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Abstract. The arithmetic derivative is a number-theoretic function that behaves analogously to
differentiation defined on integers. In this paper, we extend the concept to generalized arithmetic
subderivatives with respect to a chosen set of primes. Inspired by the work of P. Haukkanen
(Generalized arithmetic subderivative, Notes on Number Theory and Discrete Mathematics 25(2)
(2019), 1 – 7), we introduce a family of arithmetic functions that generalize the prime-power
exponents in the classical definition. We establish necessary and sufficient conditions under which
these generalized subderivatives satisfy analogs of linearity, the Leibniz rule (product rule), and
multiplicativity. Several illustrative examples are worked out to demonstrate the computations and
properties of these subderivatives.
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1. Introduction
The arithmetic derivative D(n) of a positive integer n was first introduced by Barbeau [1]
as an integer-valued function satisfying properties analogous to those of differentiation. In
particular, the arithmetic derivative is defined by the rules D(p) = 1 for each prime p, and
D(ab) = aD(b)+ b D(a), for all positive integers a,b. These rules imply, for example, that
D(pk)= k pk−1, for any prime power. Various properties and extensions of D(n) have since been
studied (see, e.g., Merikoski et al. [9], Ufnarovski and Åhlander [12], Haukkanen et al. [5,10],
and Tossavainen et al. [11]). One such extension is the arithmetic partial derivative Dp(n),
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introduced by Kovič [7] and Haukkanen et al. [8], which differentiates n with respect to a single
prime p. The partial derivative Dp(n) obeys the same Leibniz (product) rule, but only accounts
for the contributions of the prime p in n’s factorization.

More recently, the concept of an arithmetic subderivative has been formulated to generalize
partial derivatives to an arbitrary subset of primes. Given a nonempty set of primes S,
the arithmetic subderivative DS(n) of n with respect to S is defined by [9],

DS(n)= n
∑
p∈S

νp(n)
p

,

where νp(n) denotes the exponent of the prime p in the prime factorization of n. In other
words, if

n = ∏
p∈P

pνp(n)

is the prime factorization of n (with P the set of all primes and all but finitely many νp(n)= 0),
then DS(n) sums the ‘partial’ contributions of primes in S towards the arithmetic derivative.
Notably, DP(n) coincides with the ordinary arithmetic derivative D(n), and D{p}(n) = Dp(n)
recovers the partial derivative with respect to a single prime (Kovič [7]).

P. Haukkanen [3] further generalized this idea by replacing the specific exponent function
νp(n) with an arbitrary arithmetic function. In this paper, we develop the theory of these
generalized arithmetic subderivatives. We derive characterizations for when such generalized
subderivatives mimic the behavior of linear operators or derivations (obeying the Leibniz
rule), and when they preserve multiplicative structures. In Section 2, we formalize definitions
and recall relevant concepts of additive and multiplicative arithmetic functions. Section 3
presents the main results, including several theorems with proofs. Section 4 provides illustrative
examples of calculations and verifies the theoretical results in concrete cases.

2. Preliminaries and Definitions
Throughout this paper, let P denote the set of all prime numbers. For each n ∈N (the set of
positive integers), the prime factorization is written as

n = ∏
p∈P

pνp(n),

where each νp(n) is a nonnegative integer and νp(n) = 0, for all but finitely many primes p.
We call νp(n) the p-adic order of n, i.e., the exponent of prime p in n. By convention, νp(1)= 0,
for all p.

Definition 2.1. Let S ⊆P be a nonempty set of primes. The arithmetic subderivative of n with
respect to S is defined as

DS(n)= n
∑
p∈S

νp(n)
p

.

More generally, for each prime p ∈ S, let fp :N→C be an arithmetic function such that fp(n) ̸= 0
for only finitely many primes p. The generalized arithmetic subderivative with respect to S (and
function collection f = ( fp)p∈S) is defined by

D f
S(n)= n

∑
p∈S

fp(n)
p

.
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We call each fp the coefficient function associated with prime p in the derivative. For brevity,
we denote

H(n)= ∑
p∈S

fp(n)
p

,

so that D f
S(n)= n H(n).

Examples. (i) If we choose fp(n)= νp(n) for every p ∈ S, then D f
S(n) reduces to the standard

subderivative DS(n). In particular, if S = P and fp(n) = νp(n) for all p, we recover
D f

P
(n)= D(n), the usual arithmetic derivative (Barbeau [1], Merikoski et al. [9]).

(ii) If S = {p} is a singleton set, D f
{p}(n) = fp(n)

p n can be viewed as a generalized arithmetic
partial derivative with respect to the prime p. For example, taking S = {2} and f2(n)= ν2(n)
gives D{2}(n)= ν2(n)

2 n, which only differentiates the 2-adic part of n.

We will make use of standard concepts from the theory of arithmetic functions. An arithmetic
function g(n) (a function g :N→C) is said to be:

• multiplicative if g(1)= 1 and g(mn)= g(m) g(n), whenever gcd(m,n)= 1.
• completely multiplicative if g(1)= 1 and g(mn)= g(m) g(n), for all m,n ∈N.
• additive if g(mn)= g(m)+ g(n), whenever gcd(m,n)= 1.
• completely additive if g(mn)= g(m)+ g(n), for all m,n ∈N.

These definitions are classical (see, e.g., Barbeau [1], McCarthy [8], and Sivaramakrishnan [10]).
For example, the function g(n)= lnn (logarithm of n) is completely additive, and the function
g(n)= nα (for a fixed constant α) is completely multiplicative.

Using this terminology, note that the p-adic order νp(n) is a completely additive function
in n for any fixed prime p, since νp(mn) = νp(m)+ νp(n) holds for all m,n. Consequently,
the classical arithmetic derivative D(n) has the fundamental property of being a derivation on
the multiplicative monoid of positive integers; it satisfies

D(mn)= mD(n)+nD(m),

for all m,n. We investigate the conditions under which the generalized subderivative D f
S(n)

enjoys this and other properties.

3. Main Results
In what follows, assume S ⊆P is fixed and that D f

S(n) is defined as above via a collection { fp}p∈S .
We first characterize when D f

S acts as a derivation (satisfies the Leibniz rule). We then examine
its behavior with respect to addition and scalar multiplication, and finally its multiplicative
properties. This concept is closely related to the study of Leibniz-additive functions, which
continues to be an active area of research (Haukkanen et al. [5]).

Theorem 3.1 (Leibniz Rule). The generalized arithmetic subderivative D f
S satisfies the Leibniz

rule

D f
S(mn)= mD f

S(n)+nD f
S(m),

for all positive integers m,n if and only if the function H(n) is completely additive.
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Proof. (⇒): Assume D f
S satisfies D f

S(mn) = mD f
S(n)+nD f

S(m), for all m,n. By the definition
D f

S(x)= x H(x), this condition expands to:

mn H(mn)= m(n H(n))+n(m H(m)) .

Simplifying, we cancel the factor mn (which is nonzero) to obtain:

H(mn)= H(m)+H(n) .

This holds for all m,n ∈N, hence H is completely additive.

(⇐): Conversely, assume H is completely additive, i.e., H(mn)= H(m)+H(n) for all m,n. Then
for any m,n,

mD f
S(n)+nD f

S(m)= m(nH(n))+n(mH(m))= mn(H(n)+H(m)) .

By complete additivity of H, H(n)+H(m) = H(mn). Thus mD f
S(n)+ nD f

S(m) = mn H(mn) =
D f

S(mn). This confirms the Leibniz rule.

Corollary 3.2. For a single prime p, the generalized partial derivative D f
{p}(n)= fp(n)

p n satisfies

D f
{p}(mn)= mD f

{p}(n)+nD f
{p}(m) for all m,n, if and only if fp(n)

p is a completely additive function
of n.

Proof. In the case S = {p}, the condition from Theorem 3.1 is that H(n) = fp(n)
p is completely

additive. This is equivalent to fp(n) itself being completely additive (since p is a constant factor).
The claim follows directly.

Next, we turn to the additive and homogeneous properties of D f
S . In general, the arithmetic

derivative D(n) is neither an additive function in the sense of D(m+ n) = D(m)+D(n), nor
homogeneous (D(kn) = k D(n) in general). We find that the generalized subderivative can
exhibit these properties only in degenerate cases.

Theorem 3.3 (Additivity and Homogeneity). Suppose D f
S satisfies

D f
S(m+n)= D f

S(m)+D f
S(n), whenever gcd(m,n)= 1,

and also

D f
S(an)= aD f

S(n), whenever gcd(a,n)= 1.

Then, H(n) must be a constant function. Conversely, if H(n) ≡ C is constant for all n, then
D f

S(n)= C n is a linear function of n that trivially satisfies both properties for all m,n.

Proof. First, suppose D f
S(m+n)= D f

S(m)+D f
S(n), whenever gcd(m,n)= 1. Taking n = 1 (which

is coprime with every m), we have

(m+1)H(m+1)= D f
S(m+1)= D f

S(m)+D f
S(1)= mH(m)+H(1).

Rearrange to (m+1)H(m+1)−mH(m)= H(1). By induction on m, one can solve this difference
equation: for m = 1 it gives H(2) = H(1). Assuming H(m) = H(1), the step to m+ 1 yields
(m+1)H(m+1)−mH(m)= H(1), i.e., (m+1)H(m+1)−mH(1)= H(1). Hence H(m+1)= H(1).
By induction, H(m) = H(1) for all m. Therefore, H(n) is a constant, say H(n) ≡ C for some
constant C = H(1).
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Next, assume D f
S(an)= aD f

S(n), whenever gcd(a,n)= 1. Again choose n = 1: then for any a
coprime with 1 (i.e., any a), we have D f

S(a)= aD f
S(1), so aH(a)= aH(1)). Thus H(a)= H(1), for

all a. In either approach, H(n) is constant (say H(n)≡ C).
Conversely, if H(n)≡ C is constant, then D f

S(n)= Cn. In that case, D f
S(m+n)= C(m+n)=

Cm+Cn = D f
S(m)+D f

S(n) and D f
S(an) = C(an) = a(Cn) = aD f

S(n), for all m,n,a, thus both
properties hold globally.

Corollary 3.4. If all coefficient functions fp(n) are constant functions (say fp(n)= cp , for some

constants cp and all n), then H(n)= ∑
p∈S

cp
p is a constant. In this case, D f

S(n)=
( ∑

p∈S

cp
p

)
n, which

clearly satisfies the additivity and homogeneity for all integers.

Remark 3.1. The additivity and homogeneity conditions in Theorem 3.3 were assumed only for
coprime arguments (which is a natural restriction in number theory contexts). In fact, if H(n) is
constant, D f

S(n)= Cn satisfies D f
S(m+n)= D f

S(m)+D f
S(n) and D f

S(an)= aD f
S(n) for all m,n,a,

without any coprimality assumptions. The necessity of H being constant, however, required
only the restricted conditions as stated.

Finally, we characterize when the generalized subderivative yields a multiplicative
arithmetic function. Recall that a function F(n) is multiplicative if F(1) = 1 and F(mn) =
F(m)F(n), for gcd(m,n) = 1. Generally, the standard arithmetic derivative D(n) is far from
multiplicative (for instance, D(6)= 5, D(2)= 1, D(3)= 1, yet 5 ̸= 1·1). For D f

S to be multiplicative,
the structural condition is as follows.

Theorem 3.5 (Multiplicativity). The generalized subderivative D f
S(n) defines a multiplicative

function (i.e., D f
S(1)= 1 and D f

S(mn)= D f
S(m)D f

S(n), whenever gcd(m,n)= 1) if and only if H(n)
is a multiplicative function.

Proof. First, note that D f
S(1)= 1 ·H(1)= H(1). For D f

S to be multiplicative we require D f
S(1)= 1,

so it is necessary that H(1)= 1. Now assume gcd(m,n)= 1. Then

D f
S(mn)= mn H(mn),

while

D f
S(m)D f

S(n)= (mH(m))(nH(n))= mn H(m)H(n).

For these to be equal for all coprime m,n, we must have H(mn)= H(m)H(n) under gcd(m,n)= 1,
that is exactly the condition that H is multiplicative. Conversely, if H is multiplicative (and in
particular H(1)= 1), then D f

S(1)= 1 ·H(1)= 1, and for any coprime m,n:

D f
S(mn)= mn H(mn)= mn H(m)H(n)= (mH(m))(nH(n))= D f

S(m)D f
S(n).

Thus, D f
S is multiplicative.

Remark 3.2. In the special case S = {p}, Theorem 3.5 implies that D f
{p}(n) = fp(n)

p n is

multiplicative if and only if H(n)= fp(n)
p is multiplicative. Equivalently, fp(n) satisfies

H(mn)= H(m)H(n), for all coprime m,n,
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i.e.,
fp(mn)

p
= fp(m)

p
· fp(n)

p
.

Clearing the fractions, this is

fp(mn)= 1
p

fp(m) fp(n), for all coprime m,n, with fp(1)= p.

In other words, fp(n) is a quasimultiplicative arithmetic function: p · fp(mn)= fp(m) fp(n), for
coprime m,n, and fp(1)= p. Equivalently, 1

p fp(n) is a multiplicative function. This observation
aligns with the findings by Haukkanen [3].

4. Illustrative Examples

We present a few examples to illustrate the computations of D f
S(n) in special cases and to verify

the theoretical conditions derived above.

Example 4.1 (Standard Arithmetic Derivative). Take S = P (all primes) and fp(n) = νp(n),
for each p. Then D f

P
(n) = n

∑
p|n

νp(n)
p , which is exactly the classic arithmetic derivative D(n).

As a concrete calculation, let n = 36. The prime factorization is 36 = 22 · 32, consequently
ν2(36)= 2, ν3(36)= 2, and νp(36)= 0 for other primes p. Therefore,

D(36)= 36
(
ν2(36)

2
+ ν3(36)

3

)
= 36

(
2
2
+ 2

3

)
= 36

(
1+ 2

3

)
= 36 · 5

3
= 60.

This can be verified using the Leibniz rule as well: for instance, 36 = 4 ·9 with gcd(4,9) = 1.
We find D(4) = 4

(ν2(4)
2

) = 4
(2

2

) = 4 and D(9) = 9
(ν3(9)

3

) = 9
(2

3

) = 6. The Leibniz rule predicts
D(36) should equal 4D(9)+ 9D(4) = 4(6)+ 9(4) = 24+ 36 = 60, confirming the calculation.
As expected, H(n) =∑

p

νp(n)
p in this case is not multiplicative (for example, H(2) = 1

2 , H(3) = 1
3 ,

and H(6)= H(2·3)= 1
2 + 1

3 = 5
6 , while H(2)H(3)= 1

2 · 1
3 = 1

6 ). Accordingly, D(n) is not multiplicative.
However, each vp(n) is completely additive, hence H(n) is completely additive; indeed
H(mn)= H(m)+H(n) holds for all m,n because adding exponents corresponds to multiplying
numbers. This guarantees that D(n) satisfies the Leibniz rule for all m,n, as we used.

Example 4.2 (Subderivative with Restricted Prime Set). Let S = {2,3} and choose f2(n)= ν2(n),
f3(n)= ν3(n). Then D f

S(n)= n
(ν2(n)

2 + ν3(n)
3

)
is the arithmetic subderivative of n with respect to

primes 2 and 3. This derivative ignores any other prime factors of n. For instance, consider
n = 60. We have 60 = 22 ·31 ·51, so ν2(60) = 2, ν3(60) = 1, ν5(60) = 1, and νp(60) = 0, for p > 5.
Then

D{2,3}(60)= 60
(
ν2(60)

2
+ ν3(60)

3

)
= 60

(
2
2
+ 1

3

)
= 60

(
1+ 1

3

)
= 60 · 4

3
= 80.

By contrast, the full arithmetic derivative D(60) would include the prime 5 as well: D(60) =
60

(2
2 + 1

3 + 1
5

) = 60
(4

3 + 1
5

) = 60
(20+3

15

) = 60 · 23
15 = 92. Thus, D{2,3}(60) = 80 is smaller, reflecting

the omission of the 5-component. In general, DS(n)+DP\S(n)= D(n) since one can split the sum
of νp(n)

p over p ∈ S and p ∉ S. The function

H(n)= ν2(n)
2

+ ν3(n)
3
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in this example is still completely additive (because ν2 and ν3 are individually completely
additive). Therefore, D{2,3}(n) also satisfies the product rule for all m,n. For instance, taking
m = 4, n = 9 (as before, gcd(4,9) = 1), we have D{2,3}(4) = 4

(ν2(4)
2 + ν3(4)

3

) = 4
(2

2 + 0
) = 4,

D{2,3}(9) = 9
(
0+ 2

3

) = 6, and indeed D{2,3}(36) = 60 equals 4(6)+9(4) = 24+36 = 60. In other
words, whenever m and n have no prime factors outside {2,3}, the Leibniz rule holds perfectly
for D{2,3}(mn). If m or n includes other primes, the product rule can fail because those prime
contributions do not get properly differentiated by D{2,3}. This is consistent with our theory: H(n)
is completely additive, accordingly the Leibniz rule holds universally; if we had chosen a scenario
where H was only additive for coprime arguments but not completely additive, the Leibniz rule
would break when primes overlap (see Example 4.3).

Example 4.3 (Generalized Derivative with Non-additive Coefficients). Consider S = P and
define fp(n)= 1p|n (the indicator that prime p divides n). In other words, for each prime p, let

fp(n)=
{

1, if νp(n)≥ 1,
0, if νp(n)= 0,

so that fp(n) simply flags the presence of p in the factorization of n. Then, the generalized
subderivative is

D f
P

(n)= n
∑
p|n

1
p

.

For example, D f
P

(8) = 8
(1

2

) = 4, D f
P

(9) = 9
(1

3

) = 3; D f
P

(6) = 6
(1

2 + 1
3

) = 5. Here H(n) = ∑
p|n

1
p

is additive for coprime arguments but not completely additive. For instance, H(8) = 1
2 and

H(4) = 1
2 , but H(4)+ H(2) = 1 ̸= H(8). In accordance with Theorem 3.1, this means D f

P
(n)

satisfies the Leibniz rule for products of coprime numbers, but not in general. Take 8 = 2 ·4
(which are not coprime). We find D f

P
(2) = 2

(1
2

) = 1 and D f
P

(4) = 4
(1

2

) = 2. The Leibniz rule
requires D f

P
(8)= 2D f

P
(4)+4D f

P
(2)= 2(2)+4(1)= 8. However, our direct calculation gave D f

P
(8)= 4.

The discrepancy arises precisely because H was not completely additive. On the other hand, if
we test the rule on coprime factors, say 6= 2 ·3, we have D f

P
(6)= 5, D f

P
(2)= 1, D f

P
(3)= 1, and

2D f
P

(3)+3D f
P

(2)= 2(1)+3(1)= 5, which matches D f
P

(6). This example underscores the necessity
of the complete additivity condition in Theorem 3.1.

It is also interesting to note the behavior with respect to multiplicativity: H(n) = ∑
p|n

1
p is

not multiplicative (for example, H(6)= 5
6 vs. H(2)H(3)= 1

2 · 1
3 = 1

6 ). Accordingly, D f
P

(n) is not a
multiplicative function. Indeed D f

P
(1) = 1

( ∑
p|1

1
p
) = 0, which already violates the requirement

D f
P

(1)= 1 for multiplicativity (no surprise, since here fp(1)= 0, for all p so H(1)= 0).

5. Concluding Remarks and Open Problems
We have developed a theory of generalized arithmetic subderivatives that encompasses
the classical arithmetic derivative and various partial and subderivative constructions. The
results here, inspired by Haukkanen’s work [3], provide a foundation, but many questions
remain open. As research continues, we expect to see deeper connections with classical number
theoretic functions and perhaps new insights into the structure of the integers through the lens
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of ‘arithmetic calculus’. We outline a few natural directions for further research:
• Other number systems: Extend the concept to different algebraic settings. For instance,

define analogous subderivatives in the ring of Gaussian integers (where primes are
Gaussian primes), or over polynomial rings over finite fields (with irreducible polynomials
playing the role of primes), a direction that has seen recent progress in p-adic fields and
number fields (Emmons and Xiao [2]).

• Arithmetic differential equations: Explore connections with arithmetic differential
equations. Since D f

S behaves like a derivation under certain conditions, one could study
functional equations involving D f

S (analogous to differential equations) or dynamical
systems defined by these subderivatives.
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[7] J. Kovič, The arithmetic derivative and antiderivative, Journal of Integer Sequences 15 (2012),
Article 12.3.8, URL: https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.html.

[8] P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, vii + 365 pages
(1986), DOI: 10.1007/978-1-4613-8620-9.

[9] J. K. Merikoski, P. Haukkanen and T. Tossavainen, Arithmetic subderivatives and
Leibniz-additive functions, Annales Mathematicae et Informaticae 50 (2019), 145 – 157,
DOI: 10.33039/ami.2019.03.003.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 491–499, 2025

http://doi.org/10.4153/CMB-1961-013-0
http://doi.org/10.7546/nntdm.2024.30.2.357-382
http://doi.org/10.7546/nntdm.2019.25.2.1-7
https://cs.uwaterloo.ca/journals/JIS/VOL19/Tossavainen/tossa6.html
https://cs.uwaterloo.ca/journals/JIS/VOL19/Tossavainen/tossa6.html
http://doi.org/10.7546/nntdm.2018.24.3.68-76
https://hrcak.srce.hr/235544
https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.html
http://doi.org/10.1007/978-1-4613-8620-9
http://doi.org/10.33039/ami.2019.03.003


Arithmetic Subderivatives Relative to Subsets of Primes: C. Talukdar and H. K. Saikia 499

[10] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Routledge, New York, 406 pages
(1989), DOI: 10.1201/9781315139463.

[11] T. Tossavainen, P. Haukkanen, J. K. Merikoski and M. Mattila, We can differentiate numbers, too,
The College Mathematics Journal 55(2) (2024), 100 – 108, DOI: 10.1080/07468342.2023.2268494.

[12] V. Ufnarovski and B. Åhlander, How to differentiate a number, Journal of Integer Sequences 6
(2003), Article 03.3.4, URL: https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.pdf.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 491–499, 2025

http://doi.org/10.1201/9781315139463
http://doi.org/10.1080/07468342.2023.2268494
https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.pdf

	Introduction
	Preliminaries and Definitions
	Main Results
	Illustrative Examples
	Concluding Remarks and Open Problems
	References

