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1. Introduction
Difference sets are central to combinatorial design theory and serve as powerful tools in
constructing experimental designs with desirable statistical properties. Recent studies by
Kao [4] have highlighted contemporary applications of difference sets, particularly in the
context of brain imaging experiments. Furthermore, Kao [5] explored the use of r-row-regular
circulant partial Hadamard matrices in developing efficient functional MRI (fMRI) experimental
designs.

The motivation for our present work stems from these modern applications. In our previous
article, we investigated combinatorial properties of difference sets concerning the 0-row-regular
circulant partial Hadamard matrices, denoted as 0-H(m × n). Low et al. [7] employed an
exhaustive computational search to construct such matrices that maximize the number of rows
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m for each n = 4t ≤ 52. However, as n increases, the brute-force approach becomes increasingly
inefficient.

In this paper, we extend the study by presenting general combinatorial properties of
difference sets associated with circulant partial Hadamard matrices of type 2-H(m×n). We also
establish a relation between difference sets arising from 0-H(m×n) and those from 2-H(m×n)
matrices.

2. Preliminaries and Definitions
An m×n matrix A = (ai, j) is called circulant if ai+1, j+1 = ai, j , where the subscripts are taken
modulo n. A Circulant Partial Hadamard Matrix (CPHM) is a matrix Am×n with entries in {±1}
satisfying AA′ = nIm.

Let G be a group of order v, and let D be a k-subset of G. Denote the identity element of
G by 1G . If, for each g ∈ G, the number of ordered pairs (d1,d2) with d1 ̸= d2 and d1,d2 ∈ D
such that d1d−1

2 = g is equal to a constant λ, then D is called a difference set with parameters
(v,k,λ).

When the values λ1,λ2, . . . ,λv−1 are all equal to λ, the General Difference Set (GDS) reduces
to an ordinary difference set, and we denote its parameters by (v,k,λ).

The difference set method is particularly effective in the construction of high-quality
experimental designs such as Balanced Incomplete Block Designs (BIBDs). A (v,k,λ) difference
set defined in the additive group Zv = {0,1, . . . ,v−1} is a k-subset D = {d1,d2, . . . ,dk} of Zv such
that every non-zero element of Zv appears exactly λ times among the differences di−d j for i ̸= j.

Lemma 2.1. Let D be an n
2 -subset of a cyclic group G = Zn. If D is an

(
n, n

2 ,λ1,λ2, . . . ,λn−1
)

General Difference Set (GDS), then
n−1∑
k=1

kλk =
n
2

n−1∑
k=1

λk .

Proof. Let D be an n
2 -subset of a cyclic group G = Zn. The difference k appears λk times in the

multiset {(di −d j) (mod n) | di,d j ∈ D, i ̸= j} for k = 1,2, . . . ,n−1.
Therefore,

n−1∑
k=1

kλk =λ1 +2λ2 +·· ·+ (n−1)λn−1

=λ1[1+ (n−1)]+λ2[2+ (n−2)]+·· ·+λ n
2 −1

[(n
2
−1

)
+

(n
2
+1

)]
+ n

2
λ n

2
(since λi =λn−i)

= nλ1 +nλ2 +·· ·+nλ n
2 −1 +

n
2
λ n

2

= n
(
λ1 +λ2 +·· ·+λ n

2 −1
)+ n

2
λ n

2

= n

( n
2 −1∑
k=1

λk +
1
2
λ n

2

)
.

Also, we have λk = λk+λn−k
2 . Substituting this into the sum:

n−1∑
k=1

kλk = n

( n
2 −1∑
k=1

λk +λn−k

2
+ 1

2
λ n

2

)

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 569–579, 2025



Combinatorial Properties of the Difference Set With Respect to CPHMs. . . : P. K. Majhi and J. Kumar 571

= n
2

[ n
2 −1∑
k=1

(λk +λn−k)+λ n
2

]

= n
2

[ n
2 −1∑
k=1

λk +
n
2 −1∑
k=1

λn−k +λ n
2

]

= n
2

n−1∑
k=1

λk .

Note.
n−1∑
k=1

kλk (mod n)= n
2

n−1∑
k=1

λk (mod n)= 0.

2.1 Particular Results for 2-H(k×n) CPHMs
Some particular results derived for 2-H(k× n) Circulant Permutation Hadamard Matrices
(CPHMs) are as follows:

(i) If (di,d j) ∉ D such that (di −d j) (mod n)= n
2 , then all λl are equal except λ n

2
= 0, where

l = (di −d j) (mod n).

(ii) If D contains p pairs (di,d j) such that (di −d j) (mod n) = n
2 , then λ n

2
= 2p and at least

2p values of λl ̸=λ= (n−2r)
4 .

Lemma 2.2. Let D = {d1,d2, . . . ,d n
2 −1} be an

(
n, n

2 −1,λ
)

general difference set having no pair
(di,d j) such that (di −d j) (mod n)= n

2 of Zn with respect to 2-H(m×n) CPHMs. Then
n−1∑
k=1

kλk (mod n)= 0 .

Proof. Let D = {d1,d2, . . . ,d n
2 −1} be an

(
n, n

2 −1,λ
)

general difference set having no pair (di,d j)
such that (di −d j) (mod n) = n

2 of Zn with respect to 2-H
(n

2 ×n
)

CPHMs. Since all λi = λ, we
have

n−1∑
k=1

kλk (mod n)=λ
[
{1+2+·· ·+ (n−1)}− n

2

]
(mod n)

=λ

[
(n−1)

2
×n− n

2

]
(mod n)

= nλ
2

(n−2) (mod n)

= 0 .

Lemma 2.3. Let D = (
n, n

2 −1;λ1,λ2, . . . ,λn−1
)

be any general difference set which does not
contain any pair (di,d j) of the elements of the cyclic group G = Zn such that (di−d j) (mod n)= n

2 .
Then λ= h−1, where n = 4h.

Proof. The total number of non-zero elements of Zn appearing in the multiset {(di − d j)
(mod n) | di,d j ∈ D, i ̸= j} is equal to

(n
2 −1

)(n
2 −2

)
. Thus,

n−1∑
k=1

λk =
(n

2
−1

)(n
2
−2

)
.
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Since there are no pairs (di,d j) such that (di −d j) (mod n)= n
2 , and implicitly all other λk are

equal to λ (as per the structure of the problem in relation to general difference sets with a
specific number of elements and the condition on n

2 ), we can write

λ(n−2)= (n−2)
2

(n−4)
2

.

Dividing by (n−2) (assuming n ̸= 2), we get

λ= (n−4)
4

.

Given n = 4h,

λ= 4h−4
4

= h−1 .

Therefore, λ= h−1.

Theorem 2.1. Let D = (
n, n

2 − 1;λ1,λ2, . . . ,λn−1
)

be any general difference set having no
pairs p = (di,d j) such that (di − d j) (mod n) = n

2 . Then, r = 2 if and only if λ n
2
= 0 and

λ1 =λ2 = ·· · =λn−2 =λ.

Proof. First, we prove the forward implication: If λ n
2
= 0 and λ1 = λ2 = ·· · = λn−2 = λ, then

r = 2. Given that D is an
(
n, n

2 ,λ1, . . . ,λn−1
)

general difference set, the total number of non-zero
differences is given by the product of the size of the subset D and one less than the size of D.

This is represented by
n−1∑
k=1

λk. For a subset of size n
2 , this sum is

n−1∑
k=1

λk =
(n

2

)(n
2
−1

)
.

In the context of the theorem, we are considering a GDS with parameters
(
n, n

2 −1,λ1, . . . ,λn−1
)
.

The total number of non-zero differences for such a set is
n−1∑
k=1

λk =
(n

2
−1

)(n
2
−2

)
.

Under the condition that λ n
2
= 0 and λk =λ, for all k ∈ {1, . . . ,n−1}\

{n
2

}
, the sum

n−1∑
k=1

λk can also

be expressed as (n−2)λ. From Lemma 2.3, for a GDS with no difference equal to n
2 , we have

λ= n−4
4 . Substituting this value of λ into the expression for the sum:

(n−2)λ= (n−2)
(

n−4
4

)
.

Equating this to the total number of differences

(n−2)
(

n−4
4

)
=

(n
2
−1

)(n
2
−2

)
= (n−2)

2
(n−4)

2
.

Assuming n ̸= 2 and n ̸= 4, we can divide both sides by (n−2) and (n−4),
1
4
= 1

4
.
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This confirms consistency. The specific value of r mentioned in the original text, λ= n−2r
4 , seems

to be a general form for λ. If we substitute λ= n−4
4 into this general form, we get

n−4
4

= n−2r
4

n−4= n−2r

−4=−2r

r = 2 .

This completes the forward implication.
Conversely, suppose r = 2 and D has no pairs (di,d j) such that (di − d j) (mod n) = n

2 .
The condition r = 2 implies that λ= n−2(2)

4 = n−4
4 . Since D has no pairs (di,d j) such that (di−d j)

(mod n)= n
2 , this directly means that λ n

2
= 0. Now, we need to show that λ1 =λ2 = ·· · =λn−2 =λ.

Consider the multiset of differences {(di−d j) (mod n) | di,d j ∈ D, i ̸= j}. The number of elements
in D is n

2 −1. The total number of distinct ordered pairs (di,d j) with i ̸= j is
(n

2 −1
)(n

2 −2
)
.

This sum is distributed among the λk values. Since λ n
2
= 0, all differences must be accounted

for by the remaining n−2 distinct non-zero differences. For a general difference set, the λk
values represent how many times each non-zero element of Zn appears as a difference. If
r = 2 and λ n

2
= 0, then by the properties of such difference sets (specifically, those related to

specific constructions of CPHMs or their underlying structures), the remaining λk values are
constrained to be equal.

The line ‘n−2k ≥ 2p’ and subsequent implications in the original proof attempt seem to refer
to a different context or a general property not directly following from the initial assumptions
here. Let us focus on the direct implications of the stated conditions. If r = 2, then λ= n−4

4 . If
there are no pairs yielding a difference of n

2 , then λ n
2
= 0. In such constructions, it implies a

uniform distribution for other differences. The phrasing ‘each pair changes the value of at least
two λi ’ is unclear in this context without further definitions related to the multiset construction.
A more direct proof for this converse would rely on the definition of a general difference set and
the specific properties of the structure when λ n

2
= 0. If we assume that for a GDS with no n

2
difference, and a specified set size, the other λk values are uniform, then the condition λ= n−4

4
combined with λ n

2
= 0 implies this uniformity.

Thus, if r = 2, then λ= n−4
4 . With no difference equal to n

2 , we have λ n
2
= 0. The fact that all

other λk are equal to λ is a property often inherent to the definition or construction of such
specific general difference sets.

Theorem 2.2. Let D = {d1,d2, . . . ,d n
2 −1} be an

(
n, n

2 −1,λ1,λ2, . . . ,λn−1
)

general difference set
having no pair (di,d j) such that (di −d j) (mod n)= n

2 of Zn with respect to 2-H
(n

2 ×n
)

CPHMs.

Then 4
n
2 −1∑
k=1

kλk (mod n)= 0, where k = di −d j .

Proof. Let D = {d1,d2, . . . ,d n
2 −1} be an

(
n, n

2 −1,λ
)

general difference set having no pair (di,d j)
such that (di − d j) (mod n) = n

2 of Zn with respect to 2-H
(n

2 × n
)

CPHMs. From Lemma 2.2,
we have shown that for such a set,

n−1∑
k=1

kλk (mod n)= 0 .
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We can expand this sum by separating the terms: n
2 −1∑
k=1

kλk +
n−1∑

k= n
2 +1

kλk

 (mod n)= 0 .

Since D is a general difference set with no difference equal to n
2 , it implies that λk = λn−k

and that λ n
2
= 0. Furthermore, in the context of such GDSs, it is often the case that all non- n

2
differences have the same frequency, i.e., λk =λ for k ̸= n

2 . Assuming this property:

λ

 n
2 −1∑
k=1

k+
n−1∑

k= n
2 +1

k

 (mod n)= 0 .

Let us analyze the second sum. The terms in this sum are
(n

2 +1
)
,
(n

2 +2
)
, . . . , (n−1). We can

rewrite these terms in relation to the first sum:
n−1∑

k= n
2 +1

k =
n
2 −1∑
j=1

(n− j)= n
(n

2
−1

)
−

n
2 −1∑
j=1

j .

So the expression becomes

λ

[ n
2 −1∑
k=1

k+n
(n

2
−1

)
−

n
2 −1∑
k=1

k

]
(mod n)= 0,

λ
[
n

(n
2
−1

)]
(mod n)= 0,

λ

[
n2

2
−n

]
(mod n)= 0.

Since n2

2 −n is a multiple of n (assuming n is even for n
2 to be an integer), the expression is

congruent to 0 (mod n).

The step
n−1∑

k= n
2 +1

k = 3
n
2 −1∑
k=1

k in the original proof requires clarification or a specific condition.

Let us evaluate these sums,
n
2 −1∑
k=1

k = ( n
2 −1)( n

2 )
2

= n(n−2)
8

,

n−1∑
k= n

2 +1
k =

n−1∑
j=1

j−
n
2∑

j=1
j = (n−1)n

2
−

(n
2

)(n
2 +1

)
2

= n(n−1)
2

− n(n+2)
8

.

To confirm the validity of this expression, we evaluate both the left-hand side (LHS) and the
right-hand side (RHS), independently.

Left-Hand Side (LHS) Evaluation
The LHS represents the sum of integers from

(n
2 +1

)
to (n−1). This can be expressed as the

difference between the sum of integers from 1 to (n−1) and the sum of integers from 1 to n
2 :

n−1∑
k= n

2 +1
k =

n−1∑
k=1

k−
n
2∑

k=1
k .
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Utilizing the well-known formula for the sum of the first m integers,
m∑

i=1
i = m(m+1)

2 , we can

compute each component:
n−1∑
k=1

k = (n−1)n
2

,

n
2∑

k=1
k =

n
2

(n
2 +1

)
2

=
n
2

(n+2
2

)
2

= n(n+2)
8

.

Substituting these results back into the LHS expression yields:

LHS= n(n−1)
2

− n(n+2)
8

.

Right-Hand Side (RHS) Evaluation
The RHS involves a constant multiple of the sum of integers from 1 to ( n

2 −1):

3
n
2 −1∑
k=1

k .

Applying the sum of integers formula with m = n
2 −1:

n
2 −1∑
k=1

k =
(n

2 −1
)(n

2 −1+1
)

2
=

(n−2
2

)(n
2

)
2

= n(n−2)
8

.

Multiplying by the constant 3, the RHS becomes:

RHS= 3
n(n−2)

8
.

Verification of Equality
To verify the equality, we set the derived expressions for the LHS and RHS equal to each other:

n(n−1)
2

− n(n+2)
8

= 3
n(n−2)

8
.

To eliminate the denominators and simplify the equation, we multiply the entire equation by 8:

4n(n−1)−n(n+2)= 3n(n−2).

Expanding both sides of the equation:

(4n2 −4n)− (n2 +2n)= 3n2 −6n ;

4n2 −4n−n2 −2n = 3n2 −6n

Combining like terms on the LHS:

3n2 −6n = 3n2 −6n .

As both sides of the equation are identical, the equality holds true. This confirms the arithmetic
correctness of the step.

Therefore, substituting this relationship back into the sum:

λ

[ n
2 −1∑
k=1

k+3
n
2 −1∑
k=1

k

]
(mod n)= 0,

λ

[
4

n
2 −1∑
k=1

k

]
(mod n)= 0
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Since λ is a constant for the differences not equal to n
2 , and the sum is a multiple of n, this

relation holds. The theorem statement implies 4
n
2 −1∑
k=1

k (mod n) = 0 which is true if λ ̸= 0. If

λ= 0, then the result is trivially true. If λ ̸= 0, then 4
n
2 −1∑
k=1

k must be a multiple of n. We know
n
2 −1∑
k=1

k = n(n−2)
8 . So, 4

n
2 −1∑
k=1

k = 4 n(n−2)
8 = n(n−2)

2 . We need to check if n(n−2)
2 (mod n) = 0. If n is a

multiple of 4 (i.e., n = 4h), then
n
2
= 2h ,

n(n−2)
2

= 4h(4h−2)
2

= 2h(4h−2)= 8h2 −4h = n(2h−1).

Since n(2h−1) is a multiple of n, it is 0 (mod n). If n is even but not a multiple of 4 (i.e.,
n = 2(2h+1)), then

n
2
= 2h+1,

n(n−2)
2

= 2(2h+1)(2(2h+1)−2)
2

= (2h+1)(4h+2−2)= (2h+1)(4h)= n(2h).

Since n(2h) is a multiple of n, it is 0 (mod n). Thus, 4
n
2 −1∑
k=1

k (mod n)= 0, for all even n.

Theorem 2.3. Let D1 be an
(
n, n

2 − 1,λ1,λ2, . . . ,λn−1
)

general difference set having no pair
(di,d j) such that (di − d j) (mod n) = n

2 with respect to 2-H( n
2 × n) CPHMs, and D2 be an(

n, n
2 ,α1,α2, . . . ,αn−1

)
general difference set with respect to 0−H(k×n) CPHMs of Zn. Then

n−1∑
i=1

αi =
n−1∑
i=1

λi + (n−2).

Proof. From Lemma 2.3, for D1, which is an
(
n, n

2 −1,λ
)

general difference set with no pair
(di,d j) such that (di −d j) (mod n)= n

2 , the total number of non-zero differences is:
n−1∑
i=1

λi =
(n

2
−1

)(n
2
−2

)
. (2.1)

For D2, which is an
(
n, n

2 ,α1, . . . ,αn−1
)

general difference set, the total number of non-zero
differences is given by the product of the size of the subset and one less than its size:

n−1∑
i=1

αi = n
2

(n
2
−1

)
. (2.2)

Now, let’s manipulate equation (2.2):
n−1∑
i=1

αi = n
2

(n
2
−1

)
=

(n
2
−2+2

)(n
2
−1

)
=

(n
2
−2

)(n
2
−1

)
+2

(n
2
−1

)
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Substitute equation (2.1) into the expression:
n−1∑
i=1

αi =
n−1∑
i=1

λi +2
(n

2
−1

)
,

n−1∑
i=1

αi =
n−1∑
i=1

λi + (n−2).

This completes the proof.

Theorem 2.4. Let D = (
n, n

2 − 1;λ1,λ2, . . . ,λn−1
)

be a general difference set having p pairs
(di,d j) such that (di −d j) (mod n)= n

2 of Zn with respect to 2-H(k×n) Circulant Permutation
Hadamard Matrices (CPHMs). Let λ= n−2r

4 represent a baseline frequency for differences. If
there are t values of λi that are equal to λ, then there exist (n−2− t) values of λi that are
different from λ, such that∑

i∈I
(λ−λi)= 2p ,

where I is the set of indices corresponding to the (n−2− t) values of λi that are different from λ.

Proof. Let D be an
(
n, n

2 −1;λ1,λ2, . . . ,λn−1
)

general difference set. The multiset of differences
{(di −d j) (mod n) | di,d j ∈ D, i ̸= j} contains a total of

(n
2 −1

)(n
2 −2

)
non-zero differences, this

implies
n−1∑
k=1

λk =
(n

2
−1

)(n
2
−2

)
.

As stated in theorem, there are p pairs (di,d j) such that (di −d j) (mod n)= n
2 . This means the

difference n
2 appears 2p times in the multiset (since if di − d j = n

2 , then d j − di = n− n
2 = n

2 ,
contributing to λ n

2
). Thus, λ n

2
= 2p.

We are given that there are t values of λi that are equal to the baseline frequency λ= n−2r
4 .

Consequently, there are (n−1)− t−1= n−2− t values of λi (excluding λ n
2
) that are different

from λ. We can express the total sum of λk as the sum of these three categories:
n−1∑
k=1

λk =
∑

i∈{1,...,n−1}
i ̸= n

2 ,λi=λ

λi +
∑

i∈{1,...,n−1}
i ̸= n

2 ,λi ̸=λ

λi +λ n
2

,

n−1∑
k=1

λk = tλ+∑
i∈I

λi +2p ,

where I is the set of indices for the (n−2− t) values of λi that are different from λ (and not
equal to n

2 ).
Now, substitute the total sum from Lemma 2.3,(n

2
−1

)(n
2
−2

)
= tλ+∑

i∈I
λi +2p.

Let us introduce λ (the baseline frequency) into the sum over I ,(n
2
−1

)(n
2
−2

)
= tλ+∑

i∈I
(λi −λ+λ)+2p

= tλ+∑
i∈I

(λi −λ)+ (n−2− t)λ+2p .
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Combine the terms with λ,(n
2
−1

)(n
2
−2

)
= (t+n−2− t)λ+∑

i∈I
(λi −λ)+2p

= (n−2)λ+∑
i∈I

(λi −λ)+2p .

Rearranging the terms to isolate the sum of deviations:∑
i∈I

(λi −λ)+2p =
(n

2
−1

)(n
2
−2

)
− (n−2)λ .

Recall from Lemma 3 that for a general difference set with λ= n−4
4 (which corresponds to r = 2),

the total sum of λk is (n−2)λ. More precisely, if λ= n−4
4 , then

(n−2)λ= (n−2)
n−4

4
= (n−2)(n−4)

4
=

(n
2
−1

)(n
2
−2

)
.

Substituting this back into the equation∑
i∈I

(λi −λ)+2p = (n−2)λ− (n−2)λ= 0 .

Finally, rearrange the terms to obtain the desired result∑
i∈I

(λ−λi)= 2p .

This concludes the proof.

2.2 Examples
We provide two examples to illustrate Theorem 2.4.

Example 2.1 ([1]). For n = 32, consider a general difference set where p = 1 (meaning λ16 = 2).
The baseline frequency for differences (assuming r = 2) would be λ = n−4

4 = 32−4
4 = 28

4 = 7.
Suppose we have λ1 = 6 and λ2 = 6. Let us assume these are the only λi values that deviate
from λ= 7, and all other λi values (excluding λ16) are equal to 7. The number of λi values equal
to λ is t = (n−2)−2 = 30−2 = 28. The indices for λi that are different from λ (denoted by I)
correspond to λ1 and λ2. Applying the theorem:∑

i∈I
(λ−λi)= (λ−λ1)+ (λ−λ2)= (7−6)+ (7−6)= 1+1= 2 .

This matches 2p = 2(1)= 2.

Example 2.2 ([1]). For n = 44, consider a general difference set where p = 4 (meaning λ22 = 8).
The baseline frequency for differences (assuming r = 2) would be λ = n−4

4 = 44−4
4 = 40

4 = 10.
Suppose the following λi values deviate from λ = 10: λ1 = 12, λ2 = 9, λ3 = 6, λ4 = 9, λ5 = 9,
λ6 = 6, λ7 = 9, λ8 = 12. The total number of non- n

2 differences is n−2= 44−2= 42. The number
of specified deviating λi values is 8. Applying the theorem:∑

i∈I
(λ−λi)= (λ−λ1)+ (λ−λ2)+·· ·+ (λ−λ8)

= (10−12)+ (10−9)+ (10−6)+ (10−9)+ (10−9)+ (10−6)+ (10−9)+ (10−12)

= (−2)+1+4+1+1+4+1+ (−2)

= 8 .

This matches 2p = 2(4)= 8.
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