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1. Introduction
This paper is inspired by the recent paper [13], where the authors introduced and investigated
a (p,k)-analogue of the Gamma function. In this paper, our objective is to establish inequalities
for certain ratios involving the (p,k)-Gamma function. We begin by recalling the following
definitions pertaining to our results.

The classical Euler’s Gamma function, Γ(x) may be defined for x > 0 by

Γ(x)=
∫ ∞

0
tx−1e−t dx = lim

n→∞
n!nx

x(x+1)(x+2) . . . (x+n)

satisfying the basic properties:

Γ(n+1)= n!, n ∈Z+∪ {0},
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Γ(x+1)= xΓ(x), x ∈R+.

Closely associated with the Gamma function is the Digamma or Psi function ψ(x), which is
defined for x > 0 as the logarithmic derivative of the Gamma function. That is,

ψ(x)= d
dx

lnΓ(x)= Γ′(x)
Γ(x)

=−γ+ (x−1)
∞∑

n=0

1
(n+1)(n+ x)

=−γ− 1
x
+

∞∑
n=1

x
n(n+ x)

(1.1)

where γ= lim
n→∞

(
n∑

k=1

1
k − lnn

)
= 0.577215664 . . . is the Euler-Mascheroni’s constant.

The p-analogue (also known as p-generalization, p-extension or p-deformation) of the
Gamma function is defined for p ∈N and x > 0 as

Γp(x)= p!px

x(x+1) . . . (x+ p)

where lim
p→∞Γp(x)=Γ(x) (see [1, p. 270]). It satisfies the identities:

Γp(x+1)= px
x+ p+1

Γp(x),

Γp(1)= p
p+1

.

The p-analogue of the Digamma function is defined for x > 0 as

ψp(x)= d
dx

lnΓp(x)=
Γ′

p(x)

Γp(x)
= ln p−

p∑
n=0

1
n+ x

. (1.2)

In 2007, Díaz and Pariguan [2] also defined the k-analogue of the Gamma function for k > 0
and x ∈C\kZ− as

Γk(x)=
∫ ∞

0
tx−1e−

tk
k dt = lim

n→∞
n!kn(nk)

x
k−1

(x)n,k

where lim
k→1

Γk(x)=Γ(x) and (x)n,k = x(x+k)(x+2k) . . . (x+(n−1)k) is the Pochhammer k-symbol.

It also satisfies the identities:

Γk(x+k)= xΓk(x), x ∈ R+

Γk(k)= 1

The k-analogue of the Digamma function is also defined for x > 0 as

ψk(x)= d
dx

lnΓk(x)= Γ′
k(x)

Γk(x)
= lnk−γ

k
− 1

x
+

∞∑
n=1

x
nk(nk+ x)

. (1.3)
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Then in the recent paper [13], the authors introduced a (p,k)-analogue of the Gamma function,
defined for p ∈N, k > 0 and x > 0 as

Γp,k(x)=
∫ p

0
tx−1

(
1− tk

pk

)p

dt

= (p+1)!kp+1(pk)
x
k−1

x(x+k)(x+2k) . . . (x+ pk)

satisfying the identities:

Γp,k(x+k)= pkx
x+ pk+k

Γp,k(x),

Γp,k(ak)= p+1
p

ka−1Γp(a), a ∈R+,

Γp,k(k)= 1.

Similarly, the (p,k)-analogue of the Digamma function is defined as the logarithmic derivative
of the function Γp,k(x). That is

ψp,k(x)= d
dx

lnΓp,k(x)=
Γ′

p,k(x)

Γp,k(x)

= 1
k

ln(pk)−
p∑

n=0

1
(nk+ x)

(1.4)

= 1
k

ln(pk)−
∫ ∞

0

1− e−k(p+1)t

1− e−kt e−xt dt .

The functions Γp,k(x) and ψp,k(x) satisfy the following commutative diagrams.

Γp,k(x)

k→1
��

p→∞
// Γk(x)

k→1
��

Γp(x)
p→∞

// Γ(x)

ψp,k(x)

k→1
��

p→∞
// ψk(x)

k→1
��

ψp(x)
p→∞

// ψ(x)

Moreover, ψp,k(x) is increasing for x > 0 since ψ′
p,k(x)=

p∑
n=0

1
(nk+x)2 > 0.

2. Main Results
Let us begin with the following Lemmas, which will be used in the sequel.

Lemma 2.1. Let α> 0, β> 0, a > 0, b > 0, p ∈N and k > 0. Then,

aγ+ b
k

ln(pk)+ a
α+βx

+aψ(α+βx)−bψp,k(α+βx)> 0. (2.1)
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Proof. Let x > 0. Then from (1.1) and (1.4), we obtain

aγ+ b
k

ln(pk)+ a
x
+aψ(x)−bψp,k(x)= a

∞∑
n=1

x
n(n+ x)

+b
p∑

n=0

1
nk+ x

> 0.

Then, replacing x by α+βx completes the proof.

Lemma 2.2. Let α> 0, β> 0, a ≥ b > 0, p ∈N and k ≥ 1. Then,

−a ln p+ b
k

ln(pk)+aψp(α+βx)−bψp,k(α+βx)≤ 0. (2.2)

Proof. Let x > 0. Then from (1.2) and (1.4), we obtain

−a ln p+ b
k

ln(pk)+aψp(x)−bψp,k(x)= b
p∑

n=0

1
nk+ x

−a
p∑

n=0

1
n+ x

≤ 0 .

Then, replacing x by α+βx completes the proof.

Lemma 2.3. Let α> 0, β> 0, a > 0, b > 0, p ∈N and k > 0. Then,

−a
k

lnk+ aγ
k

+ b
k

ln(pk)+ a
α+βx

+aψk(α+βx)−bψp,k(α+βx)> 0. (2.3)

Proof. Let x > 0. Then from (1.3) and (1.4), we obtain

−a
k

lnk+ aγ
k

+ b
k

ln(pk)+ a
x
+aψk(x)−bψp,k(x)= a

∞∑
n=1

x
nk(nk+ x)

+b
p∑

n=0

1
nk+ x

> 0.

Then, replacing x by α+βx completes the proof.

Lemma 2.4. Let α, β, λ, δ, a and b be positive real numbers such that bδ ≥ aβ and
α+βx ≤λ+δx. For p ∈N and k > 0, if either:

(i) ψp,k(α+βx)> 0 or

(ii) ψp,k(λ+δx)> 0,

then, aβψp,k(α+βx)−bδψp,k(λ+δx)≤ 0.

Proof. (i) Let ψp,k(α+βx)> 0. Then, since ψp,k(x) is increasing for x > 0, we have

ψp,k(λ+δx)≥ψp,k(α+βx)> 0.

This together with the fact that bδ≥ aβ> 0 yields

bδψp,k(λ+δx)≥ aβψp,k(λ+δx)≥ aβψp,k(α+βx).

Thus aβψp,k(α+βx)−bδψp,k(λ+δx)≤ 0.

(ii) Let ψp,k(λ+δx)> 0. Then, there two possible values of ψp,k(α+βx). That is, either ψp,k(α+
βx) ≤ 0 or ψp,k(α+βx) > 0. If ψp,k(α+βx) ≤ 0, then aβψp,k(α+βx) ≤ 0 and aδψp,k(λ+δx) > 0
yielding aβψp,k(α+βx)−bδψp,k(λ+δx)≤ 0 as required. If ψp,k(α+βx)> 0, then the procedure
coincides with (i) above.
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Theorem 2.1. Define a function F for x ∈ (0,∞), p ∈N and k > 0 by

F(x)= eaβγx(α+βx)aΓ(α+βx)a

(pk)−
bβx

k Γp,k(α+βx)b
,

where a, b, α, β are positive real numbers. Then F is increasing on x ∈ (0,∞) and the inequality(
α

α+βx

)a e−aβγx

(pk)
bβx

k

Γ(α)a

Γp,k(α)b < Γ(α+βx)a

Γp,k(α+βx)b

<
(
α+β
α+βx

)a eaβγ(1−x)

(pk)
bβ
k (x−1)

Γ(α+β)a

Γp,k(α+β)b (2.4)

is valid for x ∈ (0,1).

Proof. Let f (x)= lnF(t) for x ∈ (0,∞). That is,

f (x)= aβγx+ bβx
k

ln(pk)+a ln(α+βx)+a lnΓ(α+βx)−b lnΓp,k(α+βx).

Then,

f ′(x)= aβγ+ bβ
k

ln(pk)+ aβ
α+βx

+aβψ(α+βx)−bβψp,k(α+βx)

=β

[
aγ+ b

k
ln(pk)+ a

α+βx
+aψ(α+βx)−bψp,k(α+βx)

]
> 0

as a result of Lemma 2.1. That implies f is increasing on x ∈ (0,∞). Thus, F is also increasing
and for x ∈ (0,1) we have,

F(0)< F(x)< F(1)

yielding the result (2.4).

Theorem 2.2. Define a function G for x ∈ (0,∞), p ∈N and k ≥ 1 by

G(x)= (pk)
bβx

k Γp(α+βx)a

paβxΓp,k(α+βx)b ,

where a, b, α, β are positive real numbers such that a ≥ b. Then G is decreasing on x ∈ (0,∞)
and the inequality

paβ(x−1)

(pk)
bβ
k (x−1)

Γ(α+β)a

Γp,k(α+β)b ≤ Γp(α+βx)a

Γp,k(α+βx)b

≤ paβx

(pk)
bβx

k

Γ(α)a

Γp,k(α)b (2.5)

is valid for x ∈ (0,1), with equality when a = b and k = 1.
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Proof. Let g(x)= lnG(t) for x ∈ (0,∞). That is,

g(x)=−aβx ln p+ bβx
k

ln(pk)+a lnΓp(α+βx)−b lnΓp,k(α+βx).

Then,

g′(x)=−aβ ln p+ bβ
k

ln(pk)+aβψp(α+βx)−bβψp,k(α+βx)

=β

[
−a ln p+ b

k
ln(pk)+aψp(α+βx)−bψp,k(α+βx)

]
≤ 0

as a result of Lemma 2.2. Thus, G is decreasing and for x ∈ (0,1) we have,

G(1)≤G(x)≤G(0)

yielding the result (2.5).

Theorem 2.3. Define a function H for x ∈ (0,∞), p ∈N and k > 0 by

H(x)= e
aβγx

k (α+βx)aΓk(α+βx)a

k
aβx

k (pk)−
bβx

k Γp,k(α+βx)b
,

where a, b, α, β are positive real numbers. Then H is increasing on x ∈ (0,∞) and the inequality(
α

α+βx

)a k
aβx

k

e
aβγx

k (pk)
bβx

k

Γk(α)a

Γp,k(α)b < Γk(α+βx)a

Γp,k(α+βx)b

<
(
α+β
α+βx

)a k
aβ
k (x−1)

e
aβγ

k (x−1)(pk)
bβ
k (x−1)

Γk(α+β)a

Γp,k(α+β)b (2.6)

is valid for x ∈ (0,1).

Proof. Let h(x)= lnH(t) for x ∈ (0,∞). That is,

h(x)=−aβx
k

lnk+ aβγx
k

+ bβx
k

ln(pk)+a ln(α+βx)+a lnΓk(α+βx)−b lnΓp,k(α+βx).

Then,

h′(x)=−aβ
k

lnk+ aβγ
k

+ bβ
k

ln(pk)+ aβ
α+βx

+aβψk(α+βx)−bβψp,k(α+βx)

=β

[
−a

k
lnk+ aγ

k
+ b

k
ln(pk)+ a

α+βx
+aψk(α+βx)−bψp,k(α+βx)

]
> 0

as a result of Lemma 2.3. Thus, H is increasing and for x ∈ (0,1) we have,

H(0)< H(x)< H(1)

yielding the result (2.6).
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Remark 2.1. Let a = b =β= 1 and k → 1 in either (2.4) or (2.6), then we obtain( α

α+ x

) e−γx

px
Γ(α)
Γp(α)

< Γ(α+ x)
Γp(α+ x)

<
(
α+1
α+ x

)
eγ(1−x)

p(x−1)
Γ(α+1)
Γp(α+1)

(2.7)

which is weaker than the results:

e−γx

px
Γ(α)
Γp(α)

< Γ(α+ x)
Γp(α+ x)

< eγ(1−x)

p(x−1)
Γ(α+1)
Γp(α+1)

(2.8)

obtained by Krasniqi and Shabani in Theorem 3.3 of [4].

Remark 2.2. Inequalities of type (2.4), (2.5) and (2.6) have been investigated intensively in the
papers [5], [6], [8], [9], [10], [11] and [12].

Theorem 2.4. Define a function T for x ∈ [0,∞), p ∈N and k > 0 by

T(x)= Γp,k(α+βx)a

Γp,k(λ+δx)b

where α, β, λ, δ, a and b are positive real numbers such that α+βx ≤λ+δx, aβ≤ bδ and either
ψp,k(α+βx)> 0 or ψp,k(λ+δx)> 0. Then T is decreasing and the inequality

Γp,k(α+β)a

Γp,k(λ+δ)b ≤ Γp,k(α+βx)a

Γp,k(λ+δx)b ≤ Γp,k(α)a

Γp,k(λ)b (2.9)

is valid for x ∈ [0,1].

Proof. Let u(x)= lnT(x) for x ∈ [0,∞). That is,

u(x)= a lnΓp,k(α+βx)−b lnΓp,k(λ+δx)

Then,

u′(x)= aβ
Γ′

p,k(α+βx)

Γp,k(α+βx)
−bδ

Γ′
p,k(λ+δx)

Γp,k(λ+δx)

= aβψp,k(α+βx)−bδψp,k(λ+δx)≤ 0

by Lemma 2.4. That implies u is decreasing. Consequently, T is also decreasing and for x ∈ [0,1]
we have,

T(1)≤ T(x)≤ T(0)

yielding the result (2.9).

Remark 2.3. Let k → 1 in Theorem 2.4, then we obtain the results for the p-analogue as
presented in Theorem 3.9 of [4].

Remark 2.4. Let p →∞ in Theorem 2.4, then we obtain the results for the k-analogue as
presented in Theorem 3.3 of [7].

Remark 2.5. Let p →∞ as k → 1 in Theorem 2.4, then we obtain the results of Theorem 2
of [3].
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3. Conclusion
By using some basic analytical techniques, we established some inequalities for certain ratios
involving the (p,k)-analogue of the Gamma function, which was recently introduced in [13].
The results provide generalizations of some previous results.
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