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1. Introduction
The Banach contraction principle [11], which is a useful tool in the study of many branches
of mathematics and mathematical sciences, is one of the earlier and fundamental result in
fixed point theory. Because of its importance in nonlinear analysis, a number of authors have
improved, generalized and extended this basic result either by defining a new contractive
mapping in the context of a complete metric space or by investigating the existing contractive
mappings in various abstract spaces; see, e.g., [2,5,14–17,19,21,24] and references therein.

Best proximity point theory involves an intertwining of approximation and global
optimization. Indeed, it explores the existence and computation of an optimal approximate
solution of non-linear equations of the form f x = x, where f is a non-self mapping in some
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framework. Such equations are confronted when we attempt the mathematical formulation of
several problems. Given a non-self mapping f : A → B, where A and B are non-empty subsets
of a metric space, the equation f x = x does not necessarily have a solution because of the fact
that a solution of the preceding equation constrains the equality between an element in the
domain and an element in the range of the mapping. In such circumstances a natural question
arises: “Is it possible to find an optimal approximate solution with the least possible error?”

Best proximity point theory is an outgrowth of attempts in many directions to answer
previously posed question for various families of non-self mappings. In fact, a best proximity
point theorem furnishes sufficient conditions for the existence and computation of an
approximate solution x∗ that is optimal in the sense that the error d(x∗, f x∗) assumes the global
minimum value d(A,B). Such an optimal approximate solution is known as a best proximity
point of the mapping f . It is straightforward to observe that a best proximity point becomes
a solution of the equation in the special case that the domain of the mapping intersects the
co-domain of the mapping. Best proximity point theorems for several types of non-self mappings
have been derived in [1,3,4,6–10,23].

Recently, Geraghty [15] obtained a generalization of the Banach contraction principle in the
setting of complete metric spaces by considering an auxiliary function. Later, Amini-Harandi
and Emami [5] characterized the result of Geraghty in the context of a partially ordered
complete metric space. This result is of particular interest since many real world problems can
be identified in a partially ordered complete metric space. Cabellero et al. [12] discussed the
existence of a best proximity point of Geraghty contraction.

In this article, we get the best proximity point theorems for generalized Geraghty
contractions for non self mappings in the framework of complete metric spaces. We establish
few examples in the favor of our results.

2. Preliminaries
Definition 2.1 ( [20]). Let X be a metric space, A and B two nonempty subsets of X . Define

d(A,B)= inf
{
d(a,b) : a ∈ A,b ∈ B

}
,

A0 =
{
a ∈ A : there exists some b ∈ B such that d(a,b)= d(A,B)

}
,

B0 =
{
b ∈ B : there exists some a ∈ A such that d(a,b)= d(A,B)

}
.

In [8], the authors present sufficient conditions which determine when the sets A0 and B0

are nonempty.

Definition 2.2 ( [22]). Let T : A → B be a map and α : X × X →R be a function. Then f is said
to be α-admissible if α(x, y)≥ 1 implies α( f x, f y)≥ 1.

Definition 2.3 ([18]). An α-admissible map f is said to be triangular α-admissible if α(x, z)≥ 1
and α(z, y)≥ 1 implies α(x, y)≥ 1.

We denote by F the class of all functions β : [0,∞) → [0,1) satisfying β(tn) → 1, implies
tn → 0 as n →∞.
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Definition 2.4 ( [15]). Let (X ,d) be a metric space. A map f : X → X is called Geraghty
contraction if there exists β ∈F such that for all x, y ∈ X ,

d( f x, f y)≤β(d(x, y))d(x, y).

By using such maps Geraghty [15] proved the following fixed point result:

Theorem 2.1. Let (X ,d) be a complete metric space. Mapping f : X → X is Geraghty contraction.
Then f has a fixed point x ∈ X , and { f nx} converges to x.

Cho et al. [14] generalized the concept of Geraghty contraction to α-Geraghty contraction
and prove the fixed point theorem for such contraction.

Definition 2.5 ( [14]). Let (X ,d) be a metric space, and let α : X × X →R be a function. A map
f : X → X is called α-Geraghty contraction if there exists β ∈F such that for all x, y ∈ X ,

α(x, y)d( f x, f y)≤β(d(x, y))d(x, y).

Theorem 2.2 ( [14]). Let (X ,d) be a complete metric space, α : X ×X →R be a function. Define a
map f : X → X satisfying the following conditions:

(1) f is continuous α-Geraghty contraction;

(2) f be a triangular α-admissible;

(3) there exists x1 ∈ X such that α(x1, f x1)≥ 1;

Then f has a fixed point x ∈ X , and { f nx1} converges to x.

Definition 2.6 ( [20]). Let (A,B) be a pair of nonempty subsets of a metric space (X ,d) with
A0 6= ;. Then the pair (A,B) is said to have the P -property if and only if for any x1, x2, x3 ,
x4 ∈ A0 ,

d(x1, f x3)= d(A,B)

d(x2, f x4)= d(A,B)

}
⇒ d(x1, x2)= d( f x3, f x4).

Definition 2.7 ( [20]). Let (X ,d) be a metric space and f : A → B, then a point x ∈ A is called
best proximity point of the mapping f if

d(x, f x)= d(A,B).

We denote the set of best proximity points for given mapping f as BP f .

3. Optimal Approximate Solution

In this section, we introduced the new concept of the existence of best proximity point for
α-Geraghty contraction in the framework of Cauchy metric spaces. Our first notion is about
α-Geraghty contraction for non self mapping, instead of self mapping in [14].

Definition 3.1. Let (X ,d) be a metric space, and let α : X × X → R be a function. A map
f : A → B is called α-Geraghty contraction if there exists β ∈F such that for all x, y ∈ A ,

α(x, y)d( f x, f y)≤β(d(x, y))d(x, y),

where A,B ⊆ X .
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Now, we are in a position to prove our main result.

Theorem 3.1. Let A,B be two nonempty closed subsets of a complete metric space (X ,d) such
that A0 is nonempty, α : X ×X →R be a function. Define a map f : A → B satisfying the following
conditions:

(1) f is continuous α-Geraghty contraction with f (A0)⊆ B0 ;

(2) f be a triangular α-admissible;

(3) there exists x0, x1 ∈ A0 such that d(x1, f x0)= d(A,B) and α(x0, x1)≥ 1;

(4) the pair (A,B) has the P -property.

Then there exists x∗ in A such that d(x∗, f x∗)= d(A,B).

Proof. Let x0 ∈ A0 , since f (A0)⊆ B0 , there exists x1 ∈ A0 such that

d(x1, f x0)= d(A,B) with α(x0, x1)≥ 1. (3.1)

Again, since f (A0)⊆ B0 , there exists x2 ∈ A0 such that

d(x2, f x1)= d(A,B). (3.2)

Repeating this process, we get a sequence {xn} in A0 satisfying

d(xn+1, f xn)= d(A,B)

for any n ∈ N. If there exists some n0 ∈ N such that xn0 = xn0+1 , then d(xn0 , f xn0) =
d(xn0+1, f xn0)= d(A,B) implies that xn0 is a best proximity point of f . If we define xm = xn0 for
all m ≥ n0 , then {xn} converges to a best proximity point of f . The proof is complete. Assume
that

d(xn, xn+1)> 0, for all n ≥ 0. (3.3)

Note that xn, xn+1 ∈ A0 and f xn ∈ B0 for all n ≥ 0. We claim that

α(xn, xn+1)≥ 1, (3.4)

for all n≥0. If n=0, then α(xn, xn+1)≥1 holds by given hypothesis. Suppose that α(xn, xn+1)≥1
for some n > 0. As f is α-admissible, for xn, xn+1, xn+2 ∈ A0 , α(xn, xn+1) ≥ 1, we have
α(xn+1, xn+2)≥ 1. Thus (3.4) holds.

Since (A,B) has the P -property, we have that

d(xn, xn+1)= d( f xn−1, f xn) for any n ∈N.

Taking into account that f is α-Geraghty contraction, so for any n ∈N, we have that

d(xn, xn+1)≤ d( f xn−1, f xn)

≤α(xn−1, xn)d( f xn−1, f xn)

≤β(d(xn−1, xn))d(xn−1, xn)

< d(xn−1, xn) ,

Communications in Mathematics and Applications, Vol. 7, No. 1, pp. 23–36, 2016



Optimal Approximate Solution for Generalized Contraction Mappings: S Komal et al. 27

where β(d(xn−1, xn)< 1 and α(xn−1, xn)≥ 1.

⇒ d(xn, xn+1)< d(xn−1, xn),

so {d(xn, xn+1)} is strictly decreasing sequence of nonnegative real numbers.
Suppose that there exists n0 ∈N such that d(xn0 , xn0+1)= 0. In this case,

0= d(xn0 , xn0+1)= d( f xn0−1, f xn0),

implies that

d( f xn0−1, f xn0)= 0

and consequently

f xn0−1 = f xn0 .

Therefore,

d(A,B)= d(xn0 , f xn0−1)= d(xn0 , f xn0).

Thus in this case, there exists best proximity point, i.e. there exists x∗ in A such that
d(x∗, f x∗)= d(A,B).

In the contrary case, suppose that d(xn, xn+1)> 0 for any n ∈ N . Since {d(xn, xn+1)} is strictly
decreasing sequence of nonnegative real numbers and hence there exists r ≥ 0 such that

lim
n→∞d(xn, xn+1)= r.

We have to show that r = 0. Let r 6= 0 and r > 0, then

1< d(xn, xn+1)
d(xn−1, xn)

≤βd((xn−1, xn))< 1, for any n ∈N.

Which yields that

lim
n→∞β(d(xn−1, xn))= 1,

since β ∈F , the above equation implies that

lim
n→∞d(xn−1, xn)= 0.

Hence r = 0 and this contradicts our assumption that r > 0. Therefore,

lim
n→∞d(xn, xn+1)= 0.

Since d(xn+1, f xn)= d(A,B) for any n ∈N, for fixed p, q ∈N, we have

d(xp, f xp−1)= d(xq, f xq−1)= d(A,B)

and since (A,B) satisfies P -property, so

d(xp, xq)= d( f xp−1, f xq−1).

Now we have to show that {xn} is a Cauchy sequence.
On the contrary, suppose that {xn} is not a Cauchy sequence. Then there exists ε> 0 such

that for all k > 0, there exists m(k)> n(k)> k with (the smallest number satisfying the condition
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below)

d(xm(k), xn(k))≥ ε and d(xm(k)−1, xn(k))< ε.

Then we have

ε≤ d(xm(k), xn(k))

≤ d(xm(k), xm(k)−1)+d(xm(k)−1, xn(k))

< d(xm(k, xm(k)−1)+ε.
This implies that ε< d(xm(k), xn(k))< d(xm(k), xm(k)−1)+ε.

Let k →∞ in the above inequality, we have

lim
k→∞

d(xm(k), xn(k))= ε. (3.5)

Now by using Triangular inequality, we have

d(xm(k), xn(k))≤ d(xm(k), xm(k)−1)+d(xm(k)−1, xn(k)−1)+d(xn(k)−1,nk)

lim
k→∞

d(xm(k)−1, xn(k)−1)≥ lim
k→∞

d(xm(k), xn(k))− lim
k→∞

d(xm(k), xm(k)−1)− lim
k→∞

d(xn(k)−1, xn(k)).

By using (3) and (5), we obtain

lim
k→∞

d(xm(k)−1, xn(k)−1)= ε.

Since α(xn(k)−1, xm(k)−1)≥ 1, we have

d(xm(k), xn(k))= d( f xm(k)−1, f xn(k)−1)

≤α(xn(k)−1, xm(k)−1)d( f xn(k)−1, f xm(k)−1)

≤β(d(xn(k)−1, xm(k)−1))d(xn(k)−1, xm(k)−1)

⇒ d(xm(k), xn(k))
d(xn(k)−1, xm(k)−1)

≤β(d(xn(k)−1), xm(k)−1).

Letting m,n →∞ in the above inequality, we get

lim
k→∞

β(d(xn(k)−1, xm(k)−1))= 1,

and so

lim
n→∞d(xn(k)−1, xm(k)−1)= 0.

Hence ε= 0, which contradicts our supposition that ε> 0. So we conclude that {xn} is a Cauchy
sequence in A . Since {xn}⊆ A and A is closed subset of a complete metric space (X ,d). There is
x∗ ∈ A such that xn → x∗ as n →∞. Since f is continuous, so we have

f xn → f x∗

⇒ d(xn+1, f xn)→ d(x∗, f x∗).

Taking into account that {d(xn+1, f xn)} is a constant sequence with a value d(A,B), we deduce

d(x∗, f x∗)= d(A,B),

i.e. x∗ is best proximity point of f .
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Example 3.1. Consider X =R2 , with the usual metric d . Let A = {0}×[0,∞) and B = {1}×[0,∞).
Obviously, d(A,B)= 1 and A,B are nonempty closed subsets of X , take A0 = A and B0 = B.

We define f : A → B as:

f (0, x)= (1, ln(1+ x)),

where (0, x) ∈ A and x ∈ [0,∞).
Let α : R2 ×R2 → [0,∞) defined as:

α((x1, y1), (x2, y2))=
{

1 if 0≤ x1, x2 ≤ 1 and y1 > y2 ≥ 0,
0 elsewhere.

Clearly, f is triangular α-admissible and for (0, x1) ∈ A0 one has

α((0, x1), f (0, x1))= 1.

f is α-Geraghty contraction as: for (0, x), (0, y) ∈ A with x 6= y and x > y, we have

α((0, x), (0, y))d( f (0, x), f (0, y))= 1 ·d( f (0, x), f (0, y))

= | ln(1+ x)− ln(1+ y)|

=
∣∣∣∣ln(

1+ x
1+ y

)∣∣∣∣
=

∣∣∣∣ln(
(1+ y)+ (x− y)

1+ y

)∣∣∣∣
=

∣∣∣∣ln(
1+ x− y

1+ y

)∣∣∣∣
≤ ln(1+|x− y|)

= ln(1+|x− y|)
|x− y| · |x− y|

= ln(1+d((0, x), (0, y)))
d((0, x), (0, y))

·d((0, x), (0, y)).

Take φ(t)= ln(1+ t) for t ≥ 0, we have

α((0, x), (0, y))d( f (0, x), f (0, y))≤ φ(d(0, x),d(0, y))
d((0, x), (0, y))

·d((0, x), (0, y)).

Setting β(t)= φ(t)
t for t > 0, and β(0)= 0, we have

α((0, x), (0, y))d( f (0, x), f (0, y))≤β(d((0, x), (0, y))) ·d((0, x), (0, y)).

Obviously, when x = y the inequality is satisfied. Also β(t)= ln(1+t)
t ∈F , by elementary calculus.

The pair (A,B) satisfied the P -property. Indeed if for(0, x1), (0, x2) ∈ A0 and (1, y1), (1, y2) ∈ B0

and let x1 = y1, x2 = y2

d((0, x1), (1, y1))=
√

1+ (x1 − y1)2 = d(A,B)= 1,

d((0, x1), (1, y1))=
√

1+ (x1 − y1)2 = d(A,B)= 1,
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consequently,

d((0, x1), (0, x2))= |x1 − x2| = |y1 − y2| = d((1, y1), (1, y2)) .

Thus, by Theorem 3.1, (0,0) is the unique best proximity point of f .

Example 3.2. Let X =R2 with the usual metric d . Let A = {0}× [0,∞) and B = {1}× [0,∞) be
subsets of X . Obviously, d(A,B) = 1, and B is not a closed subset of X . Let A0 = {0}× [0,Π/2)
and B0 = {1}× [0,Π/2). Define a mapping f : A → B by

f (0, x)= (1,tan−1 x), for any (0, x) ∈ A.

Let α : X × X →R+ defined by

α((x1, y1), (x2, y2))=
1 if 0≤ x1, x2 ≤ 1 and y1 > y2 ≥ 0,

0 elsewhere.

Clearly, f is triangular α-admissible and for (0, x1) ∈ A0 one has

α((0, x1), f (0, x1))= 1.

Map f is α-Geraghty contraction. Indeed for (0, x), (0, y) ∈ A with x 6= y; x > y.

α((0, x), (0, y))d( f (0, x), f (0, y))= 1 ·d((1,tan−1 x), (1,tan−1 y))

= |tan−1 x− tan−1 y|.
Set β1 = tan−1 x and β2 = tan−1 y. Since β1 > β2 . Since the function φ(t) = tan−1 t for t ≥ 0 is
strictly increasing.

Taking into account that

tan(β1 −β2)= tanβ1 − tanβ2

1+ tanβ1 tanβ2

and since β1,β2 ∈ [0,Π/2),we have tanβ1,tanβ2 ∈ [0,∞), and consequently from the last
inequality it follows that

tan(β1 −β2)≤ tanβ1 − tanβ2.

Applying φ (notice that φ(t) = tan−1 t) to the last inequality and taking into account the
increasing character of φ, we have

φ(tan(β1 −β2))≤φ(tanβ1 − tanβ2)

tan−1(tan(β1 −β2))≤ tan−1(tanβ1 − tanβ2)

β1 −β2 ≤ tan−1(tanα− tanβ).

or equivalently,

tan−1 x− tan−1 y=β1 −β2 ≤ tan−1(x− y).

Thus

α((0, x), (0, y))d( f (0, x), f (0, y))= |tan−1 x− tan−1 y|
≤ tan−1 |x− y|
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= tan−1 |x− y|
|x− y| · |x− y|

= tan−1(d((0, x), (0, y)))
d((0, x), (0, y))

·d((0, x), (0, y))

=β(d(0, x),d(0, y))d((0, x), (0, y)),

where β(t)= tan−1 t
t , for t > 0 and β(0)= 0. Obviously, the inequality is satisfied for (0, x), (0, y) ∈ A

with x = y. Also β(t)= tan−1(t)
t ∈F . Therefore f is α-Geraghty contraction. Also the pair (A,B)

satisfied P -property. Indeed, if for (0, x1), (0, x2) ∈ A0 and (1, y1), (1, y2) ∈ B0 and x1 = y1, x2 = y2

d((0, x1), (1, y1))=
√

(1+ (x1 − y1)2)= d(A,B)= 1,

d((0, x2), (1, y2))=
√

(1+ (x2 − y2)2)= d(A,B)= 1,

consequently

d((0, x1), (0, x2))= |x1 − x2| = |y1 − y2| = d((1, y1), (1, y2)).

All the conditions of Theorem 3.1 are satisfied. Thus f has unique best proximity point. In this
case (0,0) is the unique best proximity point of f .

Notice that in this case B is not closed.

Remark 3.1. The condition A and B are nonempty closed subsets of the metric space (X ,d) is
not a necessary condition for the existence of the unique best proximity point for α-Geraghty
contraction f : A → B, as it is proved in the above example.

Since for any nonempty subset A of X , the pair (A,B) satisfied the P-property, we have the
following corollary.

Corollary 3.1. Let A be a nonempty closed subsets of a complete metric space (X ,d) such that
A0 is nonempty, α : X × X → R be a function. Define a map f : A → A satisfying the following
conditions:

(1) f is continuous α-Geraghty contraction;

(2) f be a triangular α-admissible;

(3) there exists x1 ∈ A0 such that α(x1, f x1)≥ 1;

Then f has a fixed point x∗ in A and f is a Picard operator, that is, f n(x1) converges to x∗ .

Proof. Following Theorem ?? by taking A = B, we obtained the desired result.

Corollary 3.2. Let A,B be two nonempty closed subsets of a complete metric space (X ,d) such
that A0 is nonempty. Define a map f : A → B satisfying the following conditions:

(1) f is continuous;

(2) f is Geraghty contraction with f (A0)⊆ B0 ;

(3) the pair (A,B) has the P -property.
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Then there exists a unique x∗ in A such that d(x∗, f x∗)= d(A,B).

Corollary 3.3. Let A be a nonempty closed subsets of a complete metric space (X ,d) such that
A0 is nonempty. Define a map f : A → A such that f is continuous Geraghty contraction. Then f
has a fixed point x∗ in A and f is a Picard operator, that is, f n(x1) converges to x∗ .

Proof. In Corollary 3.1, taking α(x, y)= 1 we have the desire result.

Continuity of the mapping f can be omitted Theorem 3.1. We replace continuity of f with a
suitable condition.

Theorem 3.2. Let A,B be two nonempty closed subsets of a complete metric space (X ,d) such
that A0 is nonempty, α : X ×X →R be a function. Define a map f : A → B satisfying the following
conditions:

(1) f is α-Geraghty contraction with f (A0)⊆ B0 ;

(2) f be a triangular α-admissible;

(3) there exists x1 ∈ A0 such that α(x1, f x1)≥ 1;

(4) the pair (A,B) has the P -property;

(5) if {xn} is a sequence in A such that α(xn, xn+1)≥ 1 for all n and xn → x ∈ X as n →∞, then
there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x)≥ 1 for all k.

Then there exists a unique x∗ in A such that d(x∗, f x∗)= d(A,B).

Proof. Following Theorem 3.1, we have (xn) is a Cauchy sequence such that xn → x as n →∞.
Let xm+1, xn+1 ∈ A0 and f xm, f xn ∈ B0 , such that

d(xm+1, f xm)= d(A,B),

d(xn+1, f xn)= d(A,B),

by the P-property, we get

d(xm+1, xn+1)= d( f xm, f xn).

So for xn, xn+1 ∈ A0 , we have

d(xn+1, xn)= d( f xn, f xn−1)≤α(xn, xn−1)d( f xn, f xn−1)

≤β(d(xn, xn−1))d(xn, xn−1)

< d(xn, xn−1)= d( f xn−1, f xn−2),

this implies { f xn} is a Cauchy sequence and { f xn}→ z.
Thus {d(xn, x)}→ 0 as n →∞, {d( f xn, f xn−1)}→ 0 as n →∞ and

d(xn+1, f xn)= d(A,B).

Taking limit as n →∞, we get

d(x, z)= d(A,B).

Communications in Mathematics and Applications, Vol. 7, No. 1, pp. 23–36, 2016



Optimal Approximate Solution for Generalized Contraction Mappings: S Komal et al. 33

Take a subsequence {xn(k)} of {xn}, and α(xn(k), x)≥ 1.

d( f xn(k), f x)≤α(xn(k), x)d( f xn(k), f x)≤β(xn(k), x)d(xn(k), x).

By applying the limit k →∞
d(z, f x)= 0.

Thus d(x, f x)= d(A,B).

4. Uniqueness of best proximity points

In this section, we study sufficient conditions in order to prove the uniqueness of best proximity
point.

Definition 4.1. Let f : A → B, α : X × X → [0,∞) be two mappings. A mapping f is called
α-regular if for all x, y ∈ A0 such that α(x, y)< 1, there exists z ∈ A0 such that α(x, z)≥ 1 and
α(y, z)≥ 1.

Theorem 4.1. Under the hypothesis of Theorem 2.1, assume that f is α-regular. Then for all
best proximity points x and y of f in A0 we have that x = y: In particular, f has a unique best
proximity point.

Proof. Let x, y ∈ A0 be two best proximity points of f in A0 .Then d(x, f x) = d(y, f y) = d(A,B)
and f has P -property, we deduce that

d(x, y)= d( f x, f y).

We consider two cases:

Case I: If α(x, y)≥ 1. Since x, y ∈ BP f , we have

⇒ d(x, f x)= d(A,B)= d(y, f y).

By using P -property, we have

d(x, y)= d( f x, f y).

Using the fact that f is α-Geraghty contraction, we have

d(x, y)= d( f x, f y)≤α(x, y)d( f x, f y)

≤β(d(x, y))d(x, y)

< d(x, y)

⇒ d(x, y)< d(x, y),

which is contradiction. So

x = y.

Case II: If α(x, y)< 1, then by the α-regularity of f , there exists z0 ∈ A0 such that α(x, z0)≥ 1
and α(y, z0)≥ 1. Based on z0 , we define a sequence {zn} and suppose that zn converges to x and
y, which proves the uniqueness. First, we shall prove that {zn} converges to x.
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Indeed, f z0 ∈ f A0 ⊆ B0 implies that z1 ∈ A0 such that d(z1, f z0) = d(A,B). Following the
similar arguments, there exists a sequence {zn} ⊆ A0 such that d(zn+1, f zn) = d(A,B) for all
n ≥ 0. In particular, zn+1 ∈ A0 and f zn ∈ B0 . We claim that

α(x, zn)≥ 1, for all n ≥ 0. (4.1)

If n = 0, α(x, z0) ≥ 1 by the choice of z0 . Suppose that α(x, zn) ≥ 1 for some n ≥ 0. As
f is triangular α-admissible, so we have for x, zn, zn+1 ∈ A0 , α(x, zn) ≥ 1, α(zn, zn+1) ≥ 1
implies α(x, zn+1) ≥ 1. Hence (4.1) holds for all n ≥ 0. We have by P -property, x, zn, zn+1 ∈ A0 ,
d(x, f x) = d(A,B),d(zn+1, f zn) = d(A,B) imply that d(x, zn+1) = d( f x, f zn). For all n ≥ 0, we
have

d(x, zn+1)= d( f x, f zn)

≤α(x, zn)d( f x, f zn)

≤β(d(x, zn))d(x, zn)

< d(x, zn)

which shows that {d(x, zn+1)} is a decreasing sequence of nonnegative real numbers,and there
exists r ≥ 0 such that lim

n→∞d(x, zn+1)= r. Assume r > 0, then we have

0< d(x, zn+1)
d(x, zn)

≤β(d(x, zn))< 1, for any n ∈N.

The last inequality implies that lim
n→∞β(d(x, zn)) = 1 and since β ∈ F , so r = 0 and this

contradicts our assumption.
Therefore lim

n→∞d(x, zn+1)= 0, that is zn+1 → x as n →∞.

Repeating this argument, we have that zn → x as n → ∞, which proves that {zn} is a
sequence converging to x. Similarly zn converges to y. By uniqueness of limit we have x = y.

5. Conclusions
Our results formed the best proximity point theorems for α-Geraghty contractions in the setting
of complete metric spaces. These theorems extended and cover many existing results in the
literature. Moreover, we declared some examples to prove the validity of our results.
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