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1. Introduction

The study of fixed points for multi-valued contraction mappings using the Hausdorff metric was
initiated by Nadler [17] in 1969, who extended the Banach contraction principle to set-valued
mappings. Since then many authors have studied fixed points for set-valued maps. The theory
of set-valued maps has many applications in control theory, convex optimization, differential
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equations and economics. Many mathematician generalized Banach’s contraction principle and
Nadler’s contraction principle in different spaces.

The notion of b-metric space, which is a metric space satisfying a relaxed form of triangle
inequality; see Bakhtin [3] and Czerwik [10] to extend the concept of metric space. Since then,
several papers discussed fixed point results for single-valued and multi-valued operators in
b-metric spaces (see [3,10–12,21,24] and references therein).

Definition 1.1 (Czerwik [10]). Let X be a nonempty set and the functional d : X × X → [0,∞)
satisfies:

(b1) d(x, y)= 0 if and only if x = y;

(b2) d(x, y)= d(y, x) for all x, y ∈ X ;

(b3) there exists a real number s ≥ 1 such that d(x, z)≤ s[d(x, y)+d(y, z)] for all x, y, z ∈ X .

Then d is called a b-metric on X and a pair (X ,d) is called a b-metric space with coefficient s.

Remark 1.2. If we take s = 1 in above definition then b-metric spaces turns into ordinary
metric spaces. Hence, the class of b-metric spaces is larger than the class of metric spaces.

For examples of b-metric spaces was given in [3,4,7,10,12].

Example 1.3. The set lp(R) with 0 < p < 1, where lp(R) :=
{

{xn}⊂R
∣∣∣ ∞∑

n=1
|xn|p <∞

}
, together

with the functional d : lp(R)× lp(R)→ [0,∞),

d(x, y) :=
( ∞∑

n=1
|xn − yn|p

) 1
p

,

(where x = {xn}, y= {yn} ∈ lp(R)) is a b-metric space with coefficient s = 2
1
p > 1. Notice that the

above result holds for the general case lp(X ) with 0< p < 1, where X is a Banach space.

Example 1.4. Let X be a set with the cardinal card(X ) ≥ 3. Suppose that X = X1 ∪ X2

is a partition of X such that card(X1) ≥ 2. Let s > 1 be arbitrary. Then, the functional
d : X × X → [0,∞) defined by:

d(x, y) :=


0, x = y
2s, x, y ∈ X1

1, otherwise,

is a b-metric on X with coefficient s > 1.

Throughout this work, we denotes the families of subset of a b-metric space (X ,d) listed
below:

S(X ) := {Y |Y ⊂ X };

P (X ) := {Y ∈S(X )|Y 6= ;};
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B(X ) := {Y ∈P (X )|Y is bounded};

W (X ) := {Y ∈P (X )|Y is compact};

CL(X ) := {Y ∈P (X )|Y is closed};

CB(X ) := {Y ∈P (X )|Y is closed and bounded}.

Additionally, we will also need the gap, excess generalized, Pompeiu-Hausdorff and δ-
functionals which will be used to define certain b-metric spaces to study various multi-valued
operators. The definition of those functionals are given as follows:

(I) The gap functional: D :S(X )×S(X )→R+∪ {+∞}

D(A,B) :=


inf{d(a,b) | a ∈ A,b ∈ B}, A 6= ; 6= B;
0, A =;= B;
+∞, otherwise.

(II) The excess generalized functional: ρ :S(X )×S(X )→R+∪ {+∞}

ρ(A,B) :=


sup{D(a,B) | a ∈ A}, A 6= ; 6= B;
0, A =;;
+∞, B =; 6= A.

(III) Pompeiu-Hausdorff functional: H :S(X )×S(X )→R+∪ {+∞}

H(A,B) :=


max{ρ(A,B),ρ(B, A)}, A 6= ; 6= B;
0, A =;= B;
+∞, otherwise.

(IV) δ functional: δ :S(X )×S(X )→R+∪ {+∞}

δ(A,B) :=


sup{d(a,b) | a ∈ A,b ∈ B}, A 6= ; 6= B;
0, A =;= B;
+∞, otherwise.

From the definition above we can see that if x0 ∈ X in the gap functional then D(x0,B) :=
D({x0},B). If A = B in δ functional then δ(A, A) := δ(A). It well known that (CB(X ),H) is a
complete b-metric space provided that (X ,d) is a complete b-metric space (see [10]).

Let (X ,d) be a b-metric space. We cite the following lemmas from Czerwik [10–12] and
Singh et al. [32].

Lemma 1.5. Let (X ,d) be a b-metric space. For any A,B,C ∈P (X ) and any x, y ∈ X , we have
the following:

(i) d(x,B)≤ d(x,b) for all b ∈ B;
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(ii) d(x,B)≤ H(A,B) for all x ∈ A;

(iii) δ(A,B)≤ H(A,B);

(iv) H(A, A)= 0;

(v) H(A,B)= H(B, A);

(vi) H(A,C)≤ s(H(A,B)+H(B,C));

(vii) d(x, A)≤ s(d(x, y)+d(y, A)).

Remark 1.6. The function H : CL(X )×CL(X ) → [0,+∞) is a generalized Pompeiu-Hausdorff
b-metric, that is, H(A,B)=+∞ if max{δ(A,B),δ(B, A)}.

Lemma 1.7. Let (X ,d) be a b-metric space. For A ∈P (X ) and x ∈ X , then we have

d(x, A)= 0⇐⇒ x ∈ Ā = A,

where Ā denotes the closure of the set A.

Lemma 1.8. Let (X ,d) be a b-metric space. For A,B ∈P (X ) and q > 1. Then, for all a ∈ A, there
exists b ∈ B such that d(a,b)≤ qH(A,B) if H(A,B)> 0.

Definition 1.9 (Boriceanu et al. [7]). Let (X ,d) be a b-metric space. Then a sequence {xn} in X
is called:

(a) Convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n →∞.

(b) Cauchy if and only if d(xn, xm)→ 0 as m,n →∞.

(c) Complete if and only if every Cauchy sequence is convergent.

Lemma 1.10 (Czerwik [10]). Let (X ,d) be a b-metric space and let {xk}n
k=0 ⊂ X . Then:

d(x0, xn)≤ sd(x0, x1)+ . . .+ sn−1d(xn−2, xn−1)+ sn−1d(xn−1, xn).

Let (X ,d) is a b metric space, if T : X → P (X ) is a multivalued operator, then x ∈ X is
called a fixed point for T if and only if x ∈ T(x). The set Fix(T) := {x ∈ X : x ∈ T(x)} is called the
fixed point set of T , while SFix(T) := {x ∈ X : T(x)= {x}} is called the strict fixed point set of T .
Graph(T) := {(x, y) ∈ X × X : y ∈ T(x)}, denotes the graph of T .

For the following notions see Rus et al. [28] and A. Petruşel [18].

Definition 1.11. Let (X ,d) be a b-metric space and T : X → CL(X ) be a multivalued operator.
By definition, T is multivalued weakly Picard (briefly MWP) operator if for each (x, y) ∈Graph(T)
there exists a sequence {xn} for all n ∈N such that

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T(xn), for each n ∈N;

(iii) the sequence {xn} for all n ∈N is convergent and its limit is a fixed point of T .
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Remark 1.12. A sequence {xn} for all n ∈N satisfying the condition (i) and (ii), in the Definition
above is called a sequence of successive approximations of T starting from (x, y) ∈Graph(T).

Finally, to prove our results we need the following class of functions.

Definition 1.13 (Rus [25]). A mapping ψ : [0,∞)→ [0,∞) is called a comparison function if it is
increasing and ψn(t)→ 0 as n →∞ for any t ∈ [0,∞), where ψn is n-th iterate of ψ.

Lemma 1.14 (Rus [25], Berinde [6]). If ψ : [0,∞)→ [0,∞) is a comparison function, then:

(1) ψn is also a comparison function;

(2) ψ is continuous at 0;

(3) ψ(t)< t, for any t > 0.

The concept of (c)-comparison function was introduced by Berinde [6] in the following
definition.

Definition 1.15 (Berinde [6]). A function ψ : [0,∞) → [0,∞) is said to be a (c)-comparison
function if

(1) ψ is increasing;

(2) there exists n0 ∈N, k ∈ (0,1) and a convergent series of nonnegative terms
∞∑

n=1
εn such that

ψn+1(t)≤ kψn(t)+εn, for n ≥ n0 and any t ∈ [0,∞).

Here we recall the definitions of the following class of (b)-comparison function as given by
Berinde [5] in order to extend some fixed point results to the class of a b-metric spaces :

Definition 1.16 (Berinde [5]). Let s ≥ 1 be a real number. A mapping ψ : [0,∞)→ [0,∞) is called
a (b)-comparison function if the following conditions are fulfilled:

(1) ψ is increasing;

(2) there exist n0 ∈N, k ∈ (0,1) and a convergent series of nonnegative terms
∞∑

n=1
εn such that

sn+1ψn+1(t)≤ ksnψn(t)+εn, for n ≥ n0 and any t ∈ [0,∞).

In this work, we use Ψb stands for the class of all (b)-comparison functions ψ : [0,∞)→ [0,∞)
unless and until it is stated. It is evident that the concept of (b)-comparison function reduces to
that of (c)-comparison function when s = 1.

Lemma 1.17 (Berinde [4]). If ψ : [0,∞)→ [0,∞) is a (b)-comparison function, then the following
assertions hold:

(i) the series
∞∑

n=0
snψn(t) converges for any t ∈ [0,∞);

(ii) the function S : [0,∞)→ [0,∞) defined by S(t)=
∞∑

n=0
snψn(t) for t ∈ [0,∞), is increasing and

continuous at 0.
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1.1 An α-Admissible Mappings

Samet et al. [31] introduced the concept of α-admissible mapping, where α is mapping from
nonempty set X to [0,∞), and established fixed point theorems via this concept and also showed
that these results can be utilized to derive fixed point theorems in partially ordered spaces.
Moreover, they applied the main results to ordinary differential equations. Afterward, Asl et
al. [2] extended the concept of α-admissible for single valued mappings to multivalued mappings
called α∗-admissible.

Later on, Salimi et al. [29], established fixed point theorems for α∗-admissible contractions
mapping with respect to η∗ on metric space for multifunction. There are many researchers
improved and generalized fixed point results by using the concept of an α-admissible mapping
for single valued and multivalued mappings (see [1,16,21–24,30]).

Definition 1.18 (Samet et al. [31]). Let X be a nonempty set, f : X → X and α : X × X → [0,∞).
We say that f is an α-admissible mapping if satisfies the following condition:

for x, y ∈ X for which α(x, y)≥ 1=⇒α(T(x),T(y))≥ 1.

Definition 1.19 (Asl et al. [2]). Let X be a nonempty set, T : X →P (X ) and α : X × X → [0,∞).
We say that T is α∗-admissible if

for x, y ∈ X , α(x, y)≥ 1=⇒α∗(T(x),T(y))≥ 1,

where

α∗(A,B) := inf{α(a,b) : a ∈ A and b ∈ B}.

Definition 1.20 (Salimi et al. [29]). T : X →P (X ) on a metric space (X ,d) and let α,η : X ×X →
[0,∞) be two functions, where η is bounded. We say that T is an α∗-admissible mapping with
respect to η mapping if

x, y ∈ X , α(x, y)≥ η(x, y)=⇒α∗(T(x),T(y))≥ η∗(T(x),T(y))

where α∗(A,B) := inf{α(a,b) : a ∈ A and b ∈ B} and η∗(A,B) := sup{η(a,b) : a ∈ A and b ∈ B}.

If we take η(a,b)= 1 for all a,b ∈ X , then this definition reduces to Definition 1.19 of Asl et
al. In case α(a,b)= 1 for all a,b ∈ X , then T is called an η-subadmissible mapping.

Recently Bota et al. [8] proved some existence and uniqueness theorems for α∗-contractive
type operators defined over b-metric spaces. In particular, they also provide results related to
Ulam-Hyers stability, well-posedness and limit shadowing.

The purpose of this work is to establish the existence and the uniqueness of fixed point
theorems for some class of multivalued contraction mappings via α∗-admissible mapping with
respect to η mappings. We also give some example shows that the our fixed point theorems for
new types of contractive mappings are independent. The generalized Ulam-Hyers stability and
well-posedness of fixed point problems for these classes in the framework of b-metric spaces are
proved.
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2. Fixed Point Results in b-Metric Spaces

In this section, we shall state and prove Pompeiu-Hausdorff generalized functional, gap
functional, δ-functional for some class of multivalued contraction mappings via α∗-admissible
mapping with respect to η mappings in b-metric spaces. First we start with b-metric version
of multivalued contraction mappings via the Pompeiu-Hausdorff generalized functional and
α∗-admissible mapping with respect to η mappings:

Theorem 2.1. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible with
respect to η on X and ψ ∈Ψb. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ η(x0, x1);

(b) for all x, y ∈ X , we have

α∗(T(x),T(y))≥ η∗(T(x),T(y))=⇒ H(T(x),T(y))≤ψ(d(x, y)); (2.1)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
then α(xn, x)≥ η(xn, x) for all n ∈N.

Then

(i) Fix(T) 6= ;;

(ii) T is MWP operator.

Proof. Let x0 ∈ X and x1 ∈ T(x0), we have α(x0, x1) ≥ η(x0, x1) (by condition (a)). Since T is an
α∗-admissible mapping with respect to η∗, then α∗(T(x0),T(x1))≥ η∗(T(x0),T(x1)). Therefore
by (2.1), we have H(T(x0),T(x1))≤ψ(d(x0, x1)).

If x0 = x1 we obtain the desired conclusion. Also,if x ∈ T(x), then x1 is a fixed point of T .
Hence we assume that x0 6= x1 and x1 ∉ T(x1) and hence d(x1,T(x1)) > 0. By Lemma 1.8 and
(2.1), there exist τ> 1 such that

0< d(x1,Tx1)≤ H(T(x0),T(x1))≤ψ(d(x0, x1))<ψ(τd(x0, x1)).

Since ψ is increasing function. This implies that there exists x2 ∈ T(x1) (obviously, x2 6= x1) such
that

0< d(x1, x2)≤ H(T(x0),T(x1))<ψ(τd(x0, x1)).

From condition α∗(T(x0),T(x1)) ≥ η∗(T(x0),T(x1)) with x1 ∈ T(x0) and x2 ∈ T(x1), we
have α(x1, x2) ≥ η(x1, x2). Since T is an α∗-admissible mapping with respect to η∗, then
α∗(T(x1),T(x2)) ≥ η∗(T(x1),T(x2)). Assume that x2 ∉ T(x2), that is, d(x2,T(x2)) > 0. By (2.1),
we get

H(T(x1),T(x2))≤ψ(d(x1, x2)).

Since ψ is increasing function, we have that

0< d(x2,T(x2))≤ H(T(x1),T(x2))≤ψ(d(x1, x2))<ψ2(τd(x0, x1)).
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This implies that there exists x3 ∈ T(x2) (obviously, x3 6= x2) such that

0< d(x2, x3)<ψ2(τd(x0, x1)).

By continuing this process, we define the sequence {xn} in X such that xn ∉ Txn, xn+1 ∈ T(xn),
xn 6= xn+1 xn+1 ∈ T(xn) and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈N. Since T is an α∗-admissible
mapping with respect to η∗, we get

α∗(T(xn),T(xn+1))≥ η∗(T(xn),T(xn+1)) for all n ∈N.

Also, we have

0< d(xn,T(xn))≤ d(xn, xn+1)<ψn(τd(x0, x1)) for all n ∈N.

For m,n ∈N with m > n, we have

d(xn, xm)≤
m−1∑
k=n

sk−n+1d(xk, xk+1)≤
m−1∑
k=n

sk−n+1ψn(τd(x0, x1)).

By Lemma (1.17) we know that the series
∞∑

i=1
siψi(τd(x0, x1)) converges. Therefore, {xn} is a

Cauchy sequence in X . By the completeness of X , there exists x∗ ∈ X such that xn → x∗

as n → ∞ and α(xn, xn+1) ≥ η(xn, xn+1). By condition (c), we have α(xn, x∗) ≥ η(xn, x∗) then
α∗(T(xn),T(x∗))≥ η∗(T(xn),T(x∗)). As a consequence, we derive that

D(x∗,T(x∗))≤ s[d(x∗, xn+1)+D(xn+1,T(x∗))]

≤ s[d(x∗, xn+1)+H(T(xn),T(x∗))]

≤ s[d(x∗, xn+1)+ψ(d(xn, x∗))].

for all n ∈N. Letting n →∞, since ψ is continuous at 0, we obtain

D(x∗,T(x∗))= 0.

Since, T(x∗) is closed we obtain that x∗ ∈ T(x∗), that is, x∗ is a fixed point of T . This completes
the proof.

Next, we propose a b-metric version of multivalued contraction mappings via the gap
functional.

Theorem 2.2. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible with
respect to η on X and ψ ∈Ψb. Suppose that f : X → R+ defined f (x) := D(x,T(x)) is a lower
semicontinuous mapping. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ η(x0, x1);

(b) for all x ∈ X and y ∈ T(x), we have

α∗(T(x),T(y))≥ η∗(T(x),T(y))=⇒ D(y,T(y))≤ψ(d(x, y)); (2.2)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
then α(xn, x)≥ η(xn, x) for all n ∈N.

Then there exists an orbit {xn} of T at x0 and x∗ ∈ X such that xn → x∗ as n →∞. Moreover,
x∗ ∈Fix(T).
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Proof. Let x0 ∈ X such that α(x0, x1)≥ η(x0, x1) (from condition (a)). We define the sequence {xn}
in X such that

xn+1 ∈ T(xn) for all n ∈N.

Since T is an α∗-admissible, with respect to η then α∗(T(x0),T(x1)) ≥ η∗(T(x0),T(x1)).
Therefore by (2.2), we have

D(x1,T(x1))≤ψ(d(x0, x1)).

By induction, we get α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈N. Next, we will show that {xn} is
Cauchy sequence in X . For each n ∈N, we have Also, we have

0< D(xn,T(xn))≤ D(xn, xn+1)<ψn(d(x0, x1)) for all n ∈N.

Following the same lines of argument given in the proof of Theorem 2.1 we know that {xn}
is a Cauchy sequence in X which converges to x∗ as n →∞. Since (X ,d) is complete, there
exists x∗ ∈ X such that xn → x∗ as n →∞. By condition (c), we have α(xn, x∗) ≥ η(xn, x∗) then
α∗(T(xn),T(x∗))≥ η∗(T(xn),T(x∗)). Now, by the lower semicontinuity of the function f , we have

0≤ f (x∗)= D(x∗,T(x∗))≤ liminf
n→∞ f (xn)= 0.

Hence f (x∗) = 0, which means that D(x∗,T(x∗)) = 0. Thus x∗ ∈ Fix(T). This completes the
proof.

Theorem 2.3. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible with
respect to η on X and ψ ∈Ψb. Suppose that f : X → R+ defined f (x) := δ(x,T(x)) is a lower
semicontinuous mapping, satisfy the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ η(x0, x1);

(b) for all x ∈ X and y ∈ T(x), we have

α∗(T(x),T(y))≥ η∗(T(x),T(y))=⇒ δ(y,T(y))≤ψ(d(x, y)); (2.3)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
then α(xn, x)≥ η(xn, x) for all n ∈N.

Then there exists an orbit {xn} of T at x0 and x∗ ∈ X such that xn → x∗ as n →∞. Moreover,
x∗ ∈SFix(T).

Proof. Let x0 ∈ X such that α(x0, x1)≥ η(x0, x1) (from condition (a)). We define the sequence {xn}
in X such that

xn+1 ∈ T(xn) for all n ∈N.

Since T is an α∗-admissible, with respect to η then α∗(T(x0),T(x1))≥ η∗(T(x0),T(x1)). Therefore
by (2.3), we have

δ(x1,T(x1))≤ψ(d(x0, x1)).
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Then

d(x1, x2)≤ δ(x1,T(x1))≤ψ(d(x0, x1)).

By induction, we get α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈N. Next, we will show that {xn} is
Cauchy sequence in X . For each n ∈N, we have Also, we have

0< d(xn, xn+1)≤ δ(xn,T(xn))≤ψn(d(x0, x1)) for all n ∈N.

Following the same lines of argument given in the proof of Theorem 2.1 we know that {xn}
is a Cauchy sequence in X which converges to x∗ as n →∞. Since (X ,d) is complete, there
exists x∗ ∈ X such that xn → x∗ as n →∞. By condition (c), we have α(xn, x∗) ≥ η(xn, x∗) then
α∗(T(xn),T(x∗))≥ η∗(T(xn),T(x∗)). Now, by the lower semicontinuity of the function f , we have

0≤ f (x∗)= δ(x∗,T(x∗))≤ liminf
n→∞ f (xn)= 0.

Hence f (x∗)= 0, which means that δ(x∗,T(x∗))= 0. Next, we will prove that x∗ ∈SFix(T). Let
x∗ ∈Fix(T) and using (2.3) with x = y= x∗, we obtain

δ(T(x∗))= δ(x∗,T(x∗))≤ψ(d(x∗, x∗)).

Thus, δ(T(x∗))= 0 and T(x∗)= {x∗}. This completes the proof.

Theorem 2.4. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible
with respect to η on X and ψ ∈Ψb. Suppose that all the hypotheses of Theorem 2.1 hold. Then
Fix(T) = SFix(T) = {x∗} such that α(x∗, y∗) ≥ η(x∗, y∗) for all x∗, y∗ ∈ X which is x∗ ∈ SFix(T)
and y∗ ∈Fix(T).

Proof. We shall prove now that Fix(T)=SFix(T). Because SFix(T)⊂Fix(T), we need to show
that Fix(T)⊂ SFix(T). Let x∗ ∈SFix(T) and y∗ ∈Fix(T) with y∗ 6= x∗. By hypothesis α(x∗, y∗)≥
η(x∗, y∗). Since, T is an α∗-admissible with respect to η on X , we get α(Tx∗,T y∗)≥ η(Tx∗,T y∗).
By (2.1), we have

d(x∗, y∗)= D(T(x∗), y∗)≤ H(T(x∗),T(y∗))

≤ψ(d(x∗, y∗))< d(x∗, y∗).

This is a contradiction. So, we have x∗ = y∗. Hence, Fix(T)=SFix(T)= {x∗}.

If we set η(x, y)= 1 for all x, y ∈ X in Theorems 2.1 or 2.2 or 2.3, we get the following results.

Corollary 2.5. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible on
X and ψ ∈Ψb. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x, y ∈ X , we have

α∗(T(x),T(y))≥ 1=⇒ H(T(x),T(y))≤ψ(d(x, y)); (2.4)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.
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Then

(i) Fix(T) 6= ;;

(ii) T is MWP operator.

Corollary 2.6. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible on
X and ψ ∈Ψb. Suppose that f : X → R+ defined f (x) := D(x,T(x)) is a lower semicontinuous
mapping, satisfy the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x ∈ X and y ∈ T(x), we have

α∗(T(x),T(y))≥ 1=⇒ D(y,T(y))≤ψ(d(x, y)); (2.5)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then there exists an orbit {xn} of T at x0 and x∗ ∈ X such that xn → x∗ as n →∞. Moreover,
x∗ ∈Fix(T).

Corollary 2.7. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible
on X and ψ ∈Ψb. Suppose that f : X →R+ defined f (x) := δ(x,T(x)) is a lower semicontinuous
mapping, satisfy the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x ∈ X and y ∈ T(x), we have

α∗(T(x),T(y))≥ 1=⇒ δ(y,T(y))≤ψ(d(x, y)); (2.6)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then there exists an orbit {xn} of T at x0 and x∗ ∈ X such that xn → x∗ as n →∞. Moreover,
x∗ ∈SFix(T).

Corollary 2.8. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible on
X and ψ ∈Ψb. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x, y ∈ X , we have

α∗(T(x),T(y))H(T(x),T(y))≤ψ(d(x, y)); (2.7)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.
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Then

(i) Fix(T) 6= ;;

(ii) T is MWP operator.

Corollary 2.9. Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-admissible on
X and ψ ∈Ψb. Suppose that f : X → R+ defined f (x) := D(x,T(x)) is a lower semicontinuous
mapping, satisfy the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x ∈ X and y ∈ T(x), we have

α∗(T(x),T(y))D(y,T(y))≤ψ(d(x, y)); (2.8)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then there exists an orbit {xn} of T at x0 and x∗ ∈ X such that xn → x∗ as n →∞. Moreover,
x∗ ∈Fix(T).

Corollary 2.10 ( [8]). Let (X ,d) be a complete b-metric space, T : X → CL(X ) be an α∗-
admissible on X and ψ ∈ Ψb. Suppose that f : X → R+ defined f (x) := δ(x,T(x)) is a lower
semicontinuous mapping, satisfy the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x ∈ X and y ∈ T(x), we have

α∗(T(x),T(y))δ(y,T(y))≤ψ(d(x, y)); (2.9)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then there exists an orbit {xn} of T at x0 and x∗ ∈ X such that xn → x∗ as n →∞. Moreover,
x∗ ∈SFix(T).

If the coefficient s = 1 in Corollary 2.1, we obtain immediately the following fixed point
theorems in metric spaces.

Corollary 2.11 ( [29]). Let (X ,d) be a complete metric space, T : X → CL(X ) be an α∗-admissible
with respect to η on X and ψ is (c)-comparison function. Suppose that the following assertions
hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ η(x0, x1);

(b) for all x, y ∈ X , we have

α∗(T(x),T(y))≥ η∗(T(x),T(y))=⇒ H(T(x),T(y))≤ψ(d(x, y)); (2.10)
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(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
then α(xn, x)≥ η(xn, x) for all n ∈N.

Then T has a fixed point.

If η= 1 in Corollary 2.11, we obtain that

Corollary 2.12. Let (X ,d) be a complete metric space, T : X → CL(X ) be an α∗-admissible on X
and ψ is (c)-comparison function. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x, y ∈ X , we have

α∗(T(x),T(y))≥ 1=⇒ H(T(x),T(y))≤ψ(d(x, y)); (2.11)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then T has a fixed point.

Corollary 2.13 ( [2]). Let (X ,d) be a complete metric space, T : X → CL(X ) be an α∗-admissible
on X and ψ is (c)-comparison function. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x, y ∈ X , we have

α∗(T(x),T(y))H(T(x),T(y))≤ψ(d(x, y)); (2.12)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then T has a fixed point.

Corollary 2.14. Let (X ,d) be a complete metric space, T : X → CL(X ) and ψ is (c)-comparison
function. Suppose that the following assertions hold:

(a) there exists x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1)≥ 1;

(b) for all x, y ∈ X , we have

H(T(x),T(y))≤ψ(d(x, y)); (2.13)

(c) if {xn} is a sequence in X converging to x ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N, then
α(xn, x)≥ 1 for all n ∈N.

Then T has a fixed point.

Remark 2.15. If ψ(t)= kt, where k ∈ (0,1) in Corollary 2.14, we obtain the Nadler’s contraction
principle [17].
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Next, we give some example shows that the contractive conditions in our results are
independent. Also, our results are real generalizations of Banach contraction principle and
several results in literature.

Example 2.16. Let X =R and defined d : X × X → [0,∞) as

d(x, y)= |x− y|2 for all x, y ∈ X .

Then (X ,d) is a complete b-metric space with coefficient s = 2 > 1, but it is not usual metric
space. Let us define T :R→ CL(X ) by

T(x)=


{
0,

x+1
2

}
, 0≤ x < 1,

{4,5}, otherwise.

Also, define α : X × X → [0,∞), η : X × X → [0,∞) and ψ : [0,∞)→ [0,∞) by

α(x, y)=
{

3, 0≤ x, y< 1,
2, otherwise

η(x, y)=
{

2, 0≤ x, y< 1,
4, otherwise

and ψ(t)= 1

2
t for all t ≥ 0. Clearly T is an α∗-admissible with respect to η on X . There exists

x0 = 0 ∈ X assume that x0 6= x1. So, T(x0)= T(0)= 1
2 such that

α

(
0,

1
2

)
= 3> 2= η

(
0,

1
2

)
.

Since, T is an α∗-admissible with respect to η on X , we get

α∗(Tx(0),T(x1))=α∗
(
1
2

,0
)
= 3> 2= η∗

(
1
2

,
3
4

)
= η∗(Tx(0),T(x1)).

For all x, y ∈ X , with

α∗(T(x),T(y))≥ η∗(T(x),T(y)).

Then we have

H(Tx,T y)=max
{

sup
x∈T(x)

D(x,T(y)), sup
y∈T(y)

D(y,T(x))
}

=max
{

1
4
|x− y|2,

1
4
|y− x|2

}
= 1

4
|x− y|2 < 1

2
|x− y|2 =ψ(d(x, y)).

Hence, we can see that condition (a) and (b) of Theorem 2.1 hold. Also, we can easily to
prove that condition (c) in Theorem 2.1 holds. Therefore, all of conditions in Theorem 2.1 hold.
Moreover, we have that Fix(T)=SFix(T)= {0}.

Next, we show that the contractive condition in Corollary 2.14 and Nadler’s contraction
principle cannot be applied to this example For x = 0 and y= 1, we obtain that

H(Tx,T y)= 25> 1= d(x, y).
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3. The Generalized Ulam-Hyers Stability of
Fixed Point Inclusion in b-Metric Spaces

In this section, we prove the generalized Ulam-Hyers stability of fixed point inclusion in b-metric
spaces which correspondence to Theorems 2.1, 2.2 and 2.3.

Stability problems of functional analysis is the another one which play the most important
in mathematics analysis. It was introduced by Ulam [34], he was concern the stability of group
homomorphisms. Afterward, Hyers [15] gave a first affirmative partial answer to the question
of Ulam for Banach space, this type of stability is called Ulam-Hyers stability. Several authors
consider Ulam-Hyers stability results in fixed point theory and remarkable result on the stability
of certain classes of functional equations via fixed point approach (see [9,13,14,21,24,26,27,33]
and references therein).

We recall the following definitions of generalized Ulam-Hyer stability for multivalued
operator in the class of b-metric spaces:

Definition 3.1. Let (X ,d) be a b-metric space with coefficient s and T : X → P (X ) be a
multivalued operator. By definition, the fixed point inclusion

u ∈ T(u), u ∈ X (3.1)

is said to be generalized Ulam-Hyers stable in the framework of a b-metric space if there exists
an increasing operator ϕ : [0,∞)→ [0,∞), continuous at 0 and ϕ(0)= 0 such that for each ε> 0
and an ε-solution v∗ ∈ X , of inequality,

D(v∗,T(v∗))≤ ε, (3.2)

there exists a solution u∗ ∈ X of the fixed point inclusion (3.1) such that

d(v∗,u∗)≤ϕ(sε). (3.3)

If there exists c > 0 such that ϕ(t) := ct for all t ∈ [0,∞), then the fixed point inclusion (3.1)
is said to be Ulam-Hyers stable in the framework of a b-metric space.

Remark 3.2. If s = 1, then Definition 3.1 reduce to generalized Ulam-Hyers stability in metric
spaces. Also, if ϕ(t) := ct, for all t ∈ [0,∞), where c > 0, then it reduces to classical Ulam-Hyers
stability.

Theorem 3.3. Let (X ,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Theorem 2.1 hold and also that the function ξ : [0,∞) → [0,∞) defined by
ξ(r) := r− sψ(r) is strictly increasing and onto. If α(u∗,v∗)≥ η(u∗,v∗) for all u∗ ∈ X which is an
ε-solution, then the fixed point inclusion (3.1) is generalized Ulam-Hyers stable.

Proof. By Theorem 2.1, we have x∗ ∈ T(x∗), that is, x∗ ∈ X is a solution of fixed point inclusion
(3.1). Let ε> 0 and y∗ ∈ X is an ε-solution, that is

d(y∗,T(y∗))≤ ε.
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Since x∗, y∗ ∈ X are ε-solution, we have

α(x∗, y∗)≥ η(x∗, y∗).

Since, T is α∗-admissible with respect to η. So, we have

α(T(x∗),T(y∗))≥ η(T(x∗),T(y∗)).

Now, we obtain

d(x∗, y∗)= D(T(x∗), y∗)

≤ s[H(T(x∗),T(y∗))+D(T(y∗), y∗)]

≤ s[ψ(d(x∗, y∗))+ε].
It follows that

d(x∗, y∗)− sψ(d(x∗, y∗))≤ sε.

Since ξ(r) := r− sψ(r), we have

ξ(d(x∗, y∗))= d(x∗, y∗)− sψ(d(x∗, y∗)).

This implies that

d(x∗, y∗)≤ ξ−1(sε).

Notice that ξ−1 : [0,∞)→ [0,∞) exists, is increasing, continuous at 0 and ϕ−1(0)= 0. Therefore,
the fixed point inclusion (3.1) is generalized Ulam-Hyers stable.

4. Well-Posedness of the Fixed Point Problems in b-Metric Spaces

In this section we present some well-posedness results for the fixed point problem. We consider
both the well-posedness and the well-posedness in the generalized sense for a multivalued
operator T with respect to H and D in the class of b-metric spaces We begin by recalling the
definition of these notions from [19] and [20].

Definition 4.1. Let (X ,d) be a b-metric spaces with coefficient s and T : X → P (X ) be a
multivalued operator. By definition, the fixed point problem is well posed for T with respect to
H if:

(i) SFix(T)= {x∗};

(ii) If xn is a sequence in X such that H(xn,T(xn))→ 0, as n →∞, then xn → x∗, as n →∞.

Definition 4.2. Let (X ,d) be a b-metric spaces with coefficient s and T : X → P (X ) be a
multivalued operator. By definition, the fixed point problem is well posed in the generalized
sense for T with respect to H if:

(i) SFix(T) 6= ;;

(ii) If xn is a sequence in X such that H(xn,T(xn)) → 0, as n → ∞, then there exists a
subsequence {xkn} of xn such that xkn → x∗, as n →∞.
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Definition 4.3. Let (X ,d) be a b-metric spaces with coefficient s and T : X → P (X ) be a
multivalued operator. By definition, the fixed point problem is well posed for T with respect to
D if:

(i) SFix(T)= {x∗};

(ii) If xn is a sequence in X such that D(xn,T(xn))→ 0, as n →∞, then xn → x∗, as n →∞.

Definition 4.4. Let (X ,d) be a b-metric spaces with coefficient s and T : X → P (X ) be a
multivalued operator. By definition, the fixed point problem is well posed in the generalized
sense for T with respect to D if:

(i) SFix(T) 6= ;;

(ii) If xn is a sequence in X such that D(xn,T(xn)) → 0, as n → ∞, then there exists a
subsequence {xkn} of xn such that xkn → x∗, as n →∞.

In the following next theorems, we add a new condition to assure the well-posedness of the
fixed point problems with respect to H and D in b-metric spaces.

(H1) If {xn} is sequence in X such that H(xn,T(xn)) → 0, as n → ∞ and x ∈ SFix(T), then
α(xn, x)≥ η(xn, x) for all n ∈N.

(H2) If {xn} is sequence in X such that H(xn,T(xn))→ 0, as n →∞ and x ∈SFix(T), then there
exists a subsequence {xkn} of xn such that xkn → x, as n →∞ and α(xkn , x)≥ η(xkn , x) for
all n ∈N.

(D1) If {xn} is sequence in X such that D(xn,T(xn)) → 0, as n → ∞ and x ∈ SFix(T), then
α(xn, x)≥ η(xn, x) for all n ∈N.

(D2) If {xn} is sequence in X such that D(xn,T(xn))→ 0, as n →∞ and x ∈SFix(T), then there
exists a subsequence {xkn} of xn such that xkn → x, as n →∞ and α(xkn , x)≥ η(xkn , x) for
all n ∈N.

Theorem 4.5. Let (X ,d) be a complete b-metric space with coefficient s, T : X → P (X ) and
α,η : X × X → [0,∞) be three mappings and ψ ∈Ψb. Suppose that

(i) The hypotheses of Theorem 2.4, Theorem 3.3 and condition (H1) hold.

(ii) For any xn is a sequence in X with H(xn,T(xn)) → 0, as n → ∞, we have xn → x∗, as
n →∞.

Then, the fixed point problem is well-posed for T with respect to H.

Proof. By Theorem 2.1 and Theorem 2.4, there is a point x∗ ∈ X such that SFix(T) = x∗. Let
{xn} be sequence in X such that H(xn,T(xn))→ 0, as n →∞. By condition (H1), we get

α(xn, x∗)≥ η(xn, x∗) for all n ∈N.

Communications in Mathematics and Applications, Vol. 7, No. 3, pp. 241–262, 2016



258 Ulam-Hyers Stability and Well-Posedness of the Fixed Point Problems . . . : S. Phiangsungnoen

Since, T is α∗-admissible with respect to η. So, we have

α(T(xn),T(x∗))≥ η(T(xn),T(x∗)) for all n ∈N.

Now, we have

d(xn, x∗)= d(xn,T(x∗))

≤ s[d(xn,T(xn))+H(T(xn),T(x∗))]

≤ s[H(xn,T(xn))+H(T(xn),T(x∗))]

≤ s[H(xn,T(xn))+ψ(xn, x∗)].

Thus we get d(xn, x∗)− sψ(xn, x∗)≤ sH(xn,T(xn)). Since ξ(r) := r− sψ(r), we have

ξ(d(xn, x∗))= d(xn, x∗)− sψ(xn, x∗).

This implies that

d(xn, x∗)≤ ξ−1(sH(xn,T(xn))).

Since H(xn,T(xn))→ 0, as n →∞. It implies that xn → x∗, as n →∞. Therefore, the fixed point
problem is well-posed for T with respect to H.

Theorem 4.6. Let (X ,d) be a complete b-metric space with coefficient s, T : X → P (X ) and
α,η : X × X → [0,∞) be three mappings and ψ ∈Ψb. Suppose that

(i) The hypotheses of Theorem 2.4, Theorem 3.3 and condition (H2) hold.

(ii) For xn is a sequence in X with H(xn,T(xn))→ 0, as n →∞, there exists a subsequence {xkn}
of xn such that xkn → x∗, as n →∞ and H(xkn ,T(xkn))→ 0, as n →∞.

Then, the fixed point problem is well-posed in the generalized sense for T with respect to H.

Proof. By Theorem 2.1 and Theorem 2.4, we know that SFix(T) 6= ;. Let {xn} be sequence in X
which satisfies (ii). By condition (H2), we get

α(xkn , x∗)≥ η(xkn , x∗) for all n ∈N.

Since, T is α∗-admissible with respect to η. So, we have

α(T(xkn),T(x∗))≥ η(T(xkn),T(x∗)) for all n ∈N.

Now, we have

d(xkn , x∗)= d(xkn ,T(x∗))

≤ s[d(xkn ,T(xkn))+H(T(xkn),T(x∗))]

≤ s[H(xkn ,T(xkn))+H(T(xkn),T(x∗))]

≤ s[H(xkn ,T(xkn))+ψ(xkn , x∗)].

Thus we get d(xkn , x∗)− sψ(xkn , x∗)≤ sH(xkn ,T(xkn)). Since ξ(r) := r− sψ(r), we have

ξ(d(xkn , x∗))= d(xkn , x∗)− sψ(xkn , x∗).

This implies that

d(xkn , x∗)≤ ξ−1(sH(xkn ,T(xkn))).
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Since H(xkn ,T(xkn)) → 0, as n →∞. It implies that xn → x∗, as n →∞. Therefore, the fixed
point problem is well-posed in the generalized sense for T with respect to H.

Theorem 4.7. Let (X ,d) be a complete b-metric space with coefficient s, T : X → P (X ) and
α,η : X × X → [0,∞) be three mappings and ψ ∈Ψb. Suppose that

(i) The hypotheses of Theorem 2.4, Theorem 3.3 and condition (D1) hold.

(ii) For any xn is a sequence in X with D(xn,T(xn))→ 0, as n →∞, we have xn → x∗, as n →∞.

Then, the fixed point problem is well-posed for T with respect to D.

Proof. By Theorem 2.1 and Theorem 2.4, there is a point x∗ ∈ X such that x∗ ∈ SFix(T). Let
{xn} be sequence in X such that D(xn,T(xn)) → 0, as n → ∞. Then for zn ∈ T(xn) such that
d(xn, zn)= D(xn,T(xn)) for all n ∈N and by condition (D1), we get

α(xn, x∗)≥ η(xn, x∗) for all n ∈N.

Since, T is α∗-admissible with respect to η. So, we have

α(T(xn),T(x∗))≥ η(T(xn),T(x∗)) for all n ∈N.

Now, we have

d(xn, x∗)= d(xn,T(x∗))

≤ s[d(xn,T(xn))+D(T(xn),T(x∗))]

≤ s[d(xn, zn)+D(zn,T(x∗))]

≤ s[d(xn, zn)+H(T(xn),T(x∗))]

≤ s[D(xn,T(xn))+ψ(xn, x∗)].

Thus we get d(xn, x∗)− sψ(xn, x∗)≤ sD(xn,T(xn)). Since ξ(r) := r− sψ(r), we have

ξ(d(xn, x∗))= d(xn, x∗)− sψ(xn, x∗).

This implies that

d(xn, x∗)≤ ξ−1(sD(xn,T(xn))).

Since D(xn,T(xn))→ 0, as n →∞. It implies that xn → x∗, as n →∞. Therefore, the fixed point
problem is well-posed for T with respect to D.

Theorem 4.8. Let (X ,d) be a complete b-metric space with coefficient s, T : X → P (X ) and
α,η : X × X → [0,∞) be three mappings and ψ ∈Ψb. Suppose that

(i) The hypotheses of Theorem 2.4, Theorem 3.3 and condition (D2) hold.

(ii) For xn is a sequence in X with D(xn,T(xn))→ 0, as n →∞, there exists a subsequence {xkn}
of xn such that xkn → x∗, as n →∞ and D(xkn ,T(xkn))→ 0, as n →∞.

Then, the fixed point problem is well-posed in the generalized sense for T with respect to D.

Communications in Mathematics and Applications, Vol. 7, No. 3, pp. 241–262, 2016



260 Ulam-Hyers Stability and Well-Posedness of the Fixed Point Problems . . . : S. Phiangsungnoen

Proof. By Theorem 2.1 and Theorem 2.4, we know that SFix(T) 6= ;. Let {xn} be sequence in X
such that D(xn,T(xn))→ 0, as n →∞. Let {xkn} be a subsequence of xn. Then for wkn ∈ T(xkn)
such that d(xkn ,wkn)= D(xkn ,T(xkn)) for all n ∈N and by condition (D2), we get

α(xkn , x∗)≥ η(xkn , x∗) for all n ∈N.

Since, T is α∗-admissible with respect to η. So, we have

α(T(xkn),T(x∗))≥ η(T(xkn),T(x∗)) for all n ∈N.

Now, we have

d(xkn , x∗)= d(xkn ,T(x∗))

≤ s[d(xkn ,T(xkn))+D(T(xkn),T(x∗))]

≤ s[d(xkn ,wkn)+D(wkn ,T(x∗))]

≤ s[d(xkn ,wkn)+H(T(xkn),T(x∗))]

≤ s[D(xkn ,T(xkn))+ψ(xn, x∗)].

Thus we get d(xkn , x∗)− sψ(xkn , x∗)≤ sD(xkn ,T(xkn)). Since ξ(r) := r− sψ(r), we have

ξ(d(xkn , x∗))= d(xkn , x∗)− sψ(xkn , x∗).

This implies that

d(xkn , x∗)≤ ξ−1(sD(xkn ,T(xkn))).

Since D(xkn ,T(xkn))→ 0, as n →∞. It implies that xn → x∗, as n →∞. Therefore, the fixed point
problem is well-posed in the generalized sense for T with respect to D.
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