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1. Introduction and Mathematical Preliminaries
Let A be a nonempty subset of a metric space (X ,d). A mapping T : A → X has a fixed point in
A if the fixed point equation Tx = x has at least one solution. That is, x ∈ A is a fixed point of T
if d(x,Tx)= 0. If the fixed point equation Tx = x does not possess a solution, then d(x,Tx)> 0
for all x ∈ A. In such a situation, it is our aim to find an element x ∈ A such that d(x,Tx) is
minimum in some sense. The best approximation theory and best proximity pair theorems are
studied in this direction. Here we state the following well-known best approximation theorem
due to Ky Fan [9].

Theorem 1.1 ( [9]). Let A be a nonempty compact convex subset of a normed linear space X and
T : A → X be a continuous function. Then there exists x ∈ A such that ‖x− Tx‖ = d(Tx, A) :=
inf{‖Tx−a‖ : a ∈ A}.

Such an element x ∈ A in Theorem 1.1 is called a best approximant of T in A. Note that
if x ∈ A is a best approximant, then ‖x−Tx‖ need not be the optimum. Best proximity point
theorems have been explored to find sufficient conditions so that the minimization problem
min
x∈A

‖x−Tx‖ has at least one solution. To have a concrete lower bound, let us consider two

nonempty subsets A,B of a metric space X and a mapping T : A → B. The natural question
is whether one can find an element x0 ∈ A such that d(x0,Tx0) = min{d(x,Tx) : x ∈ A}. Since
d(x,Tx)≥ d(A,B), the optimal solution to the problem of minimizing the real valued function
x → d(x,Tx) over the domain A of the mapping T will be the one for which the value d(A,B) is
attained. A point x0 ∈ A is called a best proximity point of T if d(x0,Tx0)= d(A,B). Note that if
d(A,B)= 0, then the best proximity point is nothing but a fixed point of T . Also, best proximity
point theory in ordered metric spaces was first studied in [1].

The existence and convergence of best proximity points is an interesting topic of optimization
theory which recently attracted the attention of many authors [3,5,8,13,15–17,24–27]. Also
one can find the existence of best proximity point in the setting of partially order metric space
in [2,7,23,28].

On the other hand, Bhaskar and Lakshmikantham were introduced the concept called
mixed monotone mapping and proved coupled fixed point theorems for mappings satisfying
the mixed monotone property which is used to investigate a large class of problems and
discussed the existence and uniqueness of a solution for a periodic boundary value problem.
One can find the existence of coupled fixed points in the setting of partially order metric space
in [10–12,19–21,29].

Now we recall the definition of coupled fixed point which was introduced by Sintunavarat and
Kumam in [28]. Let X be a non-empty set and F : X × X → X be a given mapping. An element
(x, y) ∈ X × X is called a coupled fixed point of the mapping F if F(x, y)= x and F(y, x)= y.

The authors mentioned above also introduced the notion of mixed monotone mapping. If
(X ,≤) is a partially ordered set, the mapping F is said to have the mixed monotone property if

x1, x2 ∈ X , x1 ≤ x2 ⇒ F(x1, y)≤ F(x2, y), ∀ y ∈ X

and

y1, y2 ∈ X , y1 ≤ y2 ⇒ F(x, y1)≥ F(x, y2), ∀ x ∈ X .
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In [22], Luong and Thuan obtained a more general result. For this, let Φ denote all functions
φ : [0,∞)→ [0,∞) which satisfy

(i) φ is continuous and non-decreasing;

(ii) φ(t)= 0 if and only if t = 0;

(iii) φ(t+ s)≤φ(t)+φ(s), ∀ t, s ∈ (0,∞].

Again, let Ψ denote all functions ψ : (0,∞] → (0,∞] which satisfy lim
t→r

ψ(t) > 0 for all r > 0
and lim

t→0+ψ(t)= 0.

The main theoretical results of Nguyen Van Luong and Nguyen Xuan Thuan, in [22] is the
following.

Theorem 1.2 ( [22]). Let (X ,≤) be a partially ordered set and suppose there is a metric d on
X such that (X ,d) is a complete metric space. Let F : X × X → X be mapping having the mixed
monotone property on X such that

φ(d(F(x, y),F(u,v)))≤ 1
2
φ(d(x,u)+d(y,v))−ψ

(
d(x,u)+d(y,v)

2

)
, (1.1)

for all x, y,u,v ∈ X with x ≥ u and y ≤ v, where ψ ∈Ψ and φ ∈Φ. If there exist x0, y0 ∈ X such
that x0 ≤ F(x0, y0) and y0 ≥ F(y0, x0). Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn}→ x, then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn}→ y, then y≥ yn for all n.

Then there exist x, y ∈ X such that F(x, y)= x and F(y, x)= y.

Motivated by the above theorems, we introduce the concept of proximal mixed monotone
property and proximally coupled weak (ψ,φ) contraction on A. We also explore the existence
and uniqueness of coupled best proximity points in the setting of partially ordered metric spaces.
Further, we attempt to give the generalization of Theorem 1.2.

Let X be a non-empty set such that (X ,d) is a metric space. Unless otherwise specified, it
is assumed throughout this section that A and B are non-empty subsets of the metric space
(X ,d), the following notions are used subsequently:

d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 = {x ∈ A : d(x, y)= d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y)= d(A,B) for some x ∈ A}.

In [16], the authors discussed sufficient conditions which guarantee the non-emptiness of A0

and B0. Also, in [8], the authors proved that A0 is contained in the boundary of A. Moreover,
the authors proved that A0 is contained in the boundary of A in the setting of normed linear
spaces.
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Definition 1.3. Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty subsets
of X . A mapping F : A× A → B is said to have proximal mixed monotone property if F(x, y) is
proximally nondecreasing in x and is proximally non-increasing in y, that is, for all x, y ∈ A.

x1 ≤ x2

d(u1,F(x1, y))= d(A,B)

d(u2,F(x2, y))= d(A,B)

 =⇒ u1 ≤ u2

and
y1 ≤ y2

d(u3,F(x, y1))= d(A,B)

d(u4,F(x, y2))= d(A,B)

 =⇒ u4 ≤ u3

where x1, x2, y1, y2,u1,u2,u3,u4 ∈ A.

One can see that, if A = B in the above definition, the notion of proximal mixed monotone
property reduces to that of mixed monotone property.

Lemma 1.4. Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty subsets of
X . Assume A0 is nonempty. A mapping F : A× A → B has proximal mixed monotone property
with F(A0 × A0)⊆ B0 whenever x0, x1, x2, y0, y1 in A0 such that

x0 ≤ x1 and y0 ≥ y1

d(x1,F(x0, y0))= d(A,B)

d(x2,F(x1, y1))= d(A,B)

 =⇒ x1 ≤ x2. (1.2)

Proof. By hypothesis F(A0× A0)⊆ B0, therefore F(x1, y0) ∈ B0. Hence there exists x∗1 ∈ A such
that

d(x∗1 ,F(x1, y0))= d(A,B). (1.3)

Using F is proximal mixed monotone (In particular F is proximally non decreasing in x) to (1.2)
and (1.3), we get

x0 ≤ x1

d(x1,F(x0, y0))= d(A,B)

d(x∗1 ,F(x1, y0))= d(A,B)

 =⇒ x1 ≤ x∗1 . (1.4)

Analogously, using F is proximal mixed monotone (In particular F is proximally non increasing
in y) to (1.2) and (1.3), we get

y1 ≤ y0

d(x2,F(x1, y1))= d(A,B)

d(x∗1 ,F(x1, y0))= d(A,B)

 =⇒ x∗1 ≤ x2. (1.5)

From (1.4) and (1.5), one can conclude the x1 ≤ x2. Hence the proof.

Lemma 1.5. Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty subsets of
X . Assume A0 is nonempty. A mapping F : A× A → B has proximal mixed monotone property
with F(A0 × A0)⊆ B0 whenever x0, x1, y0, y1, y2 in A0 such that
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x0 ≤ x1 and y0 ≥ y1

d(y1,F(y0, x0))= d(A,B)

d(y2,F(y1, x1))= d(A,B)

 =⇒ y1 ≥ y2. (1.6)

Proof. The proof is same as the Lemma 1.4.

In 2014, A.H. Ansari [4] introduced the concept of C-class functions which cover a large
class of contractive conditions.

Definition 1.6 ( [4]). A continuous function f : [0,∞)2 →R is called C-class function if for any
s, t ∈ [0,∞), the following conditions hold:

(1) f (s, t)≤ s;

(2) f (s, t)= s implies that either s = 0 or t = 0.

An extra condition on f that f (0,0)= 0 could be imposed in some cases if required. The letter
C will denote the class of all C- functions.

Example 1.7 ( [4]). Following examples show that the class C is nonempty:

(i) f (s, t)= s− t.

(ii) f (s, t)= ms.

(iii) f (s, t)= s
(1+t)r for some r ∈ (0,∞).

(iv) f (s, t)= log(t+as)/(1+ t), for some a > 1.

(v) f (s, t)= ln(1+as)/2, for a > e. Indeed f (s, t)= s implies that s = 0.

(vi) f (s, t)= (s+ l)(1/(1+t)r) − l, l > 1, for r ∈ (0,∞).

(vii) f (s, t)= s logt+a a, for a > 1.

(viii) f (s, t)= s− (1+s
2+s )( t

1+t ).

(ix) f (s, t)= sβ(s), where β : [0,∞)→ [0,1) is continuous.

(x) f (s, t)= s− t
k+t .

(xi) f (s, t)= s−ϕ(s), where ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(t)= 0 if and
only if t = 0.

(xii) f (s, t) = sh(s, t), where h : [0,∞)× [0,∞) → [0,∞) is a continuous function such that
h(t, s)< 1 for all t, s > 0.

(xiii) f (s, t)= s− (2+t
1+t )t.

(xiv) f (s, t)= npln(1+ sn).

(xv) f (s, t) = φ(s), where φ : [0,∞) → [0,∞) is a upper semicontinuous function such that
φ(0)= 0 and φ(t)< t for t > 0.

(xvi) f (s, t)= s
(1+s)r ; r ∈ (0,∞).

Definition 1.8 ( [14]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the
following properties are satisfied:
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(i) ψ is non-decreasing and continuous;

(ii) ψ (t)= 0 if and only if t = 0.

Definition 1.9. An ultra altering distance function is a continuous, non-decreasing mapping
ϕ : [0,∞)→ [0,∞) such that ϕ(t)> 0, t > 0 and ϕ(0)= 0.

We denote Φu set ultra altering distance functions.
Let Φs denote the class of the functions ϕ : [0,∞) → [0,∞) which satisfy the following

conditions:

(a) ϕ lower semicontinuous;

(b) ϕ(t)> 0, t > 0 and ϕ(0)= 0.

Lemma 1.10 ( [6]). Suppose (X ,d) is a metric space. Let {xn} be a sequence in X such that
d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and
sequences of positive integers {m(k)} and {n(k)} with m(k)> n(k)> k such that d(xm(k), xn(k))≥ ε,
d(xm(k)−1, xn(k))< ε and

(i) lim
k→∞

d(xm(k)−1, xn(k)+1)= ε;

(ii) lim
k→∞

d(xm(k), xn(k))= ε;
(iii) lim

k→∞
d(xm(k)−1, xn(k))= ε.

Remark 1.11. We note that also can see lim
k→∞

d(xm(k)+1, xn(k)+1)= ε and lim
k→∞

d(xm(k), xn(k)−1)= ε.

Definition 1.12. Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty
subsets of X . A mapping F : A×A → B is said to be proximally coupled weak (ψ,φ, f ) contraction
on A, whenever

x1 ≤ x2 and y1 ≥ y2

d(u1,F(x1, y1))= d(A,B)

d(u2,F(x2, y2))= d(A,B)


=⇒ φ(d(u1,u2))≤ 1

2
f
(
φ(d(x1, x2)+d(y1, y2)),ψ

(
d(x1, x2)+d(y1, y2)

2

))
(1.7)

where x1, x2, y1, y2,u1,u2 ∈ A.

Definition 1.13 ( [18]). Let (X ,d,≤) be a partially ordered metric space and A, B are nonempty
subsets of X . A mapping F : A× A → B is said to be proximally coupled weak (ψ,φ) contraction
on A, whenever

x1 ≤ x2 and y1 ≥ y2

d(u1,F(x1, y1))= d(A,B)

d(u2,F(x2, y2))= d(A,B)


=⇒ φ(d(u1,u2))≤ 1

2
φ(d(x1, x2)+d(y1, y2))−ψ

(
d(x1, x2)+d(y1, y2)

2

)
(1.8)

where x1, x2, y1, y2,u1,u2 ∈ A.
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Remark 1.14. With note to a−2b < a− b, for f (s, t) = s− t, Definition 1.12 stronger than
Definition 1.13.

One can see that, if A = B in the above definition, the notion of proximally coupled weak
(ψ,φ) contraction on A reduces to that of coupled weak (ψ,φ) contraction. Let us recall a notion
of P-property: The pair (A,B) of nonempty subsets of a metric space (X ,d) with A0 6= ;. is said
to have the P-property if and only if

d(x1, y1)= d(A,B)

d(x2, y2)= d(A,B)

}
=⇒ (d(x1, x2)= d(y1, y2)) (1.9)

where x1, x2 ∈ A0 and y1, y2 ∈ B0. It is interesting to note that if the pair (A,B) considered
in above definition has the P-property, then the mapping F in Theorem 1.2 satisfies the
inequality (1.1).

2. Coupled Best Proximity Point Theorems
Let (X ,d,≤) be a partially ordered complete metric space endowed with the product space X ×X
with the following partial order:

for (x, y), (u,v) ∈ X × X , (u,v)≤ (x, y)⇔ x ≥ u, y≤ v.

Theorem 2.1. Let (X ,≤,d) be a partially ordered complete metric space. Let A and B be non-
empty closed subsets of the metric space (X ,d) such that A0 6= ;. Let F : A× A → B satisfy the
following conditions.

(i) F is a continuous proximally coupled weak (ψ,φ, f ) contraction on A having the proximal
mixed monotone property on A such that F(A0 × A0)⊆ B0.

(ii) There exist elements (x0, y0) and (x1, y1) in A0 × A0 such that

d(x1,F(x0, y0))= d(A,B) with x0 ≤ x1 and d(y1,F(y0, x0))= d(A,B) with y0 ≥ y1.

Then there exist (x, y) ∈ A× A such that d(x,F(x, y))= d(A,B) and d(y,F(y, x))= d(A,B).

Proof. By hypothesis there exist elements (x0, y0) and (x1, y1) in A0 × A0 such that

d(x1,F(x0, y0))= d(A,B) with x0 ≤ x1 and d(y1,F(y0, x0))= d(A,B) with y0 ≥ y1.

Because of the fact that F(A0 × A0)⊆ B0, there exists an element (x2, y2) in A0 × A0 such that

d(x2,F(x1, y1)= d(A,B) and d(y2,F(y1, x1)= d(A,B).

Hence, by Lemma 1.4 and Lemma 1.5, we obtain x1 ≤ x2 and y1 ≥ y2.
Continuing this process, we can construct the sequences (xn) and (yn) in A0 such that

d(xn+1,F(xn, yn))= d(A,B), ∀ n ∈N (2.1)

with x0 ≤ x1 ≤ x2 ≤ ·· ·xn ≤ xn+1 · · · and

d(yn+1,F(yn, xn))= d(A,B), ∀ n ∈N (2.2)

with y0 ≥ y1 ≥ y2 ≥ ·· · yn ≥ yn+1 · · · .

Then d(xn,F(xn−1, yn−1))= d(A,B), d(xn+1,F(xn, yn))= d(A,B) and also we have

xn−1 ≤ xn, yn−1 ≥ yn, ∀ n ∈N.
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Now using that F is proximally coupled weak (ψ,φ) contraction on A we get,

φ(d(xn, xn+1))≤ 1
2

f
(
φ(d(xn−1, xn)+d(yn−1, yn)),ψ

(
d(xn−1, xn)+d(yn−1, yn)

2

))
, ∀ n ∈N. (2.3)

Similarly

φ(d(yn, yn+1))≤ 1
2

f
(
φ(d(yn−1, yn)+d(xn−1, xn)),ψ

(
d(yn−1, yn)+d(xn−1, xn)

2

))
, ∀ n ∈N. (2.4)

Adding (2.3) and (2.4), we get

φ(d(xn, xn+1))+φ(d(yn, yn+1))

≤ f
(
φ(d(xn−1, xn)+d(yn−1, yn)),ψ

(
d(xn−1, xn)+d(yn−1, yn)

2

))
. (2.5)

By the property (iii) of φ we have,

φ(d(xn, xn+1)+d(yn, yn+1))≤φ(d(xn, xn+1))+φ(d(yn, yn+1)). (2.6)

From (2.5) and (2.6), we get

φ(d(xn, xn+1)+d(yn, yn+1))

≤ f
(
φ(d(xn−1, xn)+d(yn−1, yn)),ψ

(
d(xn−1, xn)+d(yn−1, yn)

2

))
. (2.7)

Using the fact that φ is non-decreasing, we get

d(xn, xn+1)+d(yn, yn+1)≤ d(xn−1, xn)+d(yn−1, yn). (2.8)

Set δn = d(xn, xn+1)+d(yn, yn+1) then sequence (δn) is decreasing. Therefore, there is some δ≥ 0
such that

lim
n→∞δn = lim

n→∞[d(xn, xn+1)+d(yn, yn+1)]= δ. (2.9)

We shall show that δ= 0. Suppose, to the contrary, that δ> 0. Then taking the limit as n →∞
on both sides of (2.7) and have in mind that we suppose lim

t→r
ψ(t) > 0 for all r > 0 and φ is

continuous, we have

φ(δ)= lim
n→∞φ(δn)≤ lim

n→∞ f
(
φ(δn−1),ψ

(
δn−1

2

))
= f

(
φ(δ), lim

n→∞ψ
(
δn−1

2

))
≤φ(δ).

So φ(δ)= 0 or lim
n→∞ψ

(
δn−1

2

)
= 0, which is a contradiction. Thus δ= 0, that is

lim
n→∞δn = lim

n→∞[d(xn+1, xn)+d(yn+1, yn)]= 0. (2.10)

Now to prove that (xn) and (yn) are Cauchy sequence. Assume that at least one of the
sequences (xn) or (yn) is not a Cauchy sequence. This implies that lim

n,m→∞d(xn, xm) 9 0 or

lim
n,m→∞d(yn, ym)9 0, and, consequently,

lim
n,m→∞[d(xn, xm)+d(yn, ym)]9 0.

Then there exists ε > 0 for which we can find subsequences (xn(k)), (xm(k)) of (xn) and (yn(k)),
(ym(k)) of (yn) such that n(k) is smallest index for which n(k)> m(k)> k,

[d(xn(k), xm(k))+d(yn(k), ym(k))]≥ ε. (2.11)

This means that

d(xn(k)−1, xm(k))+d(yn(k)−1, ym(k))< ε. (2.12)
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Using (2.11), (2.12) and triangle inequality, we have

ε≤ rk := d(xn(k), xm(k))+d(yn(k), ym(k))

≤ d(xn(k), xn(k)−1)+d(xn(k)−1, xm(k))+d(yn(k), yn(k)−1)+d(yn(k)−1, ym(k))

≤ d(xn(k), xn(k)−1)+d(yn(k), yn(k)−1)+ε.
Letting k →∞ and using (2.10), we obtain

lim
k→∞

rk = lim
k→∞

[d(xn(k), xm(k))+d(yn(k), ym(k))]= ε. (2.13)

By the triangle inequality

rk = d(xn(k), xm(k))+d(yn(k), ym(k))

≤ d(xn(k), xn(k)+1)+d(xn(k)+1, xm(k)+1)+d(xm(k)+1, xm(k))

+d(yn(k), yn(k)+1)+d(yn(k)+1, ym(k)+1)+d(ym(k)+1, ym(k))

= δn(k) +δm(k) +d(xn(k)+1, xm(k)+1)+d(yn(k)+1, ym(k)+1).

Using the property of φ, we obtain

φ(rk)=φ(δn(k) +δm(k) +d(xn(k)+1, xm(k)+1)+d(yn(k)+1, ym(k)+1))

≤φ(δn(k))+φ(δm(k))+φ(d(xn(k)+1, xm(k)+1))+φ(d(yn(k)+1, ym(k)+1)). (2.14)

Since xn(k) ≥ xm(k) and yn(k) ≤ ym(k), using that F is proximally coupled weak (ψ,φ) contraction
on A we get,

φ(d(xn(k)+1, xm(k)+1))

≤ 1
2

f
(
φ(d(xn(k), xm(k))+d(yn(k), ym(k))),ψ

(
d(xn(k), xm(k))+d(yn(k), ym(k))

2

))
≤ 1

2
f
(
φ(rk),ψ

( rk

2

))
. (2.15)

Similarly, we also have

φ(d(ym(k)+1, yn(k)+1))

≤ 1
2

f
(
φ(d(ym(k), yn(k))+d(xm(k), xn(k))),ψ

(
d(ym(k), yn(k))+d(xm(k), xn(k))

2

))
≤ 1

2
f
(
φ(rk),ψ

( rk

2

))
. (2.16)

From (2.14)-(2.16), we have

φ(rk)≤φ(δn(k) +δm(k))+ f
(
φ(rk),ψ

( rk

2

))
.

Letting k →∞ and using (2.10) and (2.13), we have

φ(ε)≤φ(0)+ f
(
φ(ε), lim

k→∞
ψ

( rk

2

))
= f

(
φ(ε), lim

k→∞
ψ

( rk

2

))
so, φ(ε)= 0, lim

k→∞
ψ( rk

2 )= 0 a contradiction. This shows that (xn) and (yn) are Cauchy sequences.

Since A is closed subset of a complete metric space X , these sequences have limits. Thus, there
exists x, y ∈ A such that xn → x and yn → y. Therefore (xn, yn) → (x, y) in A × A. Since F is
continuous, we have F(xn, yn)→ F(x, y) and F(yn, xn)→ F(y, x).

Hence the continuity of the metric function d implies that d(xn+1,F(xn, yn))→ d(x,F(x, y))
and d(yn+1,F(yn, xn))→ d(y,F(y, x)). But from equations (2.1) and (2.2) we get, the sequences
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(d(xn+1,F(xn, yn))) and (d(yn+1,F(yn, xn))) are constant sequences with the value d(A,B).
Therefore, d(x,F(x, y)) = d(A,B) and d(y,F(y, x)) = d(A,B). This completes the proof of the
theorem.

Corollary 2.2. Let (X ,≤,d) be a partially ordered complete metric space. Let A be non-empty
closed subsets of the metric space (X ,d). Let F : A× A → A satisfy the following conditions.

(i) F is continuous having the proximal mixed monotone property and proximally coupled
weak (ψ,φ) contraction on A.

(ii) There exist (x0, y0) and (x1, y1) in A × A such that x1 = F(x0, y0) with x0 ≤ x1 and
y1 = F(y0, x0) with y0 ≥ y1.

Then there exist (x, y) ∈ A× A such that d(x,F(x, y))= 0 and d(y,F(y, x))= 0.

In what follows we prove that Theorem 2.1 is still valid for F not necessarily continuous,
assuming the following hypothesis in A. A has the property that

(xn) is a non-decreasing sequence in A such that xn → x, then xn ≤ x. (2.17)

(yn) is a non-increasing sequence in A such that yn → y, then y≤ yn. (2.18)

Theorem 2.3. Assume the condition (2.17), (2.18) and A0 is closed in X instead of continuity of
F in the Theorem 2.1, then the conclusion of Theorem 2.1 holds.

Proof. Following the proof of Theorem 2.1, there exist sequences (xn) and (yn) in A satisfying
the following conditions:

d(xn+1,F(xn, yn))= d(A,B) with xn ≤ xn+1, ∀ n ∈N and (2.19)

d(yn+1,F(yn, xn))= d(A,B) with yn ≥ yn+1, ∀ n ∈N. (2.20)

Moreover, xn converges to x and yn converges to y in A. From (2.17) and (2.18), we get xn ≤ x
and yn ≥ y. Note that the sequences (xn) and (yn) are in A0 and A0 is closed. Therefore,
(x, y) ∈ A0×A0. Since F(A0×A0)⊆ B0, there exists F(x, y) and F(y, x) are in B0. Therefore, there
exists (x∗, y∗) ∈ A0 × A0 such that

d(x∗,F(x, y))= d(A,B) and (2.21)

d(y∗,F(y, x))= d(A,B). (2.22)

Since xn ≤ x and yn ≥ y. By using F is proximally coupled weak (ψ,φ) contraction on A for
(2.19) and (2.21) also for (2.22) and (2.20), we get

φ(d(xn+1, x∗))≤ 1
2

f
(
φ(d(xn, x)+d(yn, y)),ψ

(
d(xn, x)+d(yn, y)

2

))
, for all n and

φ(d(y∗, yn+1))≤ 1
2

f
(
φ(d(y, yn)+d(x, xn)),ψ

(
d(y, yn)+d(x, xn)

2

))
, for all n.

Since xn → x and yn → y, by taking limit on the above two inequality, we get x = x∗ and y= y∗.
Hence form (2.21) and (2.22), we get d(x,F(x, y))= d(A,B) and d(y,F(y, x))= d(A,B).

Corollary 2.4. Assume the condition (2.17) and (2.18) instead of continuity of F in the
Corollary 2.2, then the conclusion of Corollary 2.2 holds.
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Now, we present an example where it can be appreciated that hypotheses in Theorem 2.1
and Theorem 2.3 do not guarantee uniqueness of the coupled best proximity point.

Example 2.5. Let X = {(0,1), (1,0), (−1,0), (0,−1)} ⊂ R2 and consider the usual order (x, y) ¹
(z, t)⇔ x ≤ z and y≤ t.

Thus, (X ,¹) is a partially ordered set. Besides, (X ,d2) is a complete metric space considering
d2 the euclidean metric. Let A = {(0,1), (1,0)} and B = {(0,−1), (−1,0)} be a closed subset of X .
Then, d(A,B) = p

2, A = A0 and B = B0. Let F : A × A → B be defined as F((x1, x2), (y1, y2)) =
(−x2,−x1). Then, it can be seen that F is continuous such that F(A0 × A0) ⊆ B0. The only
comparable pairs of points in A are x ¹ x for x ∈ A, hence proximal mixed monotone property
and proximally coupled weak (ψ,φ) contraction on A are satisfied trivially.

It can be shown that the other hypotheses of the theorem are also satisfied. However, F has
three coupled best proximity points ((0,1), (0,1)), ((0,1), (1,0)) and ((1,0), (1,0)).

One can prove that the coupled best proximity point is in fact unique, provided that the
product space A×A endowed with the partial order mentioned earlier has the following property:

every pair of elements has either a lower bound or an upper bound. (2.23)

It is known that this condition is equivalent to:
for every pair of (x, y), (x∗, y∗) ∈ A× A, there exists (z1, z2) in A× A,

that is comparable to (x, y) and (x∗, y∗). (2.24)

Theorem 2.6. In addition to the hypothesis of Theorem 2.1 (resp. Theorem 2.3), suppose that for
any two elements (x, y) and (x∗, y∗) in A0 × A0,

there exists (z1, z2) ∈ A0 × A0 such that (z1, z2) is comparable to (x, y) and (x∗, y∗) (2.25)

then F has a unique coupled best proximity point.

Proof. From Theorem 2.1 (resp. Theorem 2.3), the set of coupled best proximity points of F is
non-empty. Suppose that there exist (x, y) and (x∗, y∗) in A×A which are coupled best proximity
points. That is,

d(x,F(x, y))= d(A,B),d(y,F(y, x))= d(A,B) and

d(x∗,F(x∗, y∗))= d(A,B),d(y∗,F(y∗, x∗))= d(A,B).

We distinguish two cases.

Case 1: Suppose (x, y) is comparable. Let (x, y) is comparable to (x∗, y∗) with respect to
the ordering in A × A. Apply F is proximally coupled weak (ψ,φ) contraction on A to
d(x,F(x, y))= d(A,B) and d(x∗,F(x∗, y∗))= d(A,B), we get

φ(d(x, x∗))≤ 1
2

f
(
φ(d(x, x∗)+d(y, y∗)),ψ

(
d(x, x∗)+d(y, y∗)

2

))
. (2.26)

Similarly, one can prove that

φ(d(y, y∗))≤ 1
2

f
(
φ(d(y, y∗)+d(x, x∗)),ψ

(
d(y, y∗)+d(x, x∗)

2

))
. (2.27)
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Adding (2.26) and (2.27), we get

φ(d(x, x∗))+φ(d(y, y∗))≤ f
(
φ(d(x, x∗)+d(y, y∗)),ψ

(
d(x, x∗)+d(y, y∗)

2

))
. (2.28)

By the property (iii) of φ, we have

φ(d(x, x∗)+d(y, y∗))≤φ(d(x, x∗))+φ(d(y, y∗)). (2.29)

From (2.28) and (2.29), we have

φ(d(x, x∗)+d(y, y∗))≤ f
(
φ(d(x, x∗)+d(y, y∗)),ψ

(
d(x, x∗)+d(y, y∗)

2

))
(2.30)

this implies that φ(d(x, x∗)+d(y, y∗))= 0, or ψ
(

d(x,x∗)+d(y,y∗)
2

)
= 0 and using the property of φ,

ψ, we get d(x, x∗)+d(y, y∗)= 0, hence x = x∗ and y= y∗.

Case 2: Suppose (x, y) is not comparable. Let (x, y) is not comparable to (x∗, y∗), then there
exists (u1,v1) ∈ A0 × A0 which is comparable to (x, y) and (x∗, y∗).

Since F(A0 × A0) ⊆ B0, there exists (u2,v2) ∈ A0 × A0 such that d(u2,F(u1,v1)) = d(A,B)
and d(v2,F(v1,u1)) = d(A,B). With out loss of generality assume that (u1,v1) ≤ (x, y)( i.e., x ≥
u1 and y ≤ v1.) Note that (u1,v1) ≤ (x, y) implies that (y, x) ≤ (v1,u1). From Lemma 1.4 and
Lemma 1.5, we get

u1 ≤ x and v1 ≥ y

d(u2,F(u1,v1))= d(A,B)

d(x,F(x, y))= d(A,B)

 =⇒ u2 ≤ x

and
u1 ≤ x and v1 ≥ y

d(v2,F(v1,u1))= d(A,B)

d(y,F(y, x))= d(A,B)

 =⇒ v2 ≥ y.

From the above two inequalities, we obtain (u2,v2) ≤ (x, y). Continuing this process, we get
sequences (un) and (vn) such that d(un+1,F(un,vn)) = d(A,B) and d(vn+1,F(vn,un)) = d(A,B)
with (un,vn)≤ (x, y) ∀ n ∈N. By using that F is a proximally coupled weak (ψ,φ) contraction on
A, we get

un ≤ x and vn ≥ y

d(un+1,F(un,vn))= d(A,B)

d(x,F(x, y))= d(A,B)


=⇒ φ(d(un+1, x))≤ 1

2
f
(
φ(d(un, x)+d(vn, y)),ψ

(
d(un, x)+d(vn, y)

2

))
. (2.31)

Similarly, we can prove that

y≤ vn and x ≥ un

d(y,F(y, x))= d(A,B)

d(vn+1,F(vn,un))= d(A,B)


=⇒ φ(d(y,vn+1))≤ 1

2
f
(
φ(d(y,vn)+d(x,un)),ψ

(
d(y,vn)+d(x,un)

2

))
. (2.32)
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Adding (2.31) and (2.32), we obtain

φ(d(un+1, x))+φ(d(y,vn+1))≤ f
(
φ(d(un, x)+d(vn, y)),ψ

(
d(un, x)+d(vn, y)

2

))
. (2.33)

But φ(d(un+1, x)+d(y,vn+1))≤φ(d(un+1, x))+φ(d(y,vn+1)), hence

φ(d(un+1, x)+d(y,vn+1))≤ f
(
φ(d(un, x)+d(vn, y)),ψ

(
d(un, x)+d(vn, y)

2

))
(2.34)

≤φ(d(un, x)+d(vn, y)).

Using the fact that φ is non-decreasing, we get

d(un+1, x)+d(y,vn+1)≤ d(un, x)+d(vn, y). (2.35)

That is, the sequence (d(un, x)+d(y,vn)) is decreasing. Therefore, there exists α≥ 0 such that

lim
n→∞[d(un, x)+d(y,vn)]=α. (2.36)

We shall show that α= 0. Suppose, to the contrary, that α> 0. Taking the limit as n →∞ in
(2.34), we have

φ(α)≤ f
(
φ(α), lim

n→∞ψ
(

d(un, x)+d(vn, y)
2

))
.

So, φ(α)= 0, lim
n→∞ψ

(
d(un,x)+d(vn,y)

2

)
= 0, a contradiction. Thus, α= 0, that is,

lim
n→∞[d(un, x)+d(y,vn)]= 0 (2.37)

so that un → x and vn → y. Analogously, one can prove that un → x∗ and vn → y∗.
Therefore, x = x∗ and y= y∗. Hence the proof.

The following result, due to Theorem 2.6 in Nguyen Van Luong and Nguyen Xuan Thuan [22]
by taking A = B.

Corollary 2.7. In addition to the hypothesis of Corollary 2.2 (resp. Corollary 2.4), suppose that
for any two elements (x, y) and (x∗, y∗) in A× A,

there exists (z1, z2) ∈ A× A such that (z1, z2) is comparable to (x, y) and (x∗, y∗) (2.38)

then F has a unique coupled fixed point.
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