ(c1)= 2, θ(c2)= 1 θ(c1)= 1, θ(c2)= 2

4 θ(c1)= 2, θ(c2)= 1, θ(c3)= 1 θ(c1)= 1, θ(c2)= 1, θ(c3)= 2

*5 θ(c1)= 2, θ(c2)= 1, θ(c3)= 1, θ(c4)= 1 θ(c1)= 1, θ(c2)= 1, θ(c3)= 1, θ(c4)= 2

6 θ(c1)= 2, θ(c2)= 2, θ(c3)= 1, θ(c4)= 1 θ(c1)= 1, θ(c2)= 1, θ(c3)= 2, θ(c4)= 2

7 θ(c1)= 2, θ(c2)= 2, θ(c3)= 1, θ(c4)= 1, θ(c5)= 1 θ(c1)= 1, θ(c2)= 1, θ(c3)= 1, θ(c4)= 2, θ(c5)= 2

8 θ(c1)= 2, θ(c2)= 2, θ(c3)= 1, θ(c4)= 1, θ(c5)= 1, θ(c6)= 1 θ(c1)= 1, θ(c2)= 1, θ(c3)= 1, θ(c4)= 1, θ(c5)= 2, θ(c6)= 2

9 θ(c1)= 2, θ(c2)= 2, θ(c3)= 1, . . . , θ(c7)= 1 θ(c1)= 1, . . . , θ(c5)= 1, θ(c6)= 2, θ(c7)= 2

10 θ(c1)= 2, θ(c2)= 2, θ(c3)= 1, . . . , θ(c8)= 1 θ(c1)= 1, . . . , θ(c6)= 1, θ(c7)= 2, θ(c8)= 2

*11 θ(c1)= 2, θ(c2)= 2, θ(c3)= 1, . . . , θ(c9)= 1 θ(c1)= 1, . . . , θ(c7)= 1, θ(c8)= 2, θ(c9)= 2

12 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c9)= 1 θ(c1)= 1, . . . , θ(c7)= 1, θ(c8)= 2, θ(c9)= 3

13 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c10)= 1 θ(c1)= 1, . . . , θ(c8)= 1, θ(c9)= 2, θ(c10)= 3

14 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c11)= 1 θ(c1)= 1, . . . , θ(c9)= 1, θ(c10)= 2, θ(c11)= 3

15 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c12)= 1 θ(c1)= 1, . . . , θ(c10)= 1, θ(c11)= 2, θ(c12)= 3

16 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c13)= 1 θ(c1)= 1, . . . , θ(c11)= 1, θ(c12)= 2, θ(c13)= 3

17 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c14)= 1 θ(c1)= 1, . . . , θ(c12)= 1, θ(c13)= 2, θ(c14)= 3

*18 θ(c1)= 3, θ(c2)= 2, θ(c3)= 1, . . . , θ(c15)= 1 θ(c1)= 1, . . . , θ(c13)= 1, θ(c14)= 2, θ(c15)= 3

19 θ(c1)= 3, θ(c2)= 2, θ(c3)= 2, θ(c4)= 1, . . . , θ(c15)= 1 θ(c1)= 1, . . . , θ(c12)= 1, θ(c13)= 2, θ(c14)= 2, θ(c15)= 3

20 θ(c1)= 3, θ(c2)= 2, θ(c3)= 2, θ(c4)= 1, . . . , θ(c16)= 1 θ(c1)= 1, . . . , θ(c13)= 1, θ(c14)= 2, θ(c15)= 2, θ(c16)= 3
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Table 3 below depicts the values χ′(Ji( f (x))), χ+(Ji( f (x))), µχ′(Ji( f (x))), µχ+(Ji( f (x))),
σ2
χ′(Ji( f (x))), σ2

χ+(Ji( f (x))) for 1≤ i ≤ 20.

Table 3

φ(vi)→ i ∈ N χ′(Ji( f )) χ+(Ji( f )) µχ′(Ji( f )) µχ+(Ji( f )) σ2
χ′(Ji( f )) σ2

χ+(Ji( f ))

1 1 1 1 1 0 0

*2 3 3 3/2 3/2 1/4 1/4

3 4 5 4/3 5/3 2/9 2/9

4 7 9 7/4 9/4 11/16 11/16

*5 11 14 11/5 14/5 34/25 34/25

6 13 17 13/6 17/6 41/36 41/36

7 18 24 18/7 24/7 96/49 96/49

8 24 32 24/8 32/8 192/64 192/64

9 31 41 31/9 41/9 344/81 344/81

10 39 51 39/10 51/10 469/100 469/100

*11 48 62 48/11 62/11 886/121 886/121

12 49 71 49/12 71/12 1091/144 1091/144

13 59 84 59/13 84/13 1602/169 1602/169

14 70 98 70/14 98/14 2268/196 2268/196

15 82 113 82/15 113/15 3116/225 3116/225

16 95 129 95/16 129/16 4175/256 4175/256

17 104 146 109/17 146/17 5476/289 5476/289

*18 119 164 124/18 164/18 7852/324 7852/324

19 122 177 127/19 177/19 7716/361 7716/361

20 138 197 143/20 197/20 9771/20 9771/20

We observe that the colour weights undergo well-defined change as the order of the q-Jaco
graph increases from i to i+1. We present the next result in this respect.

Conjecture 2.6.3. For the q-Jaco graph Jn( f (x)), n ∈ N and for f (x) = x2, we have
σ2
χ′(Ji( f (x)))=σ2

χ+(Ji( f (x))).

Theorem 2.6.4. When the order of the q-Jaco graph with f (x)= x2 increases from i to i+1, the
minimum sum colouring changes by:

(i) Either a new colour with minimum subscript say, ck is added with θ(ck)= 1 or,

(ii) exactly one of the colours in Ji( f (x)) increases by count 1.

Proof. If the degree of the prime Jaconian vertex vp of Ji( f (x)) has not reached its defined
maximum, p2 it implies that the corresponding Hope graph increases in order by +1 as Ji( f (x))
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expands to Ji+1( f (x)). Clearly, in terms of the definition of a proper colouring a new colour with
minimum subscript say, ck is added with θ(ck)= 1.
If the degree of the prime Jaconian vertex vp of Ji( f (x)) has reached its defined maximum, p2

it implies that as Ji( f (x)) expands to Ji+1( f (x)) it may be coloured with an existing colour with
minimum subscript allowed by a proper colouring of the Hope graph.

3. Conclusion
Many characteristics of linear Jaco graph were found in this paper. The concept of quadratic
Jaco graph has been introduced. We also derived some results and characteristics of quadratic
Jaco graph. Similar results could be extended to polynomial Jaco graph too. The aforesaid will
be the subject of further research.
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