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1. Introduction
The contraction is important tools for proving the existence and uniqueness of a fixed point in
fixed point theory. Banach contraction principle [6] is one of most useful tools in the study of
nonlinear equations. Many authors were motivate to extend and generalizations of Banach’s
contraction mapping principle in the literature (see in [2, 7, 10, 11, 16, 17, 21]). Nadler [21]
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studies multi-valued contraction mappings, he proves some fixed point theorem for multivalued
contraction mappings by combined the ideas of set-valued mapping and Lipschitz mapping. The
concept of fuzzy sets was introduced by Zadeh [27] in 1965.

In 1981, Heilpern [17] achieve a fixed point theorem for fuzzy contraction mappings, he
also proved the existence of a fuzzy fixed point theorem which is generalization of Nadler’s
fixed point theorem for multivalued mapping. Phiangsungnnoen and Kumam [23] studied fuzzy
fixed point theorems for multivalued fuzzy contractions in b-metric spaces. In addition, many
author studied about fixed point results of fuzzy mappings is referred to [1,4,15,24]. Bakhtin [5]
introduced the concept of b-metric space, which is a generalization of metric spaces. On the
other hand, in 2012, Wardowski [25] suggested the concept of contraction and prove a fixed
point theorem which generalizations Banach. Since then, many authors investigated fixed point
theorem for F-contraction mappings [18–20,22,26].

In this paper, we suggest the new concept of multivalued fuzzy F-contraction mappings in
b-metric spaces. We prove the existence of an α-fuzzy fixed point theorem in b-metric spaces.
Our results improve and extend some fixed point results in original multivalued mappings and
also in b-metric spaces.

2. Preliminaries
Firstly, we recall some basic definitions and results which will be used in the sequel. Throughout
this paper, N , R and R+ denote the set of natural numbers, real numbers and positive real
numbers, respectively.

Definition 2.1 ( [5]). Let X be a nonempty set and let s ≥ 1 be a real number. A function
d : X × X → [0,∞) is said to be a b-metric on X if it satisfies for all x, y, z ∈ X , the following
conditions:

(i) d(x, y)= 0 if and only if x = y;

(ii) d(x, y)= d(y, x) for all x, y ∈ X ;

(iii) d(x, z)≤ s[d(x, y)+d(y, z)].

A pair (X ,d) is called a b-metric space.

Remark 2.2. From the definition of b-metric spaces if we set s = 1, it turns into normal metric
spaces. Therefore, b-metric spaces are the extension of metric spaces.

Example 2.3 ( [8]). The space lp with 0< p < 1, define lp =
{

{xn}⊂ R :
∞∑

n=1
| xn |p<∞

}
, together

with the function d : lp × lp → R,

d(x, y)=
( ∞∑

n=1
| xn − yn |p

) 1
p

,

where x = {xn}, y= {yn} ∈ lp is a b-metric space with coefficient s = 1
2p = 2

1
p > 1. By an primary

calculation we obtain that

d(x, z)≤ 2
1
p [d(x, y)+d(y, z)].
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Example 2.4 ( [8]). Let t ∈ [0,1], the Lp (0< p < 1) of all real function x(t) such that∫ 1
0 | x(t) |p dt <∞, is b-metric space if we take

d(x, y)=
[∫ 1

0
| x(t)− y(t) |p dt

] 1
p

for all x, y ∈ Lp .

Definition 2.5 ( [9]). Let (X ,d) be a b-metric space.

(i) The sequence {xn} in X is called convergent to x ∈ X if and only if d(xn, x)→ 0 as n →∞.

(ii) The sequence {xn} in X is called Cauchy sequence if and only if d(xn, xm)→ 0 as m,n →∞.

(iii) The sequence {xn} in X is called complete if and only if every Cauchy sequence is
convergent.

Let (X ,d) be a b-metric space, denote CL(X ) be the class of all nonempty closed subset of X .
CB(X ) be the collection of nonempty, closed and bounded subsets of X . And K(X ) be the family
of all nonempty compact subsets of X . For A,B ∈ CL(X ) and x ∈ X , we define

d(x, A)= inf{d(x,a) : a ∈ A},

γ(A,B)= sup
a∈A

d(a,B).

The generalized Hausdorff b-metric H on CL(X ) inducted by d is defined as

H(A,B)=
{

max{γ(B, A),γ(A,B)} if the maximum exists;
+∞ otherwise,

for every A,B ∈ CL(X ).

Lemma 2.6 ( [12–14]). Let (X ,d) be a b-metric space. For all x, y ∈ X and for all A,B,C ∈ CL(X ),
we have the following:

(i) d(x,b)≥ d(x,B) for every b ∈ B;

(ii) H(A,B)≥ d(x,B) for every x ∈ A;

(iii) H(A,B)≥ γ(A,B);

(iv) H(A, A)= 0;

(v) H(B, A)= H(A,B);

(vi) s (H(A,B)+H(B,C))≥ H(A,C);

(vii) s (d(x, y)+d(y, A))≥ d(x, A).

Let (X ,d) be a b-metric space. A fuzzy set D in X is a function from X into [0,1]. If x ∈ X ,
then the function value D(x) is called the grade of membership of x ∈ D. F (X ) is the collection
of all fuzzy sets in X .

For α ∈ [0,1] and D ∈F (X ). The notation [D]α is called α-level set (or α-cut set) of D and is
defined as follows:

[D]α = {x : D(x)≥α} if α ∈ (0,1],

and

[D]0 = {x : D(x)> 0},
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whenever B̄ denotes the closure of the set B in X .
Let A and B are fuzzy set in X . A fuzzy set A is said to be more accurate than fuzzy set B,

denote by A ⊂ B if and only if A(x)≤ B(x) for all x in X where the membership function of A
and B denote by A(x) and B(x), respectively.

For A,B ∈F (X ), x ∈ X , α ∈ [0,1] and [A]α, [B]α ∈ CB(X ), define

d(x, A)= inf
a∈A

d(x,a),

pα(x, A)= inf
a∈[A]α

d(x,a),

pα(A,B)= inf
a∈[A]α,b∈[B]α

d(a,b),

p(A,B)= sup
α

pα(A,B),

H ([A]α, [B]α)=max

{
sup

a∈[A]α
d(a, [B]α), sup

b∈[B]α
d(b, [A]α)

}
.

Definition 2.7. Let X be an arbitrary set and Y be a b-metric space. A mapping T : X →F (Y )
is called a fuzzy mapping over the set Y .

Definition 2.8. Let (X ,d) be a b-metric space and T : X →F (X ) be a fuzzy mapping. A point c
in X is called an α-fuzzy fixed point of T if c ∈ [Tc]α(c).

Next, we consider the following conditions for a mapping F : R+ → R.
Let F∗ be the set of all functions F : R+ → R satisfying the following conditions:

(F1) F is strictly increasing, that is, for all α,β ∈ R+ such that α<β implies F(α)< F(β);

(F2) for each sequence {αn}n∈N of positive numbers lim
n→∞αn = 0 if and only if lim

n→∞F(αn)=−∞;

(F3) there exists k ∈ (0,1) such that lim
α→0+α

kF(α)= 0.

Definition 2.9 ( [25]). Let (X ,d) be a metric space and a mapping T : X → X is said to be an
F-contraction on X if F ∈ F∗ and there exists τ> 0 such that

∀ x, y ∈ X , [d(Tx,T y)> 0 ⇒ τ+F(d(Tx,T y))≤ F(d(x, y))].

Example 2.10 ( [25]). The following function F : R+ → R in F∗ :

(1) F1(t1)= ln t1, with t1 > 0,

∀ x, y ∈ X , d(Tx,T y)≤ e−τd(x, y)

(2) F2(t2)= ln t2 + t2, with t2 > 0,

∀ x, y ∈ X ,
d(Tx,T y)

d(x, y)
ed(Tx,T y)−d(x,y) ≤ e−τ

(3) F3(t3)= −1p
t3

, with t3 > 0,

∀ x, y ∈ X , d(Tx,T y)≤ 1(
1+τ

√
d(x, y)

)2 d(x, y).
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Remark 2.11. Warodowski [25] concluded that every F -contraction T is a contractive mapping,
i.e., d(Tx,T y) < d(x, y), for all x, y ∈ X , Tx 6= T y. Hence, every F-contraction is a continuous
mapping.

3. Main Results
In this part, in the framework of a b-metric space, we state and prove the existence result of an
α-fuzzy fixed point theorem for multivalued fuzzy F-contraction mappings as follows:

Theorem 3.1. Let (X ,d) be a complete b-metric space and coefficient s ≥ 1, let T : X →F (X ) be
a fuzzy mapping and α : X → (0,1] such that [Tu]α(u) is a nonempty closed subset of X for all
u ∈ X and F ∈ F∗ if there exists τ> 0 such that for all u,v ∈ X ,H

(
[Tu]α(u), [Tv]α(v)

)> 0 implies

τ+F
(
H

(
[Tu]α(u), [Tv]α(v)

))≤ F (d(u,v)) , (3.1)

then T has an α-fuzzy fixed point.

Proof. Let u0 ∈ X and u1 ∈ [Tu0]α(u0). Since [Tu1]α(u1) is a nonempty closed subset of X . Clearly,
if u0 = u1 or u1 ∈ [Tu1]α(u1), so u1 is an α-fuzzy fixed point of T . So the proof is complete. Suppose
that u0 6= u1 and u1 ∉ [Tu1]α(u1). Then, since [Tu1]α(u1) is closed, d

(
u1, [Tu1]α(u1)

)> 0. On the
other hand, from

d
(
u1, [Tu1]α(u1)

)≤ H
(
[Tu0]α(u0), [Tu1]α(u1)

)
and by (F1), we have

F
(
d(u1, [Tu1]α(u1))

)≤ F
(
H

(
[Tu0]α(u0), [Tu1]α(u1)

))
.

From (3.1), we can write that

F
(
d(u1, [Tu1]α(u1))

)≤ F
(
H

(
[Tu0]α(u0), [Tu1]α(u1)

))≤ F (d(u1,u0))−τ. (3.2)

Since, [Tu1]α(u1) is a nonempty closed subset of X . We obtain that there exists u2 ∈ [Tu1]α(u1)
and u1 6= u2 such that

d(u1,u2)= d
(
u1, [Tu1]α(u1)

)
.

Then, from (3.2), we get

F (d(u1,u2)≤ F
(
H

(
[Tu0]α(u0), [Tu1]α(u1)

))≤ F (d(u1,u0))−τ. (3.3)

By induction, we obtain a sequence {un} in X such that un+1 ∈ [Tun]α(un) and

F (d (un,un+1))≤ F (d (un,un−1))−τ (3.4)

for all n = 0,1,2, . . . If there exists n0 ∈ N for which
{
un0

} ∈ [Tun0]α(un0 ), then
{
un0

}
is an

α-fuzzy fixed point of T and so the proof is complete. Thus, suppose that for every n ∈ N ,
{un} ∉ [Tun]α(un). Let cn := d (un,un+1) for n = 0,1,2, . . . then cn > 0 for all n ∈ N and using (3.4),
the following hold:

F(cn)≤ F(cn−1)−τ

≤ F(cn−2)−2τ
...

≤ F(c0)−nτ. (3.5)
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Since, F ∈ F∗, from (3.5), we obtain lim
n→∞F(cn)=−∞. Thus, from (F2) we have

lim
n→∞ cn = 0.

From (F3), there exists k ∈ (0,1) such that

lim
n→∞ ck

nF(cn)= 0.

By (3.5), the following holds for all n ∈ N ,

ck
nF(cn)− ck

nF(c0)≤−ck
nnτ≤ 0. (3.6)

By taking lim as n →∞ in (3.6), we obtain

lim
n→∞nck

n = 0. (3.7)

From (3.7), there exists n1 ∈ N such that

nck
n ≤ 1 (3.8)

for all n ≥ n1. This implies that

cn ≤ 1

n
1
k

(3.9)

for all n ≥ n1.

Next, we show that {un}∞n=1 is a Cauchy sequence.

Let m,n ∈ N with m > n, we have

d (un,um)≤ s [d (un,un+1)+d (un+1,un+2)+·· ·+d (um−1,um)]
= s (cn)+ s (cn+1)+·· · s (cm−1)

= s
m−1∑
i=n

ci

≤ s
∞∑

i=n
ci

≤ s
∞∑

i=1

1

i
1
k

.

By the convergence of the series
∞∑

i=1

1

i
1
k

passing to lim n →∞, we get

d (un,um)→ 0 as n →∞.

Hence, {un}∞n=1 is a Cauchy sequence in X . Since (X ,d) be a complete b-metric space, the
sequence {un} converge to some point u∗ ∈ X that is, from (F1), for all u,v ∈ X with

F
(
H

(
[Tu]α(u), [Tv]α(v)

))< F(d(u,v))

and so

H
(
[Tu]α(u), [Tv]α(v)

)≤ d(u,v)

for all u,v ∈ X . Then

d
(
un+1, [Tu∗]α(u∗)

)≤ H
(
[Tun]α(un), [Tu∗]α(u∗)

)
≤ d

(
un,u∗)

.

Communications in Mathematics and Applications, Vol. 7, No. 3, pp. 179–187, 2016



Fuzzy Fixed Point Theorems for Multivalued Fuzzy F -Contraction . . . : D. Hunwisai and P. Kumam 185

On the other hand, we have

d
(
u∗, [Tu∗]α(u∗)

)≤ sd
(
u∗, [Tun]α(un)

)+ sd
(
[Tun]α(un), [Tu∗]α(u∗)

)
= sd

(
u∗,un+1

)+ sd
(
un+1, [Tu∗]α(u∗)

)
≤ sd

(
u∗,un+1

)+ sd
(
un,u∗)

.

Passing to lim n →∞, we have

d
(
u∗, [Tu∗]α(u∗)

)= 0.

Thus, we get u∗ ∈ [Tu∗]α(u∗), that is, u∗ is an α-fuzzy fixed point of T . This complete the
proof.

Corollary 3.2. Let (X ,d) be a complete metric space, T : X → F (X ) be a fuzzy mapping and
α : X → (0,1] such that [Tu]α(u) is a nonempty closed bounded subset of X for all u ∈ X and
F ∈ F∗ if there exists τ> 0 such that for all u,v ∈ X ,H

(
[Tu]α(u), [Tv]α(v)

)> 0 implies

τ+F
(
H

(
[Tu]α(u), [Tv]α(v)

))≤ F (d(u,v)) ,

then T has an α-fuzzy fixed point.

Remark 3.3. In Corollary 3.2, we set s = 1, so b-metric spaces it is turns into complete metric
spaces.

Corollary 3.4. Let (X ,d) be a complete b-metric space, let coefficient s ≥ 1 and T : X → K(X ) be
a multivalued mapping such that Tu is a nonempty closed subset of X for all u ∈ X and F ∈ F∗

if there exists τ> 0 such that

τ+F (H(Tu,Tv))≤ F(d(u,v)),

for all u,v ∈ X , then T has a fixed point in X .

Remark 3.5. In Corollary 3.4, if we set s = 1, we find theorem of Altun et al. [3]. Therefore,
Corollary 3.4 is and extension the result of Altun et al. [3].

4. Conclusion
In this work, we first suggest the new concept of multivalued fuzzy F-contraction mappings.
We also prove the existence of an α-fuzzy fixed point theorem in b-metric spaces. Our results
improve and extend some fixed point results for multivalued mappings in b-metric spaces and
also extension the result of Altun et al. [3].
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