Special Issue on

Advances in Fixed Point Theory towards Real World Optimization Problems Proceedings of The 9th Asian Conference on Fixed Point Theory and Optimization May 18-20, 2016, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

Coupled Best Proximity Points under the Proximally Coupled Contraction in a Complete Ordered Metric Space

Poom Kumam ${ }^{1,2}$, Arslan Hojat Ansari ${ }^{3}$ and Kanokwan Sitthithakerngkiet ${ }^{4, *}$
${ }^{1}$ Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
${ }^{2}$ Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT) 126, Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
${ }^{3}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
${ }^{4}$ Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue, Bangkok, 10800, Thailand
*Corresponding author: kanokwan.s@sci.kmutnb.ac.th

Abstract

In this paper, we prove the existence and uniqueness of a coupled best proximity point for mappings satisfying the proximally coupled contraction condition in a complete ordered metric space. Further, our result provides an extension of a result due to Luong and Thuan (Comput. Math. Appl. 62 (11) (2011), 4238-4248, Nonlinear Anal. 74 (2011), 983-992.

Keywords. Common fixed point; Generalized weakly G-contraction; GP-metric space; Partially ordered set; Weakly increasing mapping
MSC. 46N40; 47H10; 54H25; 46T99

Received: July, 32016
Revised: July 14, 2016
Accepted: July 23, 2016

[^0]
1. Introduction and Mathematical Preliminaries

Let A be a nonempty subset of a metric space (X, d). A mapping $T: A \rightarrow X$ has a fixed point in A if the fixed point equation $T x=x$ has at least one solution. That is, $x \in A$ is a fixed point of T if $d(x, T x)=0$. If the fixed point equation $T x=x$ does not possess a solution, then $d(x, T x)>0$ for all $x \in A$. In such a situation, it is our aim to find an element $x \in A$ such that $d(x, T x)$ is minimum in some sense. The best approximation theory and best proximity pair theorems are studied in this direction. Here we state the following well-known best approximation theorem due to Ky Fan [9].

Theorem 1.1 ([9]). Let A be a nonempty compact convex subset of a normed linear space X and $T: A \rightarrow X$ be a continuous function. Then there exists $x \in A$ such that $\|x-T x\|=d(T x, A):=$ $\inf \{\|T x-a\|: a \in A\}$.

Such an element $x \in A$ in Theorem 1.1 is called a best approximant of T in A. Note that if $x \in A$ is a best approximant, then $\|x-T x\|$ need not be the optimum. Best proximity point theorems have been explored to find sufficient conditions so that the minimization problem $\min _{x \in A}\|x-T x\|$ has at least one solution. To have a concrete lower bound, let us consider two nonempty subsets A, B of a metric space X and a mapping $T: A \rightarrow B$. The natural question is whether one can find an element $x_{0} \in A$ such that $d\left(x_{0}, T x_{0}\right)=\min \{d(x, T x): x \in A\}$. Since $d(x, T x) \geq d(A, B)$, the optimal solution to the problem of minimizing the real valued function $x \rightarrow d(x, T x)$ over the domain A of the mapping T will be the one for which the value $d(A, B)$ is attained. A point $x_{0} \in A$ is called a best proximity point of T if $d\left(x_{0}, T x_{0}\right)=d(A, B)$. Note that if $d(A, B)=0$, then the best proximity point is nothing but a fixed point of T. Also, best proximity point theory in ordered metric spaces was first studied in [1].

The existence and convergence of best proximity points is an interesting topic of optimization theory which recently attracted the attention of many authors [3, 5, 8, 13, 15-17, 24-27]. Also one can find the existence of best proximity point in the setting of partially order metric space in [2, 7, 23, 28].

On the other hand, Bhaskar and Lakshmikantham were introduced the concept called mixed monotone mapping and proved coupled fixed point theorems for mappings satisfying the mixed monotone property which is used to investigate a large class of problems and discussed the existence and uniqueness of a solution for a periodic boundary value problem. One can find the existence of coupled fixed points in the setting of partially order metric space in [10-12, 19-21, 29].

Now we recall the definition of coupled fixed point which was introduced by Sintunavarat and Kumam in [28]. Let X be a non-empty set and $F: X \times X \rightarrow X$ be a given mapping. An element $(x, y) \in X \times X$ is called a coupled fixed point of the mapping F if $F(x, y)=x$ and $F(y, x)=y$.

The authors mentioned above also introduced the notion of mixed monotone mapping. If (X, \leq) is a partially ordered set, the mapping F is said to have the mixed monotone property if

$$
x_{1}, x_{2} \in X, x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right), \quad \forall y \in X
$$

and

$$
y_{1}, y_{2} \in X, y_{1} \leq y_{2} \Rightarrow F\left(x, y_{1}\right) \geq F\left(x, y_{2}\right), \quad \forall x \in X
$$

In [22], Luong and Thuan obtained a more general result. For this, let Φ denote all functions $\phi:[0, \infty) \rightarrow[0, \infty)$ which satisfy
(i) ϕ is continuous and non-decreasing;
(ii) $\phi(t)=0$ if and only if $t=0$;
(iii) $\phi(t+s) \leq \phi(t)+\phi(s), \forall t, s \in(0, \infty]$.

Again, let Ψ denote all functions $\psi:(0, \infty] \rightarrow(0, \infty]$ which satisfy $\lim _{t \rightarrow r} \psi(t)>0$ for all $r>0$ and $\lim _{t \rightarrow 0^{+}} \psi(t)=0$.

The main theoretical results of Nguyen Van Luong and Nguyen Xuan Thuan, in [22] is the following.

Theorem $1.2([\mid 22])$. Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be mapping having the mixed monotone property on X such that

$$
\begin{equation*}
\phi(d(F(x, y), F(u, v))) \leq \frac{1}{2} \phi(d(x, u)+d(y, v))-\psi\left(\frac{d(x, u)+d(y, v)}{2}\right), \tag{1.1}
\end{equation*}
$$

for all $x, y, u, v \in X$ with $x \geq u$ and $y \leq v$, where $\psi \in \Psi$ and $\phi \in \Phi$. If there exist $x_{0}, y_{0} \in X$ such that $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $y_{0} \geq F\left(y_{0}, x_{0}\right)$. Suppose either
(a) F is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \leq x$ for all n,
(ii) if a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y \geq y_{n}$ for all n.

Then there exist $x, y \in X$ such that $F(x, y)=x$ and $F(y, x)=y$.
Motivated by the above theorems, we introduce the concept of proximal mixed monotone property and proximally coupled weak (ψ, ϕ) contraction on A. We also explore the existence and uniqueness of coupled best proximity points in the setting of partially ordered metric spaces. Further, we attempt to give the generalization of Theorem 1.2 .

Let X be a non-empty set such that (X, d) is a metric space. Unless otherwise specified, it is assumed throughout this section that A and B are non-empty subsets of the metric space (X, d), the following notions are used subsequently:

$$
\begin{aligned}
& d(A, B):=\inf \{d(x, y): x \in A \text { and } y \in B\}, \\
& A_{0}=\{x \in A: d(x, y)=d(A, B) \text { for some } y \in B\}, \\
& B_{0}=\{y \in B: d(x, y)=d(A, B) \text { for some } x \in A\} .
\end{aligned}
$$

In [16], the authors discussed sufficient conditions which guarantee the non-emptiness of A_{0} and B_{0}. Also, in [8], the authors proved that A_{0} is contained in the boundary of A. Moreover, the authors proved that A_{0} is contained in the boundary of A in the setting of normed linear spaces.

Definition 1.3. Let (X, d, \leq) be a partially ordered metric space and A, B are nonempty subsets of X. A mapping $F: A \times A \rightarrow B$ is said to have proximal mixed monotone property if $F(x, y)$ is proximally nondecreasing in x and is proximally non-increasing in y, that is, for all $x, y \in A$.

$$
\left.\begin{array}{r}
x_{1} \leq x_{2} \\
d\left(u_{1}, F\left(x_{1}, y\right)\right)=d(A, B) \\
d\left(u_{2}, F\left(x_{2}, y\right)\right)=d(A, B)
\end{array}\right\} \Longrightarrow u_{1} \leq u_{2}
$$

and

$$
\left.\begin{array}{r}
y_{1} \leq y_{2} \\
d\left(u_{3}, F\left(x, y_{1}\right)\right)=d(A, B) \\
d\left(u_{4}, F\left(x, y_{2}\right)\right)=d(A, B)
\end{array}\right\} \Longrightarrow u_{4} \leq u_{3}
$$

where $x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, u_{3}, u_{4} \in A$.
One can see that, if $A=B$ in the above definition, the notion of proximal mixed monotone property reduces to that of mixed monotone property.

Lemma 1.4. Let (X, d, \leq) be a partially ordered metric space and A, B are nonempty subsets of X. Assume A_{0} is nonempty. A mapping $F: A \times A \rightarrow B$ has proximal mixed monotone property with $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$ whenever $x_{0}, x_{1}, x_{2}, y_{0}, y_{1}$ in A_{0} such that

$$
\left.\begin{array}{r}
x_{0} \leq x_{1} \text { and } y_{0} \geq y_{1} \tag{1.2}\\
d\left(x_{1}, F\left(x_{0}, y_{0}\right)\right)=d(A, B) \\
d\left(x_{2}, F\left(x_{1}, y_{1}\right)\right)=d(A, B)
\end{array}\right\} \Rightarrow x_{1} \leq x_{2} .
$$

Proof. By hypothesis $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$, therefore $F\left(x_{1}, y_{0}\right) \in B_{0}$. Hence there exists $x_{1}^{*} \in A$ such that

$$
\begin{equation*}
d\left(x_{1}^{*}, F\left(x_{1}, y_{0}\right)\right)=d(A, B) . \tag{1.3}
\end{equation*}
$$

Using F is proximal mixed monotone (In particular F is proximally non decreasing in x) to (1.2) and (1.3), we get

$$
\left.\begin{array}{r}
x_{0} \leq x_{1} \tag{1.4}\\
d\left(x_{1}, F\left(x_{0}, y_{0}\right)\right)=d(A, B) \\
d\left(x_{1}^{*}, F\left(x_{1}, y_{0}\right)\right)=d(A, B)
\end{array}\right\} \Rightarrow x_{1} \leq x_{1}^{*} .
$$

Analogously, using F is proximal mixed monotone (In particular F is proximally non increasing in y) to (1.2) and (1.3), we get

$$
\left.\begin{array}{r}
y_{1} \leq y_{0} \tag{1.5}\\
d\left(x_{2}, F\left(x_{1}, y_{1}\right)\right)=d(A, B) \\
d\left(x_{1}^{*}, F\left(x_{1}, y_{0}\right)\right)=d(A, B)
\end{array}\right\} \Longrightarrow x_{1}^{*} \leq x_{2} .
$$

From (1.4) and (1.5), one can conclude the $x_{1} \leq x_{2}$. Hence the proof.
Lemma 1.5. Let (X, d, \leq) be a partially ordered metric space and A, B are nonempty subsets of X. Assume A_{0} is nonempty. A mapping $F: A \times A \rightarrow B$ has proximal mixed monotone property with $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$ whenever $x_{0}, x_{1}, y_{0}, y_{1}, y_{2}$ in A_{0} such that

$$
\left.\begin{array}{r}
x_{0} \leq x_{1} \text { and } y_{0} \geq y_{1} \tag{1.6}\\
d\left(y_{1}, F\left(y_{0}, x_{0}\right)\right)=d(A, B) \\
d\left(y_{2}, F\left(y_{1}, x_{1}\right)\right)=d(A, B)
\end{array}\right\} \Rightarrow y_{1} \geq y_{2} .
$$

Proof. The proof is same as the Lemma 1.4 .
In 2014, A.H. Ansari [4] introduced the concept of C-class functions which cover a large class of contractive conditions.

Definition 1.6 ([4]). A continuous function $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if for any $s, t \in[0, \infty)$, the following conditions hold:
(1) $f(s, t) \leq s$;
(2) $f(s, t)=s$ implies that either $s=0$ or $t=0$.

An extra condition on f that $f(0,0)=0$ could be imposed in some cases if required. The letter \mathscr{C} will denote the class of all C-functions.

Example 1.7 ([4]). Following examples show that the class \mathscr{C} is nonempty:
(i) $f(s, t)=s-t$.
(ii) $f(s, t)=m s$.
(iii) $f(s, t)=\frac{s}{(1+t)^{r}}$ for some $r \in(0, \infty)$.
(iv) $f(s, t)=\log \left(t+a^{s}\right) /(1+t)$, for some $a>1$.
(v) $f(s, t)=\ln \left(1+a^{s}\right) / 2$, for $a>e$. Indeed $f(s, t)=s$ implies that $s=0$.
(vi) $f(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1$, for $r \in(0, \infty)$.
(vii) $f(s, t)=s \log _{t+a} a$, for $a>1$.
(viii) $f(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right)$.
(ix) $f(s, t)=s \beta(s)$, where $\beta:[0, \infty) \rightarrow[0,1)$ is continuous.
(x) $f(s, t)=s-\frac{t}{k+t}$.
(xi) $f(s, t)=s-\varphi(s)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0$ if and only if $t=0$.
(xii) $f(s, t)=\operatorname{sh}(s, t)$, where $h:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $h(t, s)<1$ for all $t, s>0$.
(xiii) $f(s, t)=s-\left(\frac{2+t}{1+t}\right) t$.
(xiv) $f(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}$.
(xv) $f(s, t)=\phi(s)$, where $\phi:[0, \infty) \rightarrow[0, \infty)$ is a upper semicontinuous function such that $\phi(0)=0$ and $\phi(t)<t$ for $t>0$.
(xvi) $f(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty)$.

Definition 1.8 ([14$]$). A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(i) ψ is non-decreasing and continuous;
(ii) $\psi(t)=0$ if and only if $t=0$.

Definition 1.9. An ultra altering distance function is a continuous, non-decreasing mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)>0, t>0$ and $\varphi(0)=0$.

We denote Φ_{u} set ultra altering distance functions.
Let Φ_{s} denote the class of the functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ which satisfy the following conditions:
(a) φ lower semicontinuous;
(b) $\varphi(t)>0, t>0$ and $\varphi(0)=0$.

Lemma 1.10 ([6]). Suppose (X, d) is a metric space. Let $\left\{x_{n}\right\}$ be a sequence in X such that $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exist an $\varepsilon>0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with $m(k)>n(k)>k$ such that $d\left(x_{m(k)}, x_{n(k)}\right) \geq \varepsilon$, $d\left(x_{m(k)-1}, x_{n(k)}\right)<\varepsilon$ and
(i) $\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)+1}\right)=\varepsilon$;
(ii) $\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)}\right)=\varepsilon$;
(iii) $\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}\right)=\varepsilon$.

Remark 1.11. We note that also can see $\lim _{k \rightarrow \infty} d\left(x_{m(k)+1}, x_{n(k)+1}\right)=\varepsilon$ and $\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)-1}\right)=\varepsilon$.
Definition 1.12. Let (X, d, \leq) be a partially ordered metric space and A, B are nonempty subsets of X. A mapping $F: A \times A \rightarrow B$ is said to be proximally coupled weak (ψ, ϕ, f) contraction on A, whenever

$$
\left.\begin{array}{rl}
x_{1} \leq x_{2} \text { and } y_{1} \geq y_{2} \\
d\left(u_{1}, F\left(x_{1}, y_{1}\right)\right)=d(A, B) \tag{1.7}\\
d\left(u_{2}, F\left(x_{2}, y_{2}\right)\right)=d(A, B)
\end{array}\right\}
$$

where $x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2} \in A$.
Definition 1.13 ([18]). Let (X, d, \leq) be a partially ordered metric space and A, B are nonempty subsets of X. A mapping $F: A \times A \rightarrow B$ is said to be proximally coupled weak (ψ, ϕ) contraction on A, whenever

$$
\left.\begin{array}{rl}
x_{1} \leq x_{2} \text { and } y_{1} \geq y_{2} \\
d\left(u_{1}, F\left(x_{1}, y_{1}\right)\right)=d(A, B) \tag{1.8}\\
d\left(u_{2}, F\left(x_{2}, y_{2}\right)\right)=d(A, B)
\end{array}\right\}
$$

where $x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2} \in A$.

Remark 1.14. With note to $a-2 b<a-b$, for $f(s, t)=s-t$, Definition 1.12 stronger than Definition 1.13

One can see that, if $A=B$ in the above definition, the notion of proximally coupled weak (ψ, ϕ) contraction on A reduces to that of coupled weak ($\psi, \phi)$ contraction. Let us recall a notion of P-property: The pair (A, B) of nonempty subsets of a metric space (X, d) with $A_{0} \neq \varnothing$. is said to have the P-property if and only if

$$
\left.\begin{array}{l}
d\left(x_{1}, y_{1}\right)=d(A, B) \tag{1.9}\\
d\left(x_{2}, y_{2}\right)=d(A, B)
\end{array}\right\} \Longrightarrow\left(d\left(x_{1}, x_{2}\right)=d\left(y_{1}, y_{2}\right)\right)
$$

where $x_{1}, x_{2} \in A_{0}$ and $y_{1}, y_{2} \in B_{0}$. It is interesting to note that if the pair (A, B) considered in above definition has the P-property, then the mapping F in Theorem 1.2 satisfies the inequality (1.1).

2. Coupled Best Proximity Point Theorems

Let (X, d, \leq) be a partially ordered complete metric space endowed with the product space $X \times X$ with the following partial order:

$$
\text { for }(x, y),(u, v) \in X \times X, \quad(u, v) \leq(x, y) \Leftrightarrow x \geq u, y \leq v .
$$

Theorem 2.1. Let (X, \leq, d) be a partially ordered complete metric space. Let A and B be nonempty closed subsets of the metric space (X, d) such that $A_{0} \neq \varnothing$. Let $F: A \times A \rightarrow B$ satisfy the following conditions.
(i) F is a continuous proximally coupled weak (ψ, ϕ, f) contraction on A having the proximal mixed monotone property on A such that $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$.
(ii) There exist elements $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ in $A_{0} \times A_{0}$ such that

$$
d\left(x_{1}, F\left(x_{0}, y_{0}\right)\right)=d(A, B) \text { with } x_{0} \leq x_{1} \text { and } d\left(y_{1}, F\left(y_{0}, x_{0}\right)\right)=d(A, B) \text { with } y_{0} \geq y_{1} .
$$

Then there exist $(x, y) \in A \times A$ such that $d(x, F(x, y))=d(A, B)$ and $d(y, F(y, x))=d(A, B)$.
Proof. By hypothesis there exist elements (x_{0}, y_{0}) and (x_{1}, y_{1}) in $A_{0} \times A_{0}$ such that

$$
d\left(x_{1}, F\left(x_{0}, y_{0}\right)\right)=d(A, B) \text { with } x_{0} \leq x_{1} \text { and } d\left(y_{1}, F\left(y_{0}, x_{0}\right)\right)=d(A, B) \text { with } y_{0} \geq y_{1} .
$$

Because of the fact that $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$, there exists an element (x_{2}, y_{2}) in $A_{0} \times A_{0}$ such that

$$
d\left(x _ { 2 } , F (x _ { 1 } , y _ { 1 }) = d (A , B) \text { and } d \left(y_{2}, F\left(y_{1}, x_{1}\right)=d(A, B) .\right.\right.
$$

Hence, by Lemma 1.4 and Lemma 1.5, we obtain $x_{1} \leq x_{2}$ and $y_{1} \geq y_{2}$.
Continuing this process, we can construct the sequences $\left(x_{n}\right)$ and (y_{n}) in A_{0} such that

$$
\begin{align*}
& d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B), \forall n \in \mathbb{N} \tag{2.1}\\
& \quad \text { with } x_{0} \leq x_{1} \leq x_{2} \leq \cdots x_{n} \leq x_{n+1} \cdots \text { and } \\
& d\left(y_{n+1}, F\left(y_{n}, x_{n}\right)\right)=d(A, B), \forall n \in \mathbb{N} \tag{2.2}\\
& \quad \text { with } y_{0} \geq y_{1} \geq y_{2} \geq \cdots y_{n} \geq y_{n+1} \cdots .
\end{align*}
$$

Then $d\left(x_{n}, F\left(x_{n-1}, y_{n-1}\right)\right)=d(A, B), d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B)$ and also we have

$$
x_{n-1} \leq x_{n}, y_{n-1} \geq y_{n}, \forall n \in \mathbb{N}
$$

Now using that F is proximally coupled weak (ψ, ϕ) contraction on A we get,

$$
\begin{equation*}
\phi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \frac{1}{2} f\left(\phi\left(d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)\right), \psi\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)}{2}\right)\right), \forall n \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\phi\left(d\left(y_{n}, y_{n+1}\right)\right) \leq \frac{1}{2} f\left(\phi\left(d\left(y_{n-1}, y_{n}\right)+d\left(x_{n-1}, x_{n}\right)\right), \psi\left(\frac{d\left(y_{n-1}, y_{n}\right)+d\left(x_{n-1}, x_{n}\right)}{2}\right)\right), \forall n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

Adding (2.3) and (2.4), we get

$$
\begin{align*}
& \phi\left(d\left(x_{n}, x_{n+1}\right)\right)+\phi\left(d\left(y_{n}, y_{n+1}\right)\right) \\
& \quad \leq f\left(\phi\left(d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)\right), \psi\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)}{2}\right)\right) . \tag{2.5}
\end{align*}
$$

By the property (iii) of ϕ we have,

$$
\begin{equation*}
\phi\left(d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)\right) \leq \phi\left(d\left(x_{n}, x_{n+1}\right)\right)+\phi\left(d\left(y_{n}, y_{n+1}\right)\right) . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we get

$$
\begin{align*}
& \phi\left(d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)\right) \\
& \quad \leq f\left(\phi\left(d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)\right), \psi\left(\frac{d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)}{2}\right)\right) . \tag{2.7}
\end{align*}
$$

Using the fact that ϕ is non-decreasing, we get

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right) \leq d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right) . \tag{2.8}
\end{equation*}
$$

Set $\delta_{n}=d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)$ then sequence (δ_{n}) is decreasing. Therefore, there is some $\delta \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left[d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)\right]=\delta . \tag{2.9}
\end{equation*}
$$

We shall show that $\delta=0$. Suppose, to the contrary, that $\delta>0$. Then taking the limit as $n \rightarrow \infty$ on both sides of (2.7) and have in mind that we suppose $\lim _{t \rightarrow r} \psi(t)>0$ for all $r>0$ and ϕ is continuous, we have

$$
\phi(\delta)=\lim _{n \rightarrow \infty} \phi\left(\delta_{n}\right) \leq \lim _{n \rightarrow \infty} f\left(\phi\left(\delta_{n-1}\right), \psi\left(\frac{\delta_{n-1}}{2}\right)\right)=f\left(\phi(\delta), \lim _{n \rightarrow \infty} \psi\left(\frac{\delta_{n-1}}{2}\right)\right) \leq \phi(\delta) .
$$

So $\phi(\delta)=0$ or $\lim _{n \rightarrow \infty} \psi\left(\frac{\delta_{n-1}}{2}\right)=0$, which is a contradiction. Thus $\delta=0$, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left[d\left(x_{n+1}, x_{n}\right)+d\left(y_{n+1}, y_{n}\right)\right]=0 . \tag{2.10}
\end{equation*}
$$

Now to prove that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequence. Assume that at least one of the sequences $\left(x_{n}\right)$ or $\left(y_{n}\right)$ is not a Cauchy sequence. This implies that $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right) \nrightarrow 0$ or $\lim _{n, m \rightarrow \infty} d\left(y_{n}, y_{m}\right) \nrightarrow 0$, and, consequently,

$$
\lim _{n, m \rightarrow \infty}\left[d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)\right] \nrightarrow 0 .
$$

Then there exists $\epsilon>0$ for which we can find subsequences $\left(x_{n(k)}\right),\left(x_{m(k)}\right)$ of $\left(x_{n}\right)$ and $\left(y_{n(k)}\right)$, $\left(y_{m(k)}\right)$ of $\left(y_{n}\right)$ such that $n(k)$ is smallest index for which $n(k)>m(k)>k$,

$$
\begin{equation*}
\left[d\left(x_{n(k)}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{m(k)}\right)\right] \geq \epsilon . \tag{2.11}
\end{equation*}
$$

This means that

$$
\begin{equation*}
d\left(x_{n(k)-1}, x_{m(k)}\right)+d\left(y_{n(k)-1}, y_{m(k)}\right)<\epsilon . \tag{2.12}
\end{equation*}
$$

Using (2.11), (2.12) and triangle inequality, we have

$$
\begin{aligned}
\epsilon & \leq r_{k}:=d\left(x_{n(k)}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{m(k)}\right) \\
& \leq d\left(x_{n(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{n(k)-1}\right)+d\left(y_{n(k)-1}, y_{m(k)}\right) \\
& \leq d\left(x_{n(k)}, x_{n(k)-1}\right)+d\left(y_{n(k)}, y_{n(k)-1}\right)+\epsilon .
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using (2.10), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} r_{k}=\lim _{k \rightarrow \infty}\left[d\left(x_{n(k)}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{m(k)}\right)\right]=\epsilon . \tag{2.13}
\end{equation*}
$$

By the triangle inequality

$$
\begin{aligned}
r_{k}= & d\left(x_{n(k)}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{m(k)}\right) \\
& \leq d\left(x_{n(k)}, x_{n(k)+1}\right)+d\left(x_{n(k)+1}, x_{m(k)+1}\right)+d\left(x_{m(k)+1}, x_{m(k)}\right) \\
& +d\left(y_{n(k)}, y_{n(k)+1}\right)+d\left(y_{n(k)+1}, y_{m(k)+1}\right)+d\left(y_{m(k)+1}, y_{m(k)}\right) \\
= & \delta_{n(k)}+\delta_{m(k)}+d\left(x_{n(k)+1}, x_{m(k)+1}\right)+d\left(y_{n(k)+1}, y_{m(k)+1}\right) .
\end{aligned}
$$

Using the property of ϕ, we obtain

$$
\begin{align*}
\phi\left(r_{k}\right) & =\phi\left(\delta_{n(k)}+\delta_{m(k)}+d\left(x_{n(k)+1}, x_{m(k)+1}\right)+d\left(y_{n(k)+1}, y_{m(k)+1}\right)\right) \\
& \leq \phi\left(\delta_{n(k)}\right)+\phi\left(\delta_{m(k)}\right)+\phi\left(d\left(x_{n(k)+1}, x_{m(k)+1}\right)\right)+\phi\left(d\left(y_{n(k)+1}, y_{m(k)+1}\right)\right) . \tag{2.14}
\end{align*}
$$

Since $x_{n(k)} \geq x_{m(k)}$ and $y_{n(k)} \leq y_{m(k)}$, using that F is proximally coupled weak (ψ, ϕ) contraction on A we get,

$$
\begin{align*}
& \phi(\left.\left(x_{n(k)+1}, x_{m(k)+1}\right)\right) \\
& \quad \frac{1}{2} f\left(\phi\left(d\left(x_{n(k)}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{m(k)}\right)\right), \psi\left(\frac{d\left(x_{n(k)}, x_{m(k)}\right)+d\left(y_{n(k)}, y_{m(k)}\right)}{2}\right)\right) \\
& \quad \leq \frac{1}{2} f\left(\phi\left(r_{k}\right), \psi\left(\frac{r_{k}}{2}\right)\right) . \tag{2.15}
\end{align*}
$$

Similarly, we also have

$$
\begin{align*}
& \phi\left(d\left(y_{m(k)+1}, y_{n(k)+1}\right)\right) \\
& \quad \frac{1}{2} f\left(\phi\left(d\left(y_{m(k)}, y_{n(k)}\right)+d\left(x_{m(k)}, x_{n(k)}\right)\right), \psi\left(\frac{d\left(y_{m(k)}, y_{n(k)}\right)+d\left(x_{m(k)}, x_{n(k)}\right)}{2}\right)\right) \\
& \quad \leq \frac{1}{2} f\left(\phi\left(r_{k}\right), \psi\left(\frac{r_{k}}{2}\right)\right) . \tag{2.16}
\end{align*}
$$

From (2.14)-(2.16), we have

$$
\phi\left(r_{k}\right) \leq \phi\left(\delta_{n(k)}+\delta_{m(k)}\right)+f\left(\phi\left(r_{k}\right), \psi\left(\frac{r_{k}}{2}\right)\right) .
$$

Letting $k \rightarrow \infty$ and using (2.10) and (2.13), we have

$$
\phi(\epsilon) \leq \phi(0)+f\left(\phi(\epsilon), \lim _{k \rightarrow \infty} \psi\left(\frac{r_{k}}{2}\right)\right)=f\left(\phi(\epsilon), \lim _{k \rightarrow \infty} \psi\left(\frac{r_{k}}{2}\right)\right)
$$

so, $\phi(\epsilon)=0, \lim _{k \rightarrow \infty} \psi\left(\frac{r_{k}}{2}\right)=0$ a contradiction. This shows that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences. Since A is closed subset of a complete metric space X, these sequences have limits. Thus, there exists $x, y \in A$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Therefore $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ in $A \times A$. Since F is continuous, we have $F\left(x_{n}, y_{n}\right) \rightarrow F(x, y)$ and $F\left(y_{n}, x_{n}\right) \rightarrow F(y, x)$.

Hence the continuity of the metric function d implies that $d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right) \rightarrow d(x, F(x, y))$ and $d\left(y_{n+1}, F\left(y_{n}, x_{n}\right)\right) \rightarrow d(y, F(y, x))$. But from equations (2.1) and (2.2) we get, the sequences
$\left(d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)\right)$ and $\left(d\left(y_{n+1}, F\left(y_{n}, x_{n}\right)\right)\right)$ are constant sequences with the value $d(A, B)$. Therefore, $d(x, F(x, y))=d(A, B)$ and $d(y, F(y, x))=d(A, B)$. This completes the proof of the theorem.

Corollary 2.2. Let (X, \leq, d) be a partially ordered complete metric space. Let A be non-empty closed subsets of the metric space (X, d). Let $F: A \times A \rightarrow A$ satisfy the following conditions.
(i) F is continuous having the proximal mixed monotone property and proximally coupled weak (ψ, ϕ) contraction on A.
(ii) There exist $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ in $A \times A$ such that $x_{1}=F\left(x_{0}, y_{0}\right)$ with $x_{0} \leq x_{1}$ and $y_{1}=F\left(y_{0}, x_{0}\right)$ with $y_{0} \geq y_{1}$.

Then there exist $(x, y) \in A \times A$ such that $d(x, F(x, y))=0$ and $d(y, F(y, x))=0$.
In what follows we prove that Theorem 2.1 is still valid for F not necessarily continuous, assuming the following hypothesis in $A . A$ has the property that

$$
\begin{align*}
& \left(x_{n}\right) \text { is a non-decreasing sequence in } A \text { such that } x_{n} \rightarrow x \text {, then } x_{n} \leq x . \tag{2.17}\\
& \left(y_{n}\right) \text { is a non-increasing sequence in } A \text { such that } y_{n} \rightarrow y \text {, then } y \leq y_{n} . \tag{2.18}
\end{align*}
$$

Theorem 2.3. Assume the condition (2.17), (2.18) and A_{0} is closed in X instead of continuity of F in the Theorem 2.1, then the conclusion of Theorem 2.1 holds.

Proof. Following the proof of Theorem 2.1, there exist sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A satisfying the following conditions:

$$
\begin{array}{ll}
d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B) \text { with } x_{n} \leq x_{n+1}, & \forall n \in \mathbb{N} \text { and } \\
d\left(y_{n+1}, F\left(y_{n}, x_{n}\right)\right)=d(A, B) \text { with } y_{n} \geq y_{n+1}, & \forall n \in \mathbb{N} . \tag{2.20}
\end{array}
$$

Moreover, x_{n} converges to x and y_{n} converges to y in A. From (2.17) and (2.18), we get $x_{n} \leq x$ and $y_{n} \geq y$. Note that the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are in A_{0} and A_{0} is closed. Therefore, $(x, y) \in A_{0} \times A_{0}$. Since $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$, there exists $F(x, y)$ and $F(y, x)$ are in B_{0}. Therefore, there exists $\left(x^{*}, y^{*}\right) \in A_{0} \times A_{0}$ such that

$$
\begin{align*}
& d\left(x^{*}, F(x, y)\right)=d(A, B) \text { and } \tag{2.21}\\
& d\left(y^{*}, F(y, x)\right)=d(A, B) . \tag{2.22}
\end{align*}
$$

Since $x_{n} \leq x$ and $y_{n} \geq y$. By using F is proximally coupled weak (ψ, ϕ) contraction on A for (2.19) and (2.21) also for (2.22) and (2.20), we get

$$
\begin{aligned}
& \phi\left(d\left(x_{n+1}, x^{*}\right)\right) \leq \frac{1}{2} f\left(\phi\left(d\left(x_{n}, x\right)+d\left(y_{n}, y\right)\right), \psi\left(\frac{d\left(x_{n}, x\right)+d\left(y_{n}, y\right)}{2}\right)\right), \text { for all } n \text { and } \\
& \phi\left(d\left(y^{*}, y_{n+1}\right)\right) \leq \frac{1}{2} f\left(\phi\left(d\left(y, y_{n}\right)+d\left(x, x_{n}\right)\right), \psi\left(\frac{d\left(y, y_{n}\right)+d\left(x, x_{n}\right)}{2}\right)\right), \text { for all } n .
\end{aligned}
$$

Since $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, by taking limit on the above two inequality, we get $x=x^{*}$ and $y=y^{*}$. Hence form (2.21) and (2.22), we get $d(x, F(x, y))=d(A, B)$ and $d(y, F(y, x))=d(A, B)$.

Corollary 2.4. Assume the condition (2.17) and (2.18) instead of continuity of F in the Corollary 2.2, then the conclusion of Corollary 2.2 holds.

Now, we present an example where it can be appreciated that hypotheses in Theorem 2.1 and Theorem 2.3 do not guarantee uniqueness of the coupled best proximity point.

Example 2.5. Let $X=\{(0,1),(1,0),(-1,0),(0,-1)\} \subset \mathbb{R}^{2}$ and consider the usual order $(x, y) \preceq$ $(z, t) \Leftrightarrow x \leq z$ and $y \leq t$.

Thus, (X, \preceq) is a partially ordered set. Besides, $\left(X, d_{2}\right)$ is a complete metric space considering d_{2} the euclidean metric. Let $A=\{(0,1),(1,0)\}$ and $B=\{(0,-1),(-1,0)\}$ be a closed subset of X. Then, $d(A, B)=\sqrt{2}, A=A_{0}$ and $B=B_{0}$. Let $F: A \times A \rightarrow B$ be defined as $F\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=$ $\left(-x_{2},-x_{1}\right)$. Then, it can be seen that F is continuous such that $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$. The only comparable pairs of points in A are $x \leq x$ for $x \in A$, hence proximal mixed monotone property and proximally coupled weak (ψ, ϕ) contraction on A are satisfied trivially.

It can be shown that the other hypotheses of the theorem are also satisfied. However, F has three coupled best proximity points $((0,1),(0,1)),((0,1),(1,0))$ and $((1,0),(1,0))$.

One can prove that the coupled best proximity point is in fact unique, provided that the product space $A \times A$ endowed with the partial order mentioned earlier has the following property: every pair of elements has either a lower bound or an upper bound.
It is known that this condition is equivalent to:
for every pair of $(x, y),\left(x^{*}, y^{*}\right) \in A \times A$, there exists $\left(z_{1}, z_{2}\right)$ in $A \times A$, that is comparable to (x, y) and $\left(x^{*}, y^{*}\right)$.

Theorem 2.6. In addition to the hypothesis of Theorem 2.1(resp. Theorem 2.3), suppose that for any two elements (x, y) and $\left(x^{*}, y^{*}\right)$ in $A_{0} \times A_{0}$,

$$
\begin{equation*}
\text { there exists }\left(z_{1}, z_{2}\right) \in A_{0} \times A_{0} \text { such that }\left(z_{1}, z_{2}\right) \text { is comparable to }(x, y) \text { and }\left(x^{*}, y^{*}\right) \tag{2.25}
\end{equation*}
$$

then F has a unique coupled best proximity point.
Proof. From Theorem 2.1 (resp. Theorem 2.3), the set of coupled best proximity points of F is non-empty. Suppose that there exist (x, y) and $\left(x^{*}, y^{*}\right)$ in $A \times A$ which are coupled best proximity points. That is,

$$
\begin{aligned}
& d(x, F(x, y))=d(A, B), d(y, F(y, x))=d(A, B) \text { and } \\
& d\left(x^{*}, F\left(x^{*}, y^{*}\right)\right)=d(A, B), d\left(y^{*}, F\left(y^{*}, x^{*}\right)\right)=d(A, B) .
\end{aligned}
$$

We distinguish two cases.
Case 1: Suppose (x, y) is comparable. Let (x, y) is comparable to $\left(x^{*}, y^{*}\right)$ with respect to the ordering in $A \times A$. Apply F is proximally coupled weak (ψ, ϕ) contraction on A to $d(x, F(x, y))=d(A, B)$ and $d\left(x^{*}, F\left(x^{*}, y^{*}\right)\right)=d(A, B)$, we get

$$
\begin{equation*}
\phi\left(d\left(x, x^{*}\right)\right) \leq \frac{1}{2} f\left(\phi\left(d\left(x, x^{*}\right)+d\left(y, y^{*}\right)\right), \psi\left(\frac{d\left(x, x^{*}\right)+d\left(y, y^{*}\right)}{2}\right)\right) . \tag{2.26}
\end{equation*}
$$

Similarly, one can prove that

$$
\begin{equation*}
\phi\left(d\left(y, y^{*}\right)\right) \leq \frac{1}{2} f\left(\phi\left(d\left(y, y^{*}\right)+d\left(x, x^{*}\right)\right), \psi\left(\frac{d\left(y, y^{*}\right)+d\left(x, x^{*}\right)}{2}\right)\right) . \tag{2.27}
\end{equation*}
$$

Adding (2.26) and (2.27), we get

$$
\begin{equation*}
\phi\left(d\left(x, x^{*}\right)\right)+\phi\left(d\left(y, y^{*}\right)\right) \leq f\left(\phi\left(d\left(x, x^{*}\right)+d\left(y, y^{*}\right)\right), \psi\left(\frac{d\left(x, x^{*}\right)+d\left(y, y^{*}\right)}{2}\right)\right) . \tag{2.28}
\end{equation*}
$$

By the property (iii) of ϕ, we have

$$
\begin{equation*}
\phi\left(d\left(x, x^{*}\right)+d\left(y, y^{*}\right)\right) \leq \phi\left(d\left(x, x^{*}\right)\right)+\phi\left(d\left(y, y^{*}\right)\right) . \tag{2.29}
\end{equation*}
$$

From (2.28) and (2.29), we have

$$
\begin{equation*}
\phi\left(d\left(x, x^{*}\right)+d\left(y, y^{*}\right)\right) \leq f\left(\phi\left(d\left(x, x^{*}\right)+d\left(y, y^{*}\right)\right), \psi\left(\frac{d\left(x, x^{*}\right)+d\left(y, y^{*}\right)}{2}\right)\right) \tag{2.30}
\end{equation*}
$$

this implies that $\phi\left(d\left(x, x^{*}\right)+d\left(y, y^{*}\right)\right)=0$, or $\psi\left(\frac{d\left(x, x^{*}\right)+d\left(y, y^{*}\right)}{2}\right)=0$ and using the property of ϕ, ψ, we get $d\left(x, x^{*}\right)+d\left(y, y^{*}\right)=0$, hence $x=x^{*}$ and $y=y^{*}$.

Case 2: Suppose (x, y) is not comparable. Let (x, y) is not comparable to (x^{*}, y^{*}), then there exists $\left(u_{1}, v_{1}\right) \in A_{0} \times A_{0}$ which is comparable to (x, y) and (x^{*}, y^{*}).

Since $F\left(A_{0} \times A_{0}\right) \subseteq B_{0}$, there exists $\left(u_{2}, v_{2}\right) \in A_{0} \times A_{0}$ such that $d\left(u_{2}, F\left(u_{1}, v_{1}\right)\right)=d(A, B)$ and $d\left(v_{2}, F\left(v_{1}, u_{1}\right)\right)=d(A, B)$. With out loss of generality assume that $\left(u_{1}, v_{1}\right) \leq(x, y)$ (i.e., $x \geq$ u_{1} and $y \leq v_{1}$.) Note that $\left(u_{1}, v_{1}\right) \leq(x, y)$ implies that $(y, x) \leq\left(v_{1}, u_{1}\right)$. From Lemma 1.4 and Lemma 1.5, we get

$$
\left.\begin{array}{r}
u_{1} \leq x \text { and } v_{1} \geq y \\
d\left(u_{2}, F\left(u_{1}, v_{1}\right)\right)=d(A, B) \\
d(x, F(x, y))=d(A, B)
\end{array}\right\} \Longrightarrow u_{2} \leq x
$$

and

$$
\left.\begin{array}{r}
u_{1} \leq x \text { and } v_{1} \geq y \\
d\left(v_{2}, F\left(v_{1}, u_{1}\right)\right)=d(A, B) \\
d(y, F(y, x))=d(A, B)
\end{array}\right\} \Rightarrow v_{2} \geq y .
$$

From the above two inequalities, we obtain $\left(u_{2}, v_{2}\right) \leq(x, y)$. Continuing this process, we get sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ such that $d\left(u_{n+1}, F\left(u_{n}, v_{n}\right)\right)=d(A, B)$ and $d\left(v_{n+1}, F\left(v_{n}, u_{n}\right)\right)=d(A, B)$ with $\left(u_{n}, v_{n}\right) \leq(x, y) \forall n \in \mathbb{N}$. By using that F is a proximally coupled weak (ψ, ϕ) contraction on A, we get

$$
\left.\begin{array}{c}
u_{n} \leq x \text { and } v_{n} \geq y \\
d\left(u_{n+1}, F\left(u_{n}, v_{n}\right)\right)=d(A, B) \\
d(x, F(x, y))=d(A, B)
\end{array}\right\}
$$

Similarly, we can prove that

$$
\left.\begin{array}{c}
y \leq v_{n} \text { and } x \geq u_{n} \\
d(y, F(y, x))=d(A, B) \\
d\left(v_{n+1}, F\left(v_{n}, u_{n}\right)\right)=d(A, B)
\end{array}\right\}
$$

Adding (2.31) and (2.32), we obtain

$$
\begin{equation*}
\phi\left(d\left(u_{n+1}, x\right)\right)+\phi\left(d\left(y, v_{n+1}\right)\right) \leq f\left(\phi\left(d\left(u_{n}, x\right)+d\left(v_{n}, y\right)\right), \psi\left(\frac{d\left(u_{n}, x\right)+d\left(v_{n}, y\right)}{2}\right)\right) . \tag{2.33}
\end{equation*}
$$

But $\phi\left(d\left(u_{n+1}, x\right)+d\left(y, v_{n+1}\right)\right) \leq \phi\left(d\left(u_{n+1}, x\right)\right)+\phi\left(d\left(y, v_{n+1}\right)\right)$, hence

$$
\begin{align*}
\phi\left(d\left(u_{n+1}, x\right)+d\left(y, v_{n+1}\right)\right) & \leq f\left(\phi\left(d\left(u_{n}, x\right)+d\left(v_{n}, y\right)\right), \psi\left(\frac{d\left(u_{n}, x\right)+d\left(v_{n}, y\right)}{2}\right)\right) \tag{2.34}\\
& \leq \phi\left(d\left(u_{n}, x\right)+d\left(v_{n}, y\right)\right) .
\end{align*}
$$

Using the fact that ϕ is non-decreasing, we get

$$
\begin{equation*}
d\left(u_{n+1}, x\right)+d\left(y, v_{n+1}\right) \leq d\left(u_{n}, x\right)+d\left(v_{n}, y\right) . \tag{2.35}
\end{equation*}
$$

That is, the sequence $\left(d\left(u_{n}, x\right)+d\left(y, v_{n}\right)\right)$ is decreasing. Therefore, there exists $\alpha \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[d\left(u_{n}, x\right)+d\left(y, v_{n}\right)\right]=\alpha . \tag{2.36}
\end{equation*}
$$

We shall show that $\alpha=0$. Suppose, to the contrary, that $\alpha>0$. Taking the limit as $n \rightarrow \infty$ in (2.34), we have

$$
\phi(\alpha) \leq f\left(\phi(\alpha), \lim _{n \rightarrow \infty} \psi\left(\frac{d\left(u_{n}, x\right)+d\left(v_{n}, y\right)}{2}\right)\right) .
$$

So, $\phi(\alpha)=0, \lim _{n \rightarrow \infty} \psi\left(\frac{d\left(u_{n}, x\right)+d\left(v_{n}, y\right)}{2}\right)=0$, a contradiction. Thus, $\alpha=0$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[d\left(u_{n}, x\right)+d\left(y, v_{n}\right)\right]=0 \tag{2.37}
\end{equation*}
$$

so that $u_{n} \rightarrow x$ and $v_{n} \rightarrow y$. Analogously, one can prove that $u_{n} \rightarrow x^{*}$ and $v_{n} \rightarrow y^{*}$.
Therefore, $x=x^{*}$ and $y=y^{*}$. Hence the proof.

The following result, due to Theorem 2.6 in Nguyen Van Luong and Nguyen Xuan Thuan [22] by taking $A=B$.

Corollary 2.7. In addition to the hypothesis of Corollary 2.2 (resp. Corollary 2.4), suppose that for any two elements (x, y) and $\left(x^{*}, y^{*}\right)$ in $A \times A$,
there exists $\left(z_{1}, z_{2}\right) \in A \times A$ such that $\left(z_{1}, z_{2}\right)$ is comparable to (x, y) and $\left(x^{*}, y^{*}\right)$
then F has a unique coupled fixed point.

Acknowledgements

The third author would like to thanks the King Mongkut's University of Technology North Bangkok, Thailand.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] A. Abkar and M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl. 150 (1) (2011), 188-193.
[2] A. Abkar and M. Gabeleh, Generalized cyclic contractions in partially ordered metric spaces, Optim. Lett. 6 (8) (December 2012), 1819-1830.
[3] M.A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70 (2009), 3665-3671.
[4] A.H. Ansari, Note on " φ - ψ-contractive type mappings and related fixed point", The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, 2014, pp. 377-380.
[5] A. Anthony Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.
[6] G.V.R. Babu and P.D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai Journal of Mathematics 9 (1) (2011), 1-10.
[7] S. Sadiq Basha, Discrete optimization in partially ordered sets, J. Global Optim. 54 (3) (November 2012), 511-517.
[8] S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory. 103 (2000), 119-129.
[9] K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 122 (1969), 234-240.
[10] T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[11] N. Hussain, M. Abbas, A. Azam and J. Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory and Applications 2014 (2014), 62.
[12] M. Jleli and B. Samet, Remarks on the paper: Best proximity point theorems: An exploration of a common solution to approximation and optimization problems, Appl. Math. Comp. 228 (2014), 366-370.
[13] E. Karapinar and W. Sintunavarat, The existence of an optimal approximate solution theorems for generalized α-proximal contraction nonself mappings and applications, Fixed Point Theory and Applications 2013 (2013), 323.
[14] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society 30 (1) (1984), 1-9.
[15] W.K. Kim and K.H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2) (2006), 433-446.
[16] W.A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
[17] P. Kumam, H. Aydi, E. Karapinar and W. Sintunavarat, Best proximity points and extension of Mizoguchi-Takahashi's fixed point theorems, Fixed Point Theory and Applications 2013 (2013), 242.
[18] P. Kumam, V. Pragadeeswarar, M. Marudai and K. Sitthithakerngkiet, Coupled best proximity points in ordered metric spaces, Fixed Point Theory and Applications 2014 (2014), 107.
[19] M.A. Kutbi, A. Azam, J. Ahmad and C. Di Bari, Some common coupled fixed point results for generalized contraction in complex-valued metric spaces, Journal of Applied Mathematics 2013, Article ID 352927, 10 pages.
[20] V. Lakshmikanthama and L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (12) (2009), 4341-4349.
[21] Nguyen Van Luong and Nguyen Xuan Thuan, Coupled fixed point theorems for mixed monotone mappings and an application to integral equations, Comput. Math. Appl. 62 (11) (2011), 4238-4248.
[22] Nguyen Van Luong and Nguyen Xuan Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), 983-992.
[23] V. Pragadeeswarar and M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett. 7 (8) (December 2013), 1883-1892.
[24] V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. 74 (2011), 4804-4808.
[25] M. De la Sen and R.P. Agarwal, Some fixed point-type results for a class of extended cyclic selfmappings with a more general contractive condition, Fixed Point Theory Appl. 2011, 59, 2011.
[26] P.S. Srinivasan and P. Veeramani, On existence of equilibrium pair for constrained generalized games, Fixed Point Theory Appl. 1 (2004), 21-29.
[27] W. Sintunavarat and P. Kumam, The existence theorems of an optimal approximate solution for generalized proximal contraction mappings, Abstr. Appl. Anal. 2013 (2013), Article ID 375604, 8 pages.
[28] W. Sintunavarat and P. Kurmam, Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl. 2012 (2012), 93.
[29] W. Shatanawi, Partially ordered metric spaces and coupled fixed point results, Comput. Math. Appl. 60 (2010), 2508-2515.

[^0]: Copyright © 2016 Poom Kumam, Arslan Hojat Ansari and Kanokwan Sitthithakerngkiet. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

