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1. Introduction and preliminaries

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer in 1952 to study some
deep questions in non-harmonic Fourier series. Today, frame theory is a central tool in many
areas such as function space and signal analysis. For an introduction to frame theory (see
[4, 12]).

g-frame, introduced by W. Sun in [18], is a generalization of frame which covers many
extensions of frames, e.g. pseudo-frames, outer frames, oblique frames, continuous frames, and
fusion frames. Recently, g-frames in Hilbert spaces have been studied intensively.

Since the investigation of Bessel sequences (g-Bessel sequences) is essential for study of
frames (g-frames), in literature there are many studies about Bessel sequences (g-Bessel
sequences). For instance, the authors in [3], have studied finite extensions of Bessel sequences
in infinite dimensional Hilbert spaces. The authors in [16], have investigated some equalities
and inequalities for g-Bessel sequences in Hilbert spaces with pseudo-inverse operators. In the
references [2, 6], the authors showed that the set of all Bessel sequences for H is a Banach
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space and obtained important results. Also, in [7], the authors gave a C∗-algebra structure to
the set of all Bessel sequences for H.

Let H be a separable Hilbert space. Let gB, gF , gR , and gO be the set of all g-Bessel
sequences, g-frames, g-Riesz bases, g-orthonormal bases for H, respectively. In this paper, we
show that gB is a C∗-algebra isometrically isomorphic to L(H) (the algebra of all bounded
linear operators of H). Also, we classify g-Bessel sequences for H in terms of different kinds
of operators in L(H). Using a bijection between the set gB and L(H) we obtain interesting
results in g-frames. Using operator theory tools, we investigate geometry of g-Bessel sequences.
More precisely, we show that gF is a disconnected open subset of gB, and we characterize the
connected components of gF . Also, we show that gR is arcwise connected and open in gB, and
the set gO is a both open and closed and arcwise connected.

By using this geometric properties, we get some results, e.g. since gB, gF are open sets, we
can say that they are stable under small perturbations and since gR is arcwise connected, we
can get some results for the sum of two g-Riesz bases and so on.

Throughout this paper H denotes a separable Hilbert space with inner product 〈·, ·〉 and
{Hi : i ∈N} is a sequence of separable Hilbert spaces. Also, for every i ∈N, L(H,Hi) is the set
of all bounded linear operators from H to Hi and L(H) is the algebra of all bounded linear
operators on H. For an operator T ∈ L(H) we write T∗ for its adjoint, ker(T) for its kernel, and
R(T) for its range.

In the rest of this section we review several well-known definitions and results. The new
results are stated in Section 2.

For every sequence {Hi}i∈N, the space(∑
i∈N

⊕
Hi

)
`2

=
{

( f i)i∈N : f i ∈ Hi, i ∈N,
∑
i∈N

‖ f i‖2 <∞
}

with pointwise operations and the following inner product is a Hilbert space

〈( f i)i∈N, (g i)i∈N〉 =
∑
i∈N

〈 f i, g i〉.

A sequence Λ= {Λi ∈ L(H,Hi) : i ∈N} is called a g-frame for H with respect to {Hi : i ∈N} if
there exist A,B > 0 such that for every f ∈ H

A‖ f ‖2 ≤ ∑
i∈N

‖Λi f ‖2 ≤ B‖ f ‖2,

A,B are called g-frame bounds. We call Λ a tight g-frame if A = B and a Parseval g-frame if
A = B = 1. If only the right hand side inequality is required, Λ is called a g-Bessel sequence.

If Λ is a g-Bessel sequence, then the synthesis operator for Λ is the linear operator,

TΛ :

(∑
i∈N

⊕
Hi

)
`2

7→ H TΛ( f i)i∈N = ∑
i∈N
Λ∗

i f i.

We call the adjoint of the synthesis operator, the analysis operator. The analysis operator is
the linear operator,

T∗
Λ : H 7→

(∑
i∈N

⊕
Hi

)
`2

T∗
Λ f = (Λi f )i∈N.
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We call SΛ = TΛT∗
Λ the g-frame operator of Λ and SΛ f = ∑

i∈N
Λ∗

iΛi f ( f ∈ H).

If Λ= (Λi)i∈N is a g-frame with lower and upper g-frame bounds A,B, respectively, then the
g-frame operator of Λ is a bounded, positive and invertible operator on H and

A〈 f , f 〉 ≤ 〈SΛ f , f 〉 ≤ B〈 f , f 〉 ( f ∈ H)

so

A · I ≤ SΛ ≤ B · I.

The canonical dual g-frame for Λ = (Λi)i∈N is defined by Λ̃ = (Λ̃i)i∈N, where Λ̃i = ΛiS−1
Λ

which is also a g-frame for H with lower and upper g-frame bounds 1
B and 1

A , respectively. Also
for every f ∈ H, we have

f = ∑
i∈N
Λ∗

i Λ̃i f = ∑
i∈N
Λ̃∗

iΛi f .

We say that Λ = {Λi ∈ L(H,Hi) : i ∈ N} is a g-frame sequence if it is a g-frame for
span{Λ∗

i (Hi)}i∈N. A sequence Λ = {Λi ∈ L(H,Hi) : i ∈ N} is g-complete if { f : Λi f = 0, for all
i ∈N} = {0}. We note that the g-Bessel sequence Λ is g-complete if and only if T∗

Λ is injective.
We say Λ is a g-orthonormal basis for H, if

〈Λ∗
i f i,Λ∗

j f j〉 = δi, j〈 f i, f j〉, ∀ f i ∈ Hi, f j ∈ H j, i, j ∈N
and ∑

i∈N
‖Λi f ‖2 = ‖ f ‖2 ( f ∈ H).

A sequence Λ= {Λi ∈ L(H,Hi) : i ∈N} is a g-Riesz sequence if there exist A,B > 0 such that
for every finite subset F ⊂N, g i ∈ Hi , and i ∈ F

A
∑
i∈F

‖g i‖2 ≤
∥∥∥ ∑

i∈F
Λ∗

i g i

∥∥∥2
≤ B

∑
i∈F

‖g i‖2. (1.1)

g-Riesz sequence Λ= {Λi ∈ L(H,Hi) : i ∈N} is called a g-Riesz basis if it is g-complete, too.
Clearly, every g-orthonormal basis is a g-Riesz basis.

Let Λ = {Λi ∈ L(H,Hi) : i ∈ N} and Θ = {Θi ∈ L(H,Hi) : i ∈ N} be g-Bessel sequences with
g-Bessel bounds B and C, respectively. The operator SΛΘ : H 7→ H defined by

SΛΘ f = ∑
i∈N
Λ∗

iΘi f , ( f ∈ H)

is a bounded operator, ‖SΛΘ‖ ≤
p

BC, S∗
ΛΘ = SΘΛ and SΛΛ = SΛ.

Two g-Bessel sequences Λ= {Λi ∈ L(H,Hi) : i ∈N} and Θ= {Θi ∈ L(H,Hi) : i ∈N} are called
dual g-frames if

f = ∑
i∈N
Λ∗

iΘi f = ∑
i∈N
Θ∗

iΛi f , ( f ∈ H).

For more details about g-frames, see [1, 15, 18].

2. Main results
Let gB be the set of all g-Bessel sequences for H with respect to (Hi)i∈N. In the following
theorem, we show that gB is a C∗-algebra isometrically isomorphic to L(H).
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Theorem 2.1. Let gB be the set of all g-Bessel sequences for H with respect to (Hi)i∈N. For every
Λ = {Λi ∈ L(H,Hi) : i ∈ N} ∈ gB, set ‖Λ‖gB = ‖T∗

Λ‖ = ‖TΛ‖, then (gB,‖ · ‖gB) is a C∗-algebra
isometrically isomorphic to L(H).

Proof. It is easy to check that gB is a vector space, and ‖·‖gB is a norm. Let Υ= {Υi ∈ L(H,Hi) :
i ∈N} be a fixed g-orthonormal basis for H. Consider the mapping

AΥ : gB→ L(H) (2.1)

Λ= (Λi)∞i=1 → SΥΛ. (2.2)

Clearly, SΥΛ ∈ L(H) and AΥ is a well-defined bounded linear operator from gB to L(H). Consider
the mapping BΥ : L(H)→ gB by BΥ(T)= (ΥiT)∞i=1. For every f ∈ H

∞∑
i=1

‖ΥiT f ‖2 = ‖T f ‖2 ≤ ‖T‖2‖ f ‖2.

Therefore (ΥiT)∞i=1 ∈ gB and BΥ is a well-defined linear operator. Clearly BΥ is the inverse of
AΥ. Also, ‖AΥ(Λ)‖ = ‖SΥΛ‖ = ‖T∗

Λ‖ = ‖Λ‖gB.

Therefore gB is isometrically isomorphic to L(H). Completeness of L(H) implies that
(gB,‖ ·‖gB) is a Banach space.

Now, we define a multiplication on the Banach space gB. Define ·gB : gB× gB→ gB by
((Λi)∞i=1, (Θi)∞i=1)→ (ΥiSΥΛSΥΘ)∞i=1, which is well-defined, since for every f ∈ H

∞∑
i=1

‖ΥiSΥΛSΥΘ f ‖2 = ‖SΥΛSΥΘ f ‖2

≤ ‖(Λi)∞i=1‖gB ‖SΥΘ f ‖2

≤ ‖(Λi)∞i=1‖gB ‖(Θi)∞i=1‖gB ‖ f ‖2.

Therefore (ΥiSΥΛSΥΘ)∞i=1 ∈ gB. The above relation implies that

‖(Λi)∞i=1 ·gB (Θi)∞i=1)‖gB ≤ ‖(Θi)∞i=1‖gB ‖(Λi)∞i=1‖gB.

Also, (gB, ·gB,‖ · ‖gB) satisfies the usual algebraic rules. Thus (gB, ·gB,‖ · ‖gB) is a Banach
algebra.

Consider the mapping ∗gB : gB → gB by (Λi)∞i=1 → (ΥiSΛΥ)∞i=1. It is easy to check that
∗gB is an involution on gB, and for every (Λi)∞i=1 ∈ gB, ‖(Λi)∞i=1

∗gB ·gB (Λi)∞i=1‖gB = ‖(Λi)∞i=1‖2.
Moreover, AΥ is an algebraic isomorphism. Since for (Θi)∞i=1, (Λi)∞i=1 ∈ gB we have

AΥ((Λi)∞i=1 ·gB (Θi)∞i=1)= AΥ((ΥiSΥΛSΥΘ)∞i=1)

= SΥ(ΥiSΥΛSΥΘ)∞i=1

= SΥΛSΥΘ

= AΥ((Λi)∞i=1)AΥ((Θi)∞i=1),

and

AΥ((Λi)∞i=1
∗gB)= AΥ(ΥiSΛΥ)∞i=1 = SΥ(ΥiSΛΥ)∞i=1

= SΛΥ = (AΥ(Λi)∞i=1)∗gB .

Therefore, gB is a C∗-algebra isometrically isomorphic to L(H).
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In the following proposition, we give a characterization of g-Riesz bases.

Proposition 2.1. Let Λ= {Λi ∈ L(H,Hi) : i ∈N} be a g-Bessel sequence and Υ= {Υi ∈ L(H,Hi) :
i ∈N} be a g-Riesz basis. Then SΛΥ is an invertible linear operator on H if and only if Λ is a
g-Riesz basis. Moreover, SΛΥ−1 = SΥ̃Λ̃, where Λ̃ and Υ̃ are the dual g-Riesz bases of Λ and Υ,
respectively.

Proof. We know that SΛΥ = TΛT∗
Υ since Υ is a g-Riesz bases, then T∗

Υ is invertible (see [20]).
Therefore SΛΥ is invertible if and only if TΛ is invertible and this is equivalent to Λ is a g-Riesz
basis.

Now, we claim that SΛΥ−1 = SΥ̃Λ̃. For every f , g ∈ H,

〈SΛΥ ◦SΥ̃Λ̃ f , g〉 = 〈SΥ̃Λ̃ f ,SΥΛg〉 = ∑
i∈N

∑
k∈N

〈Υ̃∗
kΛ̃k f ,Υ∗

iΛi g〉

= ∑
i∈N

〈Λ̃i f ,Λi g〉 = 〈SΛΛ̃ f , g〉

= 〈 f , g〉.
Thus SΛΥ ◦SΥ̃Λ̃ f = f . Similarly, SΥ̃Λ̃ ◦SΛΥ f = f .

The following result has been proved in [18]. By Proposition 2.1, we give another proof for it.

Proposition 2.2. A sequence Λ= {Λi ∈ L(H,Hi) : i ∈N} is a g-Riesz basis for H if and only if
there exists a g-orthonormal basis Γ= {Γi ∈ L(H,Hi) : i ∈N} for H and an invertible operator T
on H such that Λi =ΓiT, for every i ∈N.

Proof. Let Λ= {Λi ∈ L(H,Hi) : i ∈N} be a g-Riesz basis for H, and let Γ= {Γi ∈ L(H,Hi) : i ∈N}
be a fixed g-orthonormal basis for H. By Proposition 2.1, T = SΓΛ ∈ L(H) is invertible and
ΓiT =Λi , for every i ∈N.

Conversely, suppose that there exist a g-orthonormal basis Γ= {Γi ∈ L(H,Hi) : i ∈N} for H
and an invertible operator T on H such that Λi = ΓiT, for every i ∈N. Clearly, (ΓiT)i∈N is a
g-Bessel sequence. Since Γ is a g-orthonormal basis, S(ΓiT)i∈NΓ = T∗. But T∗ is invertible, then
by Proposition 2.1, (ΓiT)i∈N = (Λi)i∈N is a g-Riesz basis for H.

In the following proposition, we give characterizations of g-frames and g-frame sequences.

Proposition 2.3. Let Υ= {Υi ∈ L(H,Hi) : i ∈N} be a g-Riesz basis for H and Λ= {Λi ∈ L(H,Hi) :
i ∈N} ∈ gB. Then the following statements hold:

(1) Λ is a g-frame if and only if SΛΥ is surjective.

(2) Λ is a g-frame sequence if and only if SΛΥ is a closed range operator.

Proof. (1) Clearly, SΛΥ = TΛT∗
Υ. Since Υ is a g-Riesz basis, then T∗

Υ is invertible. This easily
implies that R(SΛΥ) = R(TΛT∗

Υ) = R(TΛ). We know that Λ is a g-frame if and only if TΛ is
surjective and this is equivalent to SΛΥ is a surjective operator.

(2) Λ is a g-frame sequence if and only if TΛ is a closed range operator (see [19]). Now, a proof
similar to the proof of (1) proves the claim.
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In the following proposition, we give a characterization of g-Riesz sequences.

Proposition 2.4. Let Λ= {Λi ∈ L(H,Hi) : i ∈N} be a g-Bessel sequence and Υ= {Υi ∈ L(H,Hi) :
i ∈N} be a g-Riesz basis for H. Then the following statements are equivalent:

(1) Λ is a g-Riesz sequence.

(2) TΛ is an injective with closed range operator.

(3) SΛΥ is an injective with closed range operator.

Proof. (1)=⇒(2) Suppose that Λ is a g-Riesz sequence, then there exist constants A,B > 0 such

that for every (g i)∞i=1 ∈
( ∞∑

i=1
⊕Hi

)
`2

A‖(g i)∞i=1‖2 ≤ ‖TΛ((g i)∞i=1)‖2 ≤ B‖(g i)∞i=1‖2.

This implies that TΛ is an injective operator with closed range.

(2)=⇒(1) Suppose that TΛ is an injective operator with closed range, then there exists a constant

A > 0 such that for every (g i)∞i=1 ∈
( ∞∑

i=1
⊕Hi

)
`2

A‖(g i)∞i=1‖2 ≤ ‖TΛ((g i)∞i=1)‖2.

On the other hand, Λ is a g-Bessel sequence, then the upper bound condition is fulfilled, too.
Therefore, Λ is a g-Riesz sequence.

(2)⇐⇒(3) Since Υ is a g-Riesz basis, then R(SΛΥ)= R(TΛT∗
Υ)= R(TΛ). Also, it is easy to check

that SΛΥ is injective if and only if TΛ is injective. Now, by (1)⇐⇒(2) the claim is obvious.

We recall the following definition of g-Besselian frames.

Definition 2.1 ([8]). A g-frame Λ= {Λi ∈ L(H,Hi) : i ∈N} is called a g-Besselian frame for H if

the convergence of
∞∑

i=1
Λ∗

j g j implies that (g j)∞j=1 ∈ (
∞∑

i=1
⊕Hi)`2 .

Proposition 2.5. Let Υ= {Υi ∈ L(H,Hi) : i ∈N} be a g-Riesz basis for H. Let Λ= {Λi ∈ L(H,Hi) :
i ∈N} ∈ gB and dimHi <∞, for every i ∈N. Then Λ is a g-Besselian frame if and only if SΛΥ is
a surjective Fredholm operator.

Proof. Since Υ is a g-Riesz basis, easily we can see that dimkerTΛ = dimkerSΛΥ. By [8,
Theorem 2.3], Λ is a g-Besselian frame if and only if Λ is a g-frame and dimkerTΛ < ∞.
By Proposition 2.3, this is equivalent to SΛΥ is surjective, and dimkerSΛΥ = dimkerTΛ <∞.
Hence, SΛΥ is a surjective Fredholm operator.

Let Υ= {Υi ∈ L(H,Hi) : i ∈I } be a g-orthonormal basis for H. Consider the mapping

OΥ : gB→ L(H) (2.3)

Λ= (Λi)∞i=1 → SΛΥ. (2.4)

Clearly, SΛΥ ∈ L(H) and OΥ is a well-defined bounded anti-linear operator from gB to L(H).

Consider the mapping QΥ : L(H)→ gB by QΥ(T)= (ΥiT∗)∞i=1. For every f ∈ H
∞∑

i=1
‖ΥiT∗ f ‖2 = ‖T∗ f ‖2 ≤ ‖T∗‖2‖ f ‖2.

Communications in Mathematics and Applications, Vol. 7, No. 2, pp. 139–149, 2016



g-Bessel Sequences and Operators: A. Khosravi and F. Takhteh 145

Therefore (ΥiT∗)∞i=1 ∈ gB and QΥ is a well-defined anti-linear operator. Clearly QΥ is the
inverse of OΥ. Therefore OΥ is a bijection between gB and L(H). Also, ‖OΥ(Λ)‖ = ‖SΛΥ‖ =
‖TΛ‖ = ‖T∗

Λ‖ = ‖Λ‖gB and this implies that OΥ is continuous.

In the following proposition, by using the bijection OΥ, we characterize several classes of
bounded linear operators on H in terms of their corresponding g-Bessel sequences.

Proposition 2.6. Let Υ = {Υi ∈ L(H,Hi) : i ∈ I } be a g-orthonormal basis for H, and OΥ be
defied as (2.3). Then the following statements hold:

(1) Let A be the set of all unitary operators in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-orthonormal basis}.

(2) Let A be the set of all invertible operators in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-Riesz basis}.

(3) Let A be the set of all surjective operators in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-frame}.

(4) Let A be the set of all closed range operators in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-frame sequence}.

(5) Let A be the set of all injective and closed range operators in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-Riesz sequence}.

(6) Let A be the set of all partial isometries in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a Parseval g-frame sequence}.

(7) Let A be the set of all co-isometries in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a Parseval g-frame}.

(8) If dim(Hi) <∞, for every i ∈N, and A is the set of all surjective Fredholm operators in
L(H), then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-Besselian frame}.

(9) Let A be the set of all operators with dense range in L(H). Then

O−1
Υ (A )= {Λ= (Λi)∞i=1 ∈ gB :Λ is a g-complete}.

Proof. (1) It is enough to prove that T is a unitary operator if and only if (Θi)∞i=1 = (ΥiT∗)∞i=1 is
a g-orthonormal basis. Let T be a unitary operator. Then easily we can see (Θi)∞i=1 = (ΥiT∗)∞i=1
is a g-orthonormal basis for H.

Conversely, suppose that (ΥiT∗)∞i=1 is a g-orthonormal basis for H. For every f ∈ H we have

‖T∗ f ‖2 =
∞∑

i=1
‖ΥiT∗ f ‖2 = ‖ f ‖2.

Therefore T is a co-isometry operator. On the other hand, S(ΥiT∗)∞i=1Υ
= T . Since (ΥiT∗)∞i=1

is a g-orthonormal basis, then it is a g-Riesz basis, too. By Proposition 2.1, T is invertible.
Subsequently, T is a unitary operator.
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Similarly, we can see that the parts of (2), (3), (4), (5), (8) are consequences of 2.1, 2.3, 2.3,
2.4, 2.5, respectively. We omit details of the proofs.

(6) It is enough to prove that T is a partial isometry if and only if (Θi)∞i=1 = (ΥiT∗)∞i=1 is a
Parseval g-frame sequence. Let T be a partial isometry, then T∗T = PkerT⊥ (see [5]). Note that
R(T)= span∞

i=1(Θ∗
i Hi). If y ∈ R(T), then there exists a x ∈ kerT⊥ such that y= Tx. Hence

‖y‖2 = ‖Tx‖2 = ‖x‖2 = ‖T∗Tx‖2

=
∞∑

i=1
‖ΥiT∗Tx‖2 =

∞∑
i=1

‖ΥiT∗y‖2.

Therefore, (Θi)∞i=1 = (ΥiT∗)∞i=1 is a Parseval g-frame sequence.

Conversely, Suppose that (ΥiT∗)∞i=1 is a Parseval g-frame sequence. Then for every x ∈ H

‖Tx‖2 =
∞∑

i=1
‖ΥiT∗Tx‖2 = ‖T∗Tx‖2.

Therefore, T∗T is Projection. Subsequently, T is a partial isometry, see [9, Proposition 4.38].

(7) T ∈ L(H) is a co-isometry if and only if for every x ∈ H

‖x‖2 = ‖T∗x‖2 =
∞∑

i=1
‖ΥiT∗x‖2.

Therefore T is a co-isometry operator if and only if (ΥiT∗)∞i=1 is a Parseval g-frame, and this
proves the claim.

(9) By the definition of g-completeness, Λ ∈ gB is g-complete if and only if T∗
Λ is injective and

this equivalent to TΛ is an operator with dense range. Since Υ is a g-orthonormal basis, then
R(TΛ)= R(SΛΥ). Therefore Λ ∈ gB is g-complete if and only if SΛΥ is an operator with dense
range. Now, a proof similar to the proof of (1) proves the claim.

In the following proposition, using operator theory tools, we investigate geometry of g-Bessel
sequences.

Proposition 2.7. Let gF be the set of all g-frames, gO be the set of all g-orthonormal bases,
gR be the set of all g-Riesz bases, gP be the set of Parseval g-frames, and gRS be the set of all
g-Riesz sequences in gB. Then the following statements hold:

(1) The sets gF and gR are open subsets of gB.

(2) If H is an infinite dimensional Hilbert space, then the set gR is both open and closed in
gF , consequently gF is disconnected.

(3) The set gR is arcwise connected.

(4) The set of connected components of gF are, precisely {δn : n ∈N∪ {∞}}, where

δn = {Λ= (Λi)∞i=1 ∈ gB : dimkerTΛ = n}.

(5) The set gO is both open and closed, and arcwise connected in gB.

(6) The set gP is closed in gF and gB.

(7) The sets gF \ gR and gRS are open subsets of gB.
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Proof. Let Υ= {Υi ∈ L(H,Hi) : i ∈I } be a fixed g-orthonormal basis for H.

(1) Let GL(H) be the set of all invertible operators in L(H), and let ε be the set of all surjective
operators in L(H). By Proposition 2.6, gR = O−1

Υ (GL(H)), and gF = O−1
Υ (ε). We know that

GL(H) is open in L(H) and by [6, Corollary 2.3], ε is open in L(H). Now, by the continuity of
OΥ, the sets gF and gR are open subsets of gB.

(2) By [14, Proposition 7.8], GL(H) is both open and closed in ε. Since OΥ is continuous, then
O−1
Υ (GL(H))= gR is both open and closed in O−1

Υ (ε)= gF . Hence, gF is disconnected.

(3) By [9, Corollary 5.30], GL(H) is arcwise connected. Since O−1
Υ is continuous, then O−1

Υ (GL(H))
is arcwise connected in gB.

(4) By [6, Proposition 2.8], for every n ∈ N∪ {∞}, εn = {T ∈ L(H) : dimker(T) = n} is the
connected component of ε. Since O−1

Υ is continuous, then O−1
Υ (εn) is the connected component of

gF =O−1
Υ (ε). But for every n ∈N∪ {∞},

δn =O−1
Υ (εn)= {Λ= (Λi)∞i=1 ∈ gB : dimkerSΛΥ = dimkerTΛ = n}.

(5) The set of all unitary operators are both open and closed and arcwise connected in L(H), see
[10]. Now a proof similar to the proofs of (1) and (4), proves the claims.

(6) Let ε0 be the set of co-isometries in L(H). By [6, Corollary 2.3], ε0 is closed in ε. By
Proposition 2.6, O−1

Υ (ε)= gF and O−1
Υ (ε0)= gP . Since OΥ is continuous, then gP is closed in

gF . On the other hand, the mapping A : L(H) → L(H) defined by A(T) = TT∗, is continuous.
Since {IH} is closed in L(H), then A−1{IH}= εo is a closed subset of L(H). Now, by continuity of
OΥ, gP is closed in gB.

(7) The set of surjective and non-invertible operators, and the set of all bounded below operators
(injective and closed range operators) are open subsets of L(H). Now, a proof similar to the proof
of (1) proves the claim.

By using geometric properties, we can get some new results, e.g. by using Proposition 2.6
the following result can be obtained, easily, see also [8, 9].

Proposition 2.8. (1) Let Λ= {Λi ∈ L(H,Hi) : i ∈N} and Θ= {Θi ∈ L(H,Hi) : i ∈N} be Parseval
g-frames in H, and let T be a bounded operator which satisfies ΛiT =Θi , for every i ∈N.
Then T is an isometry operator on H. Moreover, if T is invertible, then it is unitary.

(2) If Λ= {Λi ∈ L(H,Hi) : i ∈N} is both a g-Riesz basis and a Parseval g-frame, then it is must
be a g-orthonormal basis.

Proof. (1) For every f ∈ H we have

‖ f ‖2 =
∞∑

i=1
‖Θi f ‖2 =

∞∑
i=1

‖Λi(T f )‖2 = ‖T( f )‖2.

So T is an isometry, hence T∗T = I . If T is invertible, then T∗ = T−1 and T is a unitary operator.

(2) Let Υ= {Υi ∈ L(H,Hi) : i ∈N} be a fixed g-orthonormal basis in H. Since Λ is a g-Riesz basis
and a Parseval g-frame, by Proposition 2.6, there exists an invertible co-isometry T1 such that
OΥ(Λ)= T1. Since T1 is an invertible co-isometry, then T1 is a unitary operator in L(H). Now,
by Proposition 2.6, O−1

Υ (T1)=Λ is a g-orthonormal basis for H.

Communications in Mathematics and Applications, Vol. 7, No. 2, pp. 139–149, 2016



148 g-Bessel Sequences and Operators: A. Khosravi and F. Takhteh

Proposition 2.9. Let Υ= {Υi ∈ L(H,Hi) : i ∈N} be a g-Riesz basis for H, and let T be a compact
operator in L(H). Then the following statements hold:

(1) (ΥiT∗)i∈N is the limit of a sequence of frame sequences in gB.

(2) If H is an infinite dimensional Hilbert space, then (ΥiT∗)i∈N is never a g-frame.

Proof. (1) Define the mapping AΥ̃ : gB→ L(H) by AΥ̃(Λ) = SΛΥ̃, where Υ̃ is the dual g-Riesz
basis of Υ. It is easy to check that AΥ̃ is a well-defined anti-linear bounded operator. Consider
the mapping BΥ̃ : L(H) → gB by BΥ̃(T) = (ΥiT∗)∞i=1. Clearly, BΥ̃ is a well-defined anti-linear
bounded operator and BΥ̃ is the inverse of AΥ̃. Since T is a compact operator in L(H), there
exists a sequence (Tn)∞n=1 of finite rank operators in L(H) such that Tn → T . Since BΥ̃ = A−1

Υ̃
is

continuous, then (ΥiT∗
n)∞i=1 = A−1

Υ̃
(Tn) → A−1

Υ̃
(T) = (ΥiT∗)∞i=1. For every n ∈N, S(ΥiT∗

n)∞i=1Υ̃
= Tn,

then dimR(S(ΥiT∗
n)∞i=1Υ̃

) = dimTn <∞, and consequently R(S(ΥiT∗
n)∞i=1Υ̃

) is closed. Therefore by

proposition 2.3, (ΥiT∗
n)∞i=1 = A−1

Υ̃
(Tn) is a g-frame sequence in gB, for n ∈N. Hence (ΥiT∗)i∈N

is the limit of a sequence of frame sequences in gB.

(2) If H is an infinite dimensional Hilbert space, then the compact operator T is not surjective,
see [17]. By Proposition 2.3, (ΥiT∗)i∈N is a g-frame if and only if S(ΥiT∗)∞i=1Υ̃

= T is a surjective
operator. Therefore if T is compact operator, then (ΥiT∗)i∈N is never a g-frame.

3. Conclusions
We note that since Riesz bases, frames, oblique frames and fusion frames are special cases of
g-Riesz bases and g-frames, our results hold for all of them. with our results in geometry of gB
many problems can be investigated.
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