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1. Introduction

State-Dependent delay Differential Equations (SDDE) have a number of applications in various
research arias ranging from population dynamics to control theory, see Section 2 in [14] as
a review. SDDE is used to make more realistic modelling in the systems whose delay varies
according to the internal effects of the system. Therefore they are generating increasing interest
from engineers and scientist in recent years. It is shown that the length of time to maturity
of Antarctic whales and seals alter according to the state of the population in [13] and it is
analyzed by using a mathematical model with SDDE in [1].

SDDE have been investigated for the last five decades. The fundamental theory for local
existence and uniqueness theorem for SDDE having Lipschitz continuous initial functions was
developed by Drive [8, 9] and Driver and Norris [10]. Winston [37] showed that SDDE has a
unique solution under some conditions in addition to continuos initial function. There exist
some of the earliest studies on SDDE in [2,6,32]. Moreover, lots of theoretical and numerical
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analysis of SDDE have been done so far, [1,3–5,11,14–16,18,20,22–30,33–35]. Especially [36]
can be seen as a review in order to have much more detail about DDE and SDDE and researches
on them.

In this study, we consider the following type of SDDE

u′(t)=−A0u(t)− A1u(t−τ(t,u(t))) , (1)

where A0, A1 ∈ R and τ(t,u(t)) > 0, τ(t,0) 6= 0 for all t ∈ R+. Since the variation of solution
can play an important role in the variation of delay, hence its stability, we use the following
characteristic equation

g(λ)=λ+ A0 + A1e−λτ(t,eλt) = 0 (2)

in order to analyze stability of solution of equation (1).

In the general case, the characteristic roots λ j , j = 1,2, . . ., of equation (1) are obtained
by solving the characteristic equation (2) where λ j is a complex number. If the characteristic
roots have negative real parts, i.e., Re(λ j) < 0 for all j = 1,2, . . . then the solution of (1) is
asymptotically stable and if at least one of the characteristic roots have positive real parts, i.e.,
Re(λ j)> 0 for some j = 1,2, . . . then the solution of (1) is unstable.

It is attempted to determine the stability and instability regions of the system in parameter
space (A0, A1) by using D-partition method. The method is originated from paper [31]. Moreover,
the analysis by this method are conducted in [12,17,19,21] and [7]. We consider the characteristic
equation g(λ, A0, A1) in two parameters for equation (1). D-partition method is based on fact
that the roots of the characteristic equation are continuos functions of the parameters A0 and
A1. Varying the parameters, λ j change continuously in complex plane and at least one λ j crosses
the imaginary axis at the point where the stability changes. In this method parameter space is
divided into subregions by the hypersurfaces called the D-curves. The points of the D-curves
correspond to pure imaginary roots or zero root of the characteristic equation. Moreover, the
characteristic equation has the same number of roots with positive real part in each subregion
in the parameter space determined by the D-curves. Thus, finding specific point at which the
solution of equation (1) is stable, it is enough to find the stability region, including this point.

In order to obtain D-curves, pure imaginary number λ= iω is substituted in characteristic
equation g(λ, A0, A1). Equating to zero the real and imaginary parts, we have

U(ω, A0, A1)=Re(g(iω, A0, A1))= 0, (3)

V (ω, A0, A1)= Im(g(iω, A0, A1))= 0. (4)

Hence, by making use of (3) and (4), parametric equations can be rewritten in the following
form

A0 = A0(ω), A1 = A1(ω)

where ω is a parameter, ranging from −∞ to ∞. These curves and singular solutions of equations
(3) and (4) constitute D-curves.

In Section 2, we establish necessary and sufficient conditions for the stability of the solution
of equation (1) by using D-partition method. We illustrate these results in Section 3.
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2. Necessary and Sufficient Conditions for the Stability of SDDE

It is clear that if τ(t,u(t)) is a linear function with respect to u(t), then Re(τ(t, eiωt)) is an even
function and Im(τ(t, eiωt)) is an odd function with respect to ω. In this section, we consider
equation (1) for τ(t, eiωt) = τ1(t,ω)+ iτ2(t,ω) such that τ1(t,0) 6= 0, τ1(t,ω) is an even function
and τ2(t,ω) is an odd function with respect to ω.

The characteristic equation

g(λ)=λ+ A0 + A1e−λτ(t,eλt) = 0 . (5)

As a part of the D-partition method, we have

C∗ : A0 + A1 = 0, for λ= 0 (6)

this straight line is a line forming the boundary of the D-partition and is denoted by C∗.
Substituting λ= iω and equating to zero the real and imaginary parts in characteristic equation
(5), we find following equations

A0 + A1eωτ2(t,ω) cos(ωτ1(t,ω))= 0, (7)

ω+ A1eωτ2(t,ω) sin(ωτ1(t,ω))= 0. (8)

Solving the above equations for A0 and A1, following parametric curve equations are obtained

A0(ω)=−ωcos(ωτ1(t,ω))
sin(ωτ1(t,ω))

, (9)

A1(ω)= ω

eωτ2(t,ω) sin(ωτ1(t,ω))
. (10)

Since A0(ω) and A1(ω) are an even with respect to ω, it is sufficient to take ω ∈ (0,∞). When ω

ranges from 0 to ∞, equations (9)-(10) define the D-curves for each t ∈R+. The equations (9)-(10)
have singularity for ωτ1(t,ω)= kπ, k = 0,1,2, . . . . Thus, we introduce intervals Jk = (kπ, (k+1)π)
and denote by Ck the curve in the parameter space (A0, A1) for ωτ1(t,ω) ∈ Jk.

To analyze the curves Ck under assumptions τ1(t,ω)≤ h1 and ωτ2(t,ω)≤ h2 where h1 and
h2 are non-negative real numbers, we firstly consider the following equation

Ã1(ω,T2)= ω

T2 sin(ωτ1(t,ω))
(11)

where T2 ∈ (0, eh2] is a real number. Equations (9)-(11) define a family of curves since T2 is not
a constant. Holding T2 fixed, these define Ã1(ω,T2) as function of ω, providing a parametric
representation of a curve. Different values of T2 give different curves in the family. We denote
the family of curves by C̃k(T2) for ωτ1(t,ω) ∈ Jk.

Proposition 1. If ωτ2(t,ω)≤ h2, the curve C̃2k(eh2) lies below the curve C2k in parameter space
(A0, A1) for k = 0,1,2, . . . .

Proof. For every ωτ1(t,ω) ∈ J2k, equations (9)-(10) give a point L(A0, A1) on the curve C2k
and equations (9)-(11) give a point L̃(A0, Ã1) on the curve C̃2k(eh2). Since eωτ2(t,ω) ≤ eh2 when
ωτ2(t,ω)≤ h2 and A1(ω)> 0, Ã1(ω,T2)> 0 for each ωτ1(t,ω) ∈ J2k, we have A1 > Ã1.

Proposition 2. If ωτ2(t,ω)≤ h2, the curve C̃2k+1(eh2) lies above the curve C2k+1 in parameter
space (A0, A1) for k = 0,1,2, . . ..
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Proof. It is similar to the proof of Proposition 1.

Lemma 1. The curves C̃k(T2) do not intersect each other for k = 0,1,2, . . . .

Proof. Suppose that there exist an intersection point. It means that, there exist ω1 6=ω2 ∈R+

such that A0(ω1,T2)= A0(ω2,T2) and Ã1(ω1,T2)= Ã1(ω2,T2). These equalities imply that
ω1

T2 sin(ω1τ1(t,ω1))
= ω2

T2 sin(ω2τ1(t,ω2))
,

ω1 cos(ω1τ1(t,ω1))
sin(ω1τ1(t,ω1))

= ω2 cos(ω2τ1(t,ω2))
sin(ω2τ1(t,ω2))

(12)

from equation (9) and (11). For n ∈ N, ω1τ1(t,ω1) 6= ω2τ1(t,ω2)+ 2nπ is obtained from the
left equality in (12) because of ω1 6= ω2. In addition, left and right equalities in (12) lead to
cos(ω1τ1(t,ω1))= cos(ω2τ1(t,ω2)) which is a contradiction.

Lemma 2. The following limits are satisfied for k = 1,2, . . .

lim
ωτ1(t,ω)→(2kπ)+

A0(ω)= lim
ωτ1(t,ω)→(2kπ)+

Ã1(ω)= lim
ωτ1(t,ω)→((2k−1)π)−

Ã1(ω,h)=+∞ ,

lim
ωτ1(t,ω)→((2k−1)π)−

A0(ω)=−∞ (13)

and

lim
ωτ1(t,ω)→(2kπ)−

A0(ω)= lim
ωτ1(t,ω)→(2kπ)−

Ã1(ω)= lim
ωτ1(t,ω)→((2k−1)π)+

Ã1(ω,h)=−∞ ,

lim
ωτ1(t,ω)→((2k−1)π)+

A0(ω)=+∞ . (14)

Then, we consider the following family of curves denoted by Ck(T1)

Ck(T1) :


A0(ω,T1)=−ωcos(ωT1)

sin(ωT1) , T1 ∈ (−∞,h1] ,

A1(ω,T1)= ω

eh2 sin(ωT1)
, ωT1 ∈ Jk .

(15)

Proposition 3. If τ1(t,ω)≤ h1 and ωτ2(t,ω)≤ h2, the curve C2k(h1) lies below the curve C2k in
parameter space (A0, A1) for ωh1 ∈ J2k, k = 0,1,2, . . ..

Proof. A0(ω)< A0(ω,h1) for all ωh1 ∈ Jk , since the following partial derivative of A0(ω,T1) with
respect to T1

∂A0

∂T1
= ω2

sin2(ωT1)
> 0, ∀ ωT1 ∈ Jk .

Moreover, taking the derivative of A1(ω,T1) with respect to T1, we obtain

∂A1

∂h
= −ω2 cos(ωT1)

eh2 sin2(ωT1)

and A1(ω,T1) is a monotone decreasing function for ωT1 ∈
(
2kπ, (2k+1)π

2

)
. Therefore, the point

L(A0(ω,h1), A1(ω,h1)) lies below the point L̃(A0(ω), Ã1(ω, eh2)) for ωh1 ∈
(
2kπ, (2k+1)π

2

)
. Because

of Lemma 1 and limits (13), C2k(h1) lies below the curve C̃2k(eh2) for ωh1 ∈ J2k . Hence, C2k(h1)
lies below the curve C2k for ωh1 ∈ J2k.

Proposition 4. If τ1(t,ω)≤ h1 and ωτ2(t,ω)≤ h2, the curve C2k+1(h1) lies above the curve C2k+1
in parameter space (A0, A1) for ωh1 ∈ J2k+1, k = 0,1,2, . . ..

Communications in Mathematics and Applications, Vol. 7, No. 2, pp. 105–113, 2016



A Novel Approach for the Stability Analysis of State Dependent Differential Equation: S. Erman and A. Demir 109

Proof. It is similar to the proof of Proposition 3.

Lemma 3. If eh2 ≤ 1, the curve C0(h1) intersects C∗ exactly once at
(
− 1

h1
, 1

eh2 h1

)
and Ck(h1) do

not intersect C∗ for k = 1,2, . . ..

Proof. Intersection of C0(h1) and C∗ is obvious from the following limit point(
lim
ω→0

A0(ω,h1), lim
ω→0

A1(ω,h1)
)
=

(
− 1

h1
,

1
eh2 h1

)
.

Assume that Ck(h1) and C∗ has intersection points, then there exist ωh1 ∈ Jk for equations
(15) which satisfies equation (6). By using equations (15) in equation (6), we have

ωcos(ωh1)
sin(ωh1)

= ω

eh2 sin(ωh1)
which has no solution ωh1 ∈ Jk for k = 0,1,2, . . . and this contradicts with our assumption.

Lemma 4. If eh2 > 1, the curves Ck(h1) intersect C∗ at point (A0(ω0,h1), A1(ω0,h1)) where ω0

is the root of ω0 = 1
h1

arccos
(

1
eh2

)
such that ω0h1 ∈ Jk.

Proof. A straightforward computation shows that the corresponding point ( A0(ω0,h1), A1(ω0,h1))
lies on the line C∗.

Lemma 5. The curve Ck(h1) intersects the line A0 = 0 exactly once. Moreover, the intersection
point (0,Pk) satisfies the following inequalities

Pk < Pk+2, for k = 2n, n ∈N,

Pk+2 < Pk, for k = 2n+1, n ∈N.

Proof. When ωh1 ∈ Jk, the equation A0(ω,h1)= 0 implies ω= π+2kπ
2h1

. Hence,

Pk =


π+2kπ
2eh2 h1

for k = 2n, n ∈N

− π+2kπ
2eh2 h1

for k = 2n+1, n ∈N
is obtained by substituting ω= π+2kπ

2h1
in A1(ω,h1). This completes the proof.

Lemma 6. The following limits are satisfied for k = 1,2, . . .

lim
ωh1→

(
(2k−1)π

h

)− A0(ω,h1)= lim
ωh1→

(
(2k−1)π

h

)− A1(ω,h1)= lim
ωh1→

(
2kπ

h

)− A0(ω,h1)

= lim
ωh1→

(
2kπ

h

)+ A1(ω,h1)=+∞

lim
ωh1→

(
(2k−1)π

h

)+ A0(ω,h1)= lim
ωh1→

(
(2k−1)π

h

)+ A1(ω,h1)= lim
ωh1→

(
2kπ

h

)+ A0(ω,h1)

= lim
ωh1→

(
2kπ

h

)− A1(ω,h1)=−∞

Communications in Mathematics and Applications, Vol. 7, No. 2, pp. 105–113, 2016



110 A Novel Approach for the Stability Analysis of State Dependent Differential Equation: S. Erman and A. Demir

Theorem 1. Suppose that τ1(t,0) 6= 0, τ1(t,ω) is an even function, τ2(t,ω) is an odd function
with respect to ω. Moreover, τ1(t,ω) ≤ h1, ωτ2(t,ω) ≤ h2 where h1 and h2 are non-negative
real numbers and eh2 ≤ 1. The solution of equation (1) is asymptotically stable if the following
conditions are satisfied:

(i) − 1
h1

< A0

(ii) −A0 < A1 < ω

eh2 sin(ωh1)
where ω is the root of A0 =−ωcos(ωh1)

sin(ωh1) such that ωh1 ∈ J0.

Proof. When A0 > 0 and A1 = 0, the solution of equation (1) is clearly asymptotically stable.
The stability region which includes half line A0 > 0 and A1 = 0, lies above C∗ and below C0(h1)
as a result of Proposition 3, Proposition 4, Lemma 3, Lemma 5 and Lemma 6. The conditions
(i)-(ii) are algebraic representation of this region in parameter space (A0, A1).

Theorem 2. Suppose that τ1(t,0) 6= 0, τ1(t,ω) is an even function and τ2(t,ω) is an odd function
with respect to ω. Moreover, τ1(t,ω) ≤ h1, ωτ2(t,ω) ≤ h2 where h1 and h2 are non-negative
real numbers and eh2 > 1. The solution of equation (1) is asymptotically stable if the following
conditions are satisfied:

(iii) − 1
h1

< A0 or A0(ω,h1)< A0 where ω is the root of ω= 1
h1

arccos
(

1
eh2

)
such that ωh1 ∈ J0

(iv) −A0 < A1 < ω

eh2 sin(ωh1)
where ω is the root of A0 =−ωcos(ωh1)

sin(ωh1) such that ωh1 ∈ J0

(v) ω

eh2 sin(ωh1)
< A1 where ω is the root of A0 =−ωcos(ωh1)

sin(ωh1) such that ωh1 ∈ J1.

Proof. The stability region which includes half line A0 > 0 and A1 = 0, lies among C∗, C1(h1)
and C0(h1) because of Proposition 3, Proposition 4, Lemma 4, Lemma 5 and Lemma 6. The
conditions (iii), (iv) and (v) are algebraic representation of this region in parameter space
(A0, A1).

Theorem 3. Suppose that τ1(t,0) 6= 0, τ1(t,ω) is an even function and τ2(t,ω) is an odd function
with respect to ω and ωτ2(t,ω) ≤ h2 where h2 is a non-negative real number. The solution of
equation (1) is asymptotically stable, if the following condition is satisfied:

(vi) A0 ≤
∣∣A1eh2

∣∣.
Proof. It is obvious from (7) that, A0 ≤

∣∣A1eh2
∣∣ for all ω ∈ Jk. Therefore there is no D-curve in

the region described by (vi). Moreover, the half line A0 > 0 and A1 = 0 on which the solution
equation (1) is asymptotically stable, is in this region.

Theorem 4. Suppose that A1 6= 0, τ1(t,0) 6= 0, τ1(t,ω) is an even function and τ2(t,ω) is an
odd function with respect to ω. If ωτ2(t,ω) does not have an upper bound, then the solution of
equation (1) is not stable.

Proof. It follows from (10) that we have

lim
ωτ2(t,ω)→∞

A1(ω)= lim
ωτ2(t,ω)→∞

ω

eωτ2(t,ω) sin(ωτ1(t,ω))
= 0 .

Thus, D-curves tend to half line A0 > 0 and A1 = 0, when ω ranges from 0 to ∞.
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3. The Stability of Equation (1) with Delay Term τ(t,u(t))= au(t)+b
cu(t)+d

We consider the stability of equation (1) with delay term τ(t,u(t))= au(t)+b
cu(t)+d where a, b, c and d

are positive real numbers.

The Möbius transformation can be rewritten as follows

τ(z)= az+b
cz+d

= bc−ad
c

1
cz+d

+ a
c

where z ∈C. Hence,

τ1(t,ω)= a
c

, τ2(t,ω)= 0

when bc−ad = 0. It follows from Theorem 1 that if bc−ad = 0 and the following conditions are
satisfied:

(i) − c
a < A0

(ii) −A0 < A1 < ω

sin
(
ω a

c

) where ω is the root of A0 =−ωcos
(
ωa
c

)
sin

(
ωa
c

) such that ωa
c ∈ J0

then the solution of equation (1) with delay term τ(t,u(t))= au(t)+b
cu(t)+d is asymptotically stable.

4. Conclusion

In this study, stability conditions are given in terms of the coefficients in equation (1) under some
conditions on the delay function τ(t,u(t)) in Theorem 1, Theorem 2 and Theorem 3. Moreover, it
is proved that the condition τ2(t,ω)≤ h2 given in Theorem 4, is the necessary condition for the
stability of the solution.

In literature, state dependent delays are linearized heuristically by freezing at a constant
solution in order to investigate the stability of SDDE. Heuristic linearization is applied taking
τ(t,u(t))= τ(t,0) in equation (1) in case of zero solution. It is show that, the stability analysis
under the condition bc−ad = 0 is the same as the one which is obtained by linearization at zero
in Section 3.
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