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1. Introduction
Let

∑
an be an infinite series with sn as its n-th partial sum. Let (σαn) and (tαn) be the n-th

Cesàro means (C,α) of order α(α > −1) of the sequences (sn) and (nan) respectively, i.e.,

σαn = 1
Aα

n

n∑
ν=0

Aα−1
n−νsν and tαn = 1

Aα
n

n∑
ν=1

Aα−1
n−ννaν, where Aα

0 = 1, Aα
n = (α+1)(α+2)...(α+n)

n! and Aα−n = 0,

(n ∈ N). The concept of absolute summability of order k was defined by Flett [7] as follows.
A series

∑
an is summable |C,α|k, k ≥ 1, if

∞∑
n=1

nk−1|σαn −σαn−1|k <∞. (1.1)

On the other hand, in view of the well known identity tαn = n(σαn −σαn−1), the condition (1.1) can
be stated by
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∞∑
n=1

1
n
|tαn|k <∞, [8] (1.2)

The summability |C,α|k is one of ancestor summability methods and includes all Cesàro methods
depending on α and k, for example, |C,α|1 is identical to |C,α|. Now we denote by |Cα|k the
set of series summable by the summability method |C,α|k. Then a series

∑
aν is summable by

|C,α|k iff a = (aν) ∈ |Cα|k, where

|Cα|k =
{

a = (aν) :
∞∑

n=1

∣∣∣∣ 1
n1/k Aα

n

n∑
ν=1

Aα−1
n−ννaν

∣∣∣∣k

<∞
}

. (1.3)

Let X and Y be any two sequence subsets and A = (anν) be an infinite matrix of complex
numbers. Then we say that A defines a matrix transformation from X into Y , i.e., A ∈ (X ,Y ) if
Ax = (An(x)) ∈Y whenever x ∈ X , where

An(x)=
∞∑
ν=0

anνxν (1.4)

provided that the series on the right side of (1.4) converge for each n.

Das [6] defined a matrix A to be absolutely k-th power conservative for k ≥ 1 if A ∈ B(Ak, Ak),
where

Ak =
{

s = (sν) :
∞∑
ν=1

νk−1|sν− sν−1|k <∞
}

and proved every consersative Hausdorff matrix H ∈ B(Ak,Ak). Note that there exists a relation
between Ak and |C0|k obtained in the special case α= 0 if A lower triangular matrix. In fact,
a ∈ |C0|k if and only if s ∈ Ak, and so A ∈ (Ak, Ak), iff A ∈ (|C0|k, |C0|k), where

ânν =


n∑
r=ν

(anr −an−1,r), 0≤ v ≤ n

0, ν> n.
(1.5)

According to the terminology in [15], if A is a Riesz matrix, i.e., anν = pν
Pn

for 0 ≤ ν ≤ n, and
0 otherwise, then

∑
aν is summable |R, pn|k iff (Rn(a)) ∈ |C0|k, where R0(a) = a0,Rn(a) =

pn
PnPn−1

n∑
ν=1

Pν−1aν, n ≥ 1, (pn) is a sequence of positive constants such that Pn = p0+p1+. . .+pn →
∞ as n →∞. So, if we say |Rp|k as the set of series summable by |R, pn|k, then we can write
|Rp|k = {a = (aν) : (Rn(a)) ∈ |C0|k}. For real number α and nonnegative integers n we write

∆αxn =
∞∑
ν=n

A−α−1
ν−n xν, whenever the series convergent, and

Xβ =
{
ε= (εν) :

∞∑
ν=0

ενxν is convergent for every x ∈ X

}
,

which is the β dual of X . Also we need the following notations for ν= 1,2, . . .

Γα =
{
ε :∆α

(εν
ν

)
exists, sup

m,r

∣∣∣∣rAα
r

m∑
ν=r

εν

ν
A−α−1
ν−r

∣∣∣∣<∞
}
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and

Γk∗
α =

{
ε :∆α

(εν
ν

)
exists,sup

m

m∑
r=1

∣∣∣∣r1/k Aα
r

m∑
ν=r

εν

ν
A−α−1
ν−r

∣∣∣∣k∗

<∞
}

where k > 1, 1/k+1/k∗ = 1.

2. Main Results
The problems of absolute summability factors and comparision of these methods goes to old
rather and uptill now were widely examined by many authors, (see, [1–9], [10,11,23], [25,26]).
By other viewpoint we note that most of these results correspond to the special matrices
I,W ∈ (|Cα|, |Cδ|k) or I,W ∈ (|Cα|k, |Cδ|) where I is an identity matrix and the matrix W = (wnν)
defined by wnν = εν for ν= n, zero otherwise.

In the present paper giving some algebraic and topological properties of |Cα|k we characterize
the classes of all infinite matrices (|Cα|, |Cδ|k) and (|Cα|k, |Cδ|), show that each element of this
classes corresponds to a continuous linear mapping, which also enables us to extends some well
known results of Flett [7], Orhan and Sarıgöl [15], Bosanquet [2], Mehdi [13], Mazhar [11],
and Sarıgöl [18], where |Cα|k is the space of series summable by the summability |C,α|k. Our
theorems read as follows.

Theorem 2.1. Let α>−1, 1< k <∞ and 1/k+1/k∗ = 1. Then,

{|Cα|k}β =Γk∗
α and {|Cα|}β =Γα.

Theorem 2.2. Let α>−1 and k ≥ 1. Then |Cα|k is a BK-space with respect to the norm

‖a‖|Cα|k =
{
|a0|k +

∞∑
n=1

∣∣∣∣ 1
n1/k Aα

n

n∑
ν=1

Aα−1
n−ννaν

∣∣∣∣k
}1/k

. (2.1)

Theorem 2.3. Assume that 1 ≤ k <∞, α > −1, δ > −1. Then, (|Cα|, |Cδ|k) ⊂ B(|Cα|, |Cδ|k) and
A ∈ (|Cα|, |Cδ|k) if and only if

∆α
(
1
j
aν j

)
exists for j,ν= 1,2, . . . , (2.2)

sup
m, j

∣∣∣∣∣ jAα
j

m∑
r= j

1
r

A−α−1
r− j aνr

∣∣∣∣∣<∞ for ν= 0,1, . . . , (2.3)

∞∑
n=1

1
n

∣∣∣∣ 1
Aδ

n

n∑
ν=1

νAδ−1
n−νaν0

∣∣∣∣k

<∞ (2.4)

and

sup
j

∞∑
n=1

∣∣∣∣∣ jAα
j

n1/k Aδ
n

n∑
ν=1

νAδ−1
n−ν∆

α

(
1
j
aν j

)∣∣∣∣∣
k

<∞ . (2.5)
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Theorem 2.4. Assume that α > −1, δ > −1, 1 < k < ∞, 1/k+1/k∗ = 1. Then, (|Cα|k, |Cδ|) ⊂
B(|Cα|k, |Cδ|) and A ∈ (|Cα|k, |Cδ|) if and only if (2.2) holds,

sup
m

m∑
j=1

∣∣∣∣∣ j1/k Aα
j

m∑
r= j

1
r

A−α−1
r− j aνr

∣∣∣∣∣
k∗

<∞, ν= 0,1, . . . , (2.6)

∞∑
n=1

1
nAδ

n

∣∣∣∣ n∑
ν=1

νAδ−1
n−νaν0

∣∣∣∣<∞ (2.7)

and

∞∑
j=1

{ ∞∑
n=1

j1/k Aα
j

nAδ
n

∣∣∣∣ n∑
ν=1

νAδ−1
n−ν∆

α

(
1
j
aν j

)∣∣∣∣
}k∗

<∞ . (2.8)

3. Needed Lemmas
We need the following lemmas for the proof our theorems.

Lemma 3.1 ( [17]). Let 1< k <∞. Then, A ∈ (lk, l) if and only if

∞∑
ν=0

( ∞∑
n=0

|anν|
)k∗

<∞. (3.1)

Lemma 3.2 ( [10]). Let 1≤ k <∞. Then, A ∈ (l, lk) if and only if

sup
ν

∞∑
n=0

|anν|k <∞. (3.2)

Lemma 3.3 ( [24]). (a)

A ∈ (l, c)⇐⇒


lim

n
anν exists for each ν,

sup
n,ν

|anν| <∞.
(3.3)

(b) Let 1< k <∞. Then

A ∈ (lk, c)⇐⇒


lim

n
anν exists for each ν,

sup
n

∞∑
ν=0

|anν|k∗ <∞.
(3.4)

Lemma 3.4 ( [13]). Let β>−1, 1≤ k <∞ and σ<β. Then, for k = 1,

Eν =
{

O(ν−β−1), σ≤−1
O(ν−β+σ), σ>−1

and

Eν =


O(ν−kβ−1), σ<−1/k
O(ν−kβ−1 logν), σ=−1/k
O(ν−kβ+kσ), σ>−1/k

for 1< k <∞, where Eν =
∞∑

n=ν
|Aδ

n−ν|k
n(Aβ

n)k
for v ≥ 1.
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Proof of Theorem 2.1. Let ε ∈ {|Cα|k}β. Then,
∞∑
ν=0

ενxν is convergent for every x ∈ |Cα|k. But

x ∈ |Cα|k if and only if T ∈ lk, where

Tα
0 = x0, Tα

n = 1
n1/k Aα

n

n∑
ν=1

Aα−1
n−ννxν, for n ≥ 1. (3.5)

By inversion of (3.5), we write, for r ≥ 1,

xr = 1
r

r∑
ν=1

A−α−1
r−ν ν1/k Aα

νTα
ν (3.6)

and so
m∑
ν=0

ενxν = ε0Tα
0 +

m∑
ν=1

εν

ν

ν∑
r=1

A−α−1
ν−r r1/k Aα

r Tα
r

= ε0Tα
0 +

m∑
r=1

(
r1/k Aα

r

m∑
ν=r

εν

ν
A−α−1
ν−r

)
Tα

r

=
m∑

r=0
wmrTα

r ,

where

wmr =


ε0, r = 0

r1/k Aα
r

m∑
ν=r

εν

ν
A−α−1
ν−r , 1≤ r ≤ m

0, r > m

(3.7)

ε ∈ {|Cα|k}β⇐⇒W ∈ (lk, c). Therefore it follows from Lemma 3.3 that ε ∈ {|Cα|k}β iff

sup
m

∞∑
r=0

|wmr|k
∗ = sup

m

{
|ε0|k

∗ +
m∑

r=1

∣∣∣∣r1/k Aα
r

m∑
ν=r

εν

ν
A−α−1
ν−r

∣∣∣∣k∗}
<∞

and lim
m

wmr =∆α
(εr

r

)
exists for r = 1,2, . . ., that is to say, ε ∈Γk∗

α , completing the proof.

The second part of the lemma is similarly proved by Lemma 3.3.

Proof of Theorem 2.2. It is easily seen from Minkowski inequality that |Cα|k is a normed space
with norm (2.1). Now, take a Cauchy sequence ξ= (ξm) where ξm = (am

ν ) ∈ |Cα|k (m = 0,1, . . .).
Given ε> 0. Then there exists at least a positive integer n0 such that

‖ξm1 −ξm2‖|Cα|k < ε (3.8)

for m1,m2 > n0. This implies that |am1
ν −am2

ν | → 0 as m1,m2 →∞. This means that (am1
ν ) is a

Cauchy sequence in C and so there exists limit am1
ν → xν (ν = 0,1, . . .) as m1 →∞, say. So it

follows from (3.8) that ‖ξm1 − x‖|Cα|k < ε for m1 > n0 and x ∈ |Cα|k. Therefore |Cα|k is a Banach
space. Finally, a coordinate functional Pn : |Cα|k → C, Pn(a)= an (n = 0,1, . . .) is continuous since

‖Pn(a)‖ = |an| ≤
(

1
n

n∑
ν=1

|A−α−1
n−ν |ν1/k Aα

ν

)
‖a‖|Cα|k

by (3.5) and (3.6). This completes the proof.
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Proof of Theorem 2.3. First part is seen by applying Banach Steinhause theorem in usual way
since |Cα| is a BK-spaces by Theorem 2.2. Now take A ∈ (|Cα|, |Cδ|k). Then An(x) = ∑

anνxν
is convergent for every x ∈ |Cα| and Ax = (An(x)) ∈ |Cδ|k. This also means that (an0,an1, . . .) ∈
{|Cα|k}β which is equivalent to (2.2) and (2.3) by Theorem 2.1. Now the statement (3.5) with
k = 1 gives

Tα
0 = x0, Tα

n = 1
nAα

n

n∑
ν=1

Aα−1
n−ννxν , for n ≥ 1. (3.9)

of which inversion implies xr = 1
r

r∑
ν=1

A−α−1
r−ν νAα

νTα
ν , r ≥ 1. Also, x ∈ |Cα|⇐⇒ Tα ∈ l. Then we get

Lδ
0 =

∞∑
ν=0

a0νxν = Tα
0 = x0 and for n ≥ 1

Lδ
n = 1

n1/k Aδ
n

n∑
ν=1

Aδ−1
n−ννAν(x)

= 1
n1/k Aδ

n

n∑
ν=1

Aδ−1
n−νν

∞∑
r=0

aνrxr

= 1
n1/k Aδ

n

n∑
ν=1

νAδ−1
n−ν

(
aν0Tα

0 +
∞∑

r=1
aνr

1
r

r∑
j=1

A−α−1
r− j jAα

j Tα
j

)

= 1
n1/k Aδ

n

n∑
ν=1

νAδ−1
n−ν(aν0Tα

0 +Uν), say.

On the other hand, it follows from (2.3) that the series
∞∑
j=1

jAα
j

(
m∑

r= j

1
r

aνr A−α−1
r− j

)
Tα

j

convergent in uniformly in m, and so we get

Uν = lim
m

m∑
r=1

aνr
1
r

r∑
j=1

A−α−1
r− j jAα

j Tα
j

= lim
m

m∑
j=1

jAα
j

(
m∑

r= j

1
r

aνr A−α−1
r− j

)
Tα

j

=
∞∑
j=1

jAα
j∆

α

(aν j

j

)
Tα

j .

Therefore

Lδ
n = 1

n1/k Aδ
n

n∑
ν=1

νAδ−1
n−ν

{
aν0Tα

0 +
∞∑
j=1

jAα
j∆

α

(aν j

j

)
Tα

j

}

= 1
n1/k Aδ

n

{
n∑

ν=1
νAδ−1

n−νaν0Tα
0 +

∞∑
j=1

n∑
ν=1

νAδ−1
n−ν jAα

j∆
α

(aν j

j

)
Tα

j

}

=
∞∑
j=0

bn jTα
j ,
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where

bn j =


1

n1/k Aδ
n

n∑
ν=1

νAδ−1
n−νaν0, j = 0, n ≥ 1

jAα
j

n1/k Aδ
n

n∑
ν=1

νAδ−1
n−ν∆α

(aν j

j

)
, n ≥ 1, j ≥ 1

Now, A ∈ (|Cα|, |Cδ|k)⇐⇒ B ∈ (l, lk), i.e., equivalently, sup
j

∞∑
n=0

|bn j|k <∞ by Lemma 3.2. Thus, it

follows from the definition of the matrix B that

sup
j

∞∑
n=0

|bn j|k = sup
j≥1

{ ∞∑
n=1

|bn0|k +
∞∑

n=1
|bn j|k

}
<∞

which is satisfied if and only if the conditions (2.4) and (2.5) hold, completing the proof.

Proof of Theorem 2.4. First part is seen by applying Banach Steinhause theorem in usual way

since |Cα|k is a BK-spaces by Theorem 2.2. Now take A ∈ (|Cα|k, |Cδ|). Then An(x)=
∞∑
ν=0

anνxν is

convergent for every x ∈ |Cα|k and A(x)= (An(x)) ∈ |Cδ|. This also gives us (an0,an1, . . .) ∈ {|Cα|k}β

which is the same as (2.2) and (2.6). Now by considering (3.5) we write that x ∈ |Cα|k ⇐⇒ Tα ∈ lk

and

An(x)=
∞∑

r=0
anrxr

= an0Tα
0 +

∞∑
r=1

anr
1
r

r∑
ν=1

A−α−1
r−ν ν1/k Aα

νTα
ν

= an0Tα
0 + lim

m

m∑
ν=1

ν1/k Aα
ν

( m∑
r=ν

1
r

A−α−1
r−ν anr

)
Tα
ν .

As in proof of Theorem 2.3,

An(x)= an0Tα
0 +

∞∑
ν=1

ν1/k Aα
ν

( ∞∑
r=ν

1
r

A−α−1
r−ν anr

)
Tα
ν .

Now, A(x) = An(x) ∈ |Cδ| means that Lδ = (Lδ
n) ∈ l, where Lδ

0 = A0(x) = x0 and Lδ
n =

1
nAδ

n

n∑
ν=1

Aδ−1
n−ννAν(x) for n ≥ 1. On the other hand, we can write

Lδ
n = 1

nAδ
n

n∑
ν=1

Aδ−1
n−ννAν(x)

= 1
nAδ

n

n∑
ν=1

νAδ−1
n−ν

∞∑
r=0

aνrxr

= 1
nAδ

n

{
n∑

ν=1
νAδ−1

n−νaν0Tα
0 +

∞∑
j=1

j1/k Aα
j

n∑
ν=1

νAδ−1
n−ν∆

α

(
1
j
aν j

)}
Tα

j

=
∞∑
j=0

dn jTα
j

Communications in Mathematics and Applications, Vol. 7, No. 1, pp. 11–22, 2016
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where

dn j =


1

nAδ
n

n∑
ν=1

νAδ−1
n−νaν0, j = 0, n ≥ 1

j1/k Aα
j

nAδ
n

n∑
ν=1

νAδ−1
n−ν∆α

(
1
j
aν j

)
, j ≥ 1, n ≥ 1

By Lemma 3.1, A ∈ (|Cα|k, |Cδ|) iff D ∈ (lk, l), i.e., equivalently,

∞∑
j=0

( ∞∑
n=0

|dn j|
)k∗

<∞. (3.10)

But, (3.10) holds if and only if

∞∑
n=1

|dn0| =
∞∑

n=1

1
nAδ

n

∣∣∣∣ n∑
ν=1

νAδ−1
n−νaν0

∣∣∣∣<∞

and

∞∑
j=1

( ∞∑
n=1

|dn j|
)k∗

=
∞∑
j=1

{ ∞∑
n=1

j1/k Aα
j

nAδ
n

∣∣∣∣ n∑
ν=1

νAδ−1
n−ν∆

α

(
1
j

aν j

)∣∣∣∣
}k∗

<∞.

Therefore the proof is completed.

4. Applications

Our theorems include some well known results. Now we list them with our notations.

Corollary 4.1 ( [7]). If α>−1, β>α+ 1
k∗ and k ≥ 1, then I ∈ (|Cα|, |Cβ|k).

Proof. Consider the special case A = I in Theorem 2.3. Then, it is clear that (2.2), (2.3) and (2.4)
hold. On the other hand, since

∆α
(
1
j
aν j

)
=

∞∑
m= j

A−α−1
m− j

1
m

aνm =


1
ν

A−α−1
ν− j , 1≤ j ≤ ν

0, j > 0
(4.1)

we have, by Lemma 3.4,

sup
j

∞∑
n=1

∣∣∣∣∣ jAα
j

n1/k Aβ
n

n∑
ν=1

νAβ−1
n−ν∆α

(
1
j
aν j

)∣∣∣∣∣
k

= sup
j

( jAα
j )k

∞∑
n= j

|Aβ−α−1
n−ν |k

n(Aβ
n)k

<∞

for β>α+ 1
k∗ . So (2.5) holds, which completes the proof.

It is well known that the case k = 1 and β>α of this result was given by Kogbetliantz [8].
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Corollary 4.2 ( [7]). If α,β>−1 and k > 1 then I ∉ (|C(β)|k, |Cα|).

Proof. Take the special case A = I in Theorem 2.4. Then, using (4.1) we have, by Lemma 3.4,

∞∑
j=1

 ∞∑
n=1

j1/k Aβ

j

nAα
n

∣∣∣∣ n∑
ν=1

νAα−1
n−ν∆

β

(
1
j
aν j

)∣∣∣∣


k∗

≥
∞∑
j=1

( j1/k Aα
j )k∗

∣∣∣∣∣∣
∞∑

n= j

Aα−β−1
n− j

n(Aα
n)

∣∣∣∣∣∣
k∗

=∞,

i.e., (2.8) does not hold. This completes the proof.

Corollary 4.3 ( [13]). If k > 1, β≥ 0 and α is nonnegative integer, then W ∈ (|Cα|, |Cβ|k) if and
only if

(i) ∆αεν =O(ν−α)

(ii.a) εν =O(νβ−α−1+1/k) (β<α+1/k∗),

(ii.b) εν =O((logν)−1/k) (β=α+1/k∗),

(ii.c) εν =O(1), (β>α+1/k∗)

When β= 1
k∗ (i) has to be strengthened by factor (logν)−1/k. Conditions for the case k = 1 were

obtained by Bosanquet [2], Chow [5] and Peyerimhoff [16]; cf. also Bosanquet and Chow [4].

Proof. Put A =W in Theorem 2.3. Then the conditions (2.2), (2.3) and (2.4) are satisfied and
the condition (2.5) is reduced to

sup
j

( jAα
j )k

∞∑
n= j

1

n(Aβ
n)k

∣∣∣∣∣ n∑
ν= j

Aβ−1
n−νA−α−1

n− j εν

∣∣∣∣∣
k

<∞ (4.2)

which are equivalent to the conditions of Corollary 4.3, see, for detail, in [13].

Corollary 4.4 ( [11]). Let α≥ 0, k > 1. Then, W ∈ (|Cα|k, |C1|) if and only if

(i)
∞∑
ν=1

ν(α+1)k∗−1
∣∣∣∆α (εν

ν

)∣∣∣k∗
<∞

(iia)
∞∑
ν=1

1
ν
|εν|k∗ <∞, α≤ 1,

(iib)
∞∑
ν=1

ναk∗−k∗−1|εν|k∗ <∞, α> 1.

Proof. In Theorem 2.4, take A = W and δ= 1. Then it is clear that the conditions (2.2), (2.6)
and (2.7) are satisfied, and also (2.8) is reduced to the condition

∞∑
j=1

jk∗−1(Aα
j )k∗

{ ∞∑
n= j

1
n(n+1)

∣∣∣∣∣ n∑
ν= j

A−α−1
ν− j εν

∣∣∣∣∣
}k∗

<∞ (4.3)
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which is the same as the above conditions. In fact, for α≥ 0, since |C0|k ⊂ |Cα|k by Kogbetliantz

[8], we get W ∈ (|C0|k, |C1|) whenever W ∈ (|Cα|k, |C1|). Now, it follows from (4.3) that
∞∑
ν=1

1
ν
|εν|k∗ <

∞, and so |εν| =O(ν
1

k∗ ). Using (4.3), we have the condition (i) since

∞∑
n= j

1
n(n+1)

n∑
ν= j

|A−α−1
ν− j εν| =

∞∑
ν= j

|A−α−1
ν− j εν|

∞∑
n= j

1
n(n+1)

=
∞∑
ν= j

∣∣∣A−α−1
ν− j

εν

ν

∣∣∣
=O(1)

∞∑
ν= j

|A−α−1
ν− j | <∞.

Similarly, (4.3) directly implies (iib). Therefore the conditions (i), (iia) and (iib) are necessary.
Sufficiency is shown as in [11].

Corollary 4.5 ( [15]). Let k ≥ 1. Then, I ∈ (|Rp|, |Rq|k) if and only if

(i)
Pνqν
Qνpν

=O(ν(1/k) −1),

(ii) qνKν =O
(

pν
Pν

)
,

(iii) QνKν =O(1),

where

Kν =
{ ∞∑

n=ν+1
nk−1

(
qn

QnQn−1

)k
} 1

k

.

Proof. In Theorem 2.3, take we take the matrix A as

anν =



qnPνPν−1

QnQn−1 pν
∆

(
Qν−1

Pv−1

)
, 1≤ ν≤ n−1

qnPn

Qn pn
, ν= n

0, ν> n.

Then, it is easy to see that, I ∈ (|Rp|, |Rq|k) iff A ∈ (|Cα|1, |C0|k) and moreover the condition (2.5)
is reduced to

sup
ν

{(
νk−1 qνPν

Qνpν

)k
+

∣∣∣∣PνPν−1

pν
∆

(
Qν−1

Pν−1

)∣∣∣∣k
{Kν}k

}
<∞ (4.4)

which is equivalent to the conditions (i), (ii) and (iii) of Corollary 4.5.

The case k = 1 of this result was given by Bosanquet [2] and Sunouchi [26].
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Corollary 4.6 ( [18]). If A is a lower triangular infinite matrix then A ∈ (A1,Ak), k ≥ 1, if and
only if

sup
ν

∞∑
n=ν

nk−1|ânν|k <∞ .

Proof. If A is defined by (1.5), then, A ∈ (A1,Ak) iff Â ∈ (|C0|, |C0|k). Thus, the result is obtained
from Theorem 2.3.

5. Conclusion
In the present paper new series spaces have been introduced making use of absolute Cesàro
summability |C,α|k, and some algebraic, topological properties and matrix operators on that
space have been investigated. And so it has been brought a different perspective and studying
field.
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