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Abstract. In this paper, by applying the group theoretic method introduced by Weisner, we determined
new generating relations of a new class of semi-orthogonal polynomials Xn(x;a,α). By giving proper
analytical reasoning to the index m of the semi-orthogonal polynomial, we derived three linear partial
differential operators with the help of the ascending and descending differential recurrence relation of
the polynomial. These linear partial differential operators generate a Lie group.
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1. Introduction
Louis Weisner [14,15] has developed a group theoretic method to obtain the generating functions
for a large class of functions under certain conditions. He also showed the group theoretic
crucialness in the study of Hypergeometric functions, Hermite functions and Bessel functions
and their generating functions. For a given set, the necessary and sufficient condition is that it
must have descending and ascending recurrence relations.
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Andhare and Choudhary [1] obtained new generating relations for a class of polynomials
Ym(a, x) by using Lie group theory. By using the Weisner Method, Bhagavan and Tadikonda [3]
obtained three new generating relations for the Chebyshev polynomials. Srinivasulu and
Bhagavan [12] obtained new generating relations for the two variable Hypergeometric
polynomial Rn(β;α; x, y) by Weisner method. Many researcher used this method to obtain
the generating functions in the theory of special functions for several semi-orthogonal
polynomials (see, Chongdar [4], Elkhazendar et al. [5], Grosswald [6], Manocha [7], McBride [8],
Miller Jr. [9], Pathan et al. [10], Srinivasulu and Bhagavan [12], Srivastava and Manocha [13],
and Weisner [14,15]).

In the study of pure and other branches of applied mathematics, mathematical physics and
approximation theory orthogonal polynomials (Rainville [11]) and semi-orthogonal polynomials
play vital role. It has applications in various branches of engineering and science.

Bajpai [2] investigated a new class of semi-orthogonal polynomials Xn(x;a, y). The semi-
orthogonal polynomials Xn(x;a, y) are defined as,

Xn(x;a, y)= 2F0

(
−n,a;−;− x

y

)
, (1.1)

where n = 0,1,2, . . ..
These Xn polynomials have relation with Bessel polynomials (Bajpai [2], and Chongdar [4]),

Hermite polynomials and Laguerre polynomials.
Replacing y by α and n by m in (1.1), we get

Xm(x;a,α)= 2F0

(
−m,a;−;− x

α

)
=

∞∑
k=0

(−m)k(a)k
(− x

α

)k

k!
. (1.2)

For the semi-orthogonal polynomial Xn(x;a,α), we get following pure recurrence relation, where
m = 0,1,2, . . .,

Xm+1(x;a,α)= 1
α

[(α+mx+ax) Xm(x;a,α)−mxXm−1(x;a,α)] , (1.3)

and also it satisfies the following differential recurrence relations,
d
dx

Xm(x;a,α)= m
x

Xm(x;a,α)− m
x

Xm−1(x;a,α), (1.4)

d
dx

Xm(x;a,α)= α

x2 Xm+1(x;a,α)− α

x2 (α+ax)Xm(x;a,α). (1.5)

From (1.4) and (1.5), the following differential equation can be determined which is the type of
linear and ordinary[

x2 d2

dx2 + [α+ (a−m+1)x]
d
dx

−ma
]

Xm(x;a,α)= 0 . (1.6)

If we use the operator notation,

X
(
x,

d
dx

,−ma
)
= x2 d2

dx2 + [α+ (a−m+1)x]
d
dx

−ma , (1.7)

by using (1.7), the equation (1.6) can be rewritten as

X
(
x,

d
dx

,−ma
)

Xm(x;a,α)= 0 . (1.8)
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2. Linear Differential Operators
For the semi-orthogonal polynomial Xm(x;a,α), we define the first order partial differential
operators A, B and C which are linear, such that

A[Xm(x;a,α)y−ma]= amXm(x;a,α)y−ma , (2.1)
B[Xm(x;a,α)y−ma]= bmXm−1(x;a,α)y−ma+a , (2.2)
C[Xm(x;a,α)y−ma]= cmXm+1(x;a,α)y−ma−a (2.3)

and

E[Xm(x;a,α)y−ma]=−Xm(x;a,α)y−ma , (2.4)

where, am, bm and cm are functions of m and which do not dependent on x and y, but not
needed independent of the parameters a and α. We want to determine the first order linear
differential operators A, B and C by a method given by Srivastava and Manocha [13].

Proof of Equation (2.1). Let A = R1(x, y) ∂
∂x +R2(x, y) ∂

∂y +R3(x, y), where each Ri (i = 1,2,3) are
functions of x and y, but not needed independent of the parameters a and α,

A[Xm(x;a,α)y−ma]= amXm(x;a,α)y−ma

=
{

R1(x, y)
∂

∂x
+R2(x, y)

∂

∂y
+R3(x, y)

}
{Xm(x;a,α)y−ma}

= R1(x, y)y−ma d
dx

Xm(x;a,α)+R2(x, y)y−ma
(−ma

y

)
Xm(x;a,α)

+R3(x, y)y−maXm(x;a,α)

= R1(x, y)y−ma
{m

x
Xm(x;a,α)− m

x
Xm−1(x;a,α)

}
− ma

y
R2(x, y)y−maXm(x;a,α)+R3(x, y)y−maXm(x;a,α)

= −m
x

R1(x, y)y−maXm−1(x;a,α)

+
{

m
x

R1(x, y) − ma
y

R2(x, y)+R3(x, y)
}

y−maXm(x;a,α).

Now equating the coefficients of Xm(x;a,α) and Xm−1(x;a,α) on both sides, we get

R1(x, y)= 0, −ma
y

R2(x, y)+R3(x, y)= am .

Choosing,

R2(x, y)=− y
a

, R3(x, y)= 0.

We get

A =− y
a
∂

∂y
.

Proof of Equation (2.2). Let B = R1(x, y) ∂
∂x +R2(x, y) ∂

∂y +R3(x, y), where, each Ri (i = 1,2,3) are
functions of x and y, but not needed independent of the parameters a and α,

B[Xm(x;a,α)y−ma]= bmXm−1(x;a,α)y−ma+a

=
{

R1(x, y)
∂

∂x
+R2(x, y)

∂

∂y
+R3(x, y)

}
{Xm(x;a,α)y−ma}
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= R1(x, y)y−ma d
dx

Xm(x;a,α)+R2(x, y)y−ma
(−ma

y

)
Xm(x;a,α)

+R3(x, y)y−maXm(x;a,α)

= R1(x, y)y−ma
{m

x
Xm(x;a,α)− m

x
Xm−1(x;a,α)

}
− ma

y
R2(x, y)y−maXm(x;a,α)+R3(x, y)y−maXm(x;a,α)

= −m
xya R1(x, y)y−ma+aXm−1(x;a,α)

+
{

m
x

R1(x, y)− ma
y

R2(x, y)+R3(x, y)
}

y−maXm(x;a,α).

Choosing,

R1(x, y)= xya, R2(x, y)= ya+1

a
, R3(x, y)= 0.

We get

B = xya ∂

∂x
+ ya+1

a
∂

∂y
.

Proof of Equation (2.3). Let C = R1(x, y) ∂
∂x +R2(x, y) ∂

∂y +R3(x, y), where each Ri (i = 1,2,3) are
functions of x and y, but not needed independent of the parameters a and α,

C[Xm(x;a,α)y−ma]= cmXm+1(x;a,α)y−ma−a

=
{

R1(x, y)
∂

∂x
+R2(x, y)

∂

∂y
+R3(x, y)

}
{Xm(x;a,α)y−ma},

= R1(x, y)y−ma d
dx

Xm(x;a,α)+R2(x, y)y−ma
(−ma

y

)
Xm(x;a,α)

+R3(x, y)y−maXm(x;a,α)

= R1(x, y)y−ma
{ α

x2 Xm+1(x;a,α)− α

x2 (α+ax)Xm(x;a,α)
}

− ma
y

R2(x, y)y−maXm(x;a,α)+R3(x, y)y−maXm(x;a,α)

= αya

x2 R1(x, y)y−ma−aXm+1(x;a,α)

+
{
− (α+ax)

x2 R1(x, y)− ma
y

R2(x, y)+R3(x, y)
}

y−maXm(x;a,α).

Now equating the coefficients of Xm(x;a,α) and Xm+1(x;a,α) on both sides and choosing

R1(x, y)= x2

αya , R2(x, y)= 0, R3(x, y)= α+ax
αya ,

we get

C = x2

αya
∂

∂x
+ α+ax

αya .

Therefore, we get the first order linear differential operators

A =− y
a
∂

∂y
; B = xya ∂

∂x
+ ya+1

a
∂

∂y
; C = x2

αya
∂

∂x
+ α+ax

αya ; E =−1. (2.5)
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These linear differential operators satisfy the commutation relations
[A,B]= AB−BA =−B,
[A,C]= AC−CA = C,
[B,C]= BC−CB =−1= E

and

[A,E]= [B,E]= [C,E]= 0.


(2.6)

These commutator relations exhibits that the linear differential operators A, B, C, E generate
a Lie group and the operator C commutes with the operators B and A.
The extended form of group generated by each of operators B and C can be expressed as,

eb′B f (x, y)= f
(

xy−a

y−a −b′ , (y−a −b′)
−1
a

)
, (2.7)

ec′C f (x, y)= ec′ y−a
(
1− c′xy−a

α

)−a

f
(

αx
α− c′xy−a , y

)
= ec′ y−a

(
1− c′xy−a

α

)−a

f

(
x

1− c′xy−a

α

, y

)
, (2.8)

ec′C eb′B f (x, y)= ec′ y−a
(
1− c′xy−a

α

)−a

f
(

αxy−a

(y−a −b′)(α− c′xy−a)
, (y−a −b′)

−1
a

)
,

ec′C eb′B f (x, y)= ec′ y−a
(
1− c′xy−a

α

)−a

f

 xy−a

(y−a −b′)
(
1− c′xy−a

α

) , (y−a −b′)
−1
a

 . (2.9)

3. Generating Function Relations
By assigning different values to b′ and c′, the generating relations are determined for
the following three cases:
Case 1. b′ = 1, c′ = 0.
Case 2. b′ = 0, c′ = 1.
Case 3. b′c′ ̸= 0.

Case 1. Putting b′ = 1 in equation (2.7),

eB f (x, y)= f
(

xy−a

y−a −1
, (y−a −1)

−1
a

)
,

expB{y−maXm(x;a,α)}= (1− t)mXm

( x
1− t

;a,α
)
,

∞∑
p=0

(−m)p Xm−p(x;a,α)tp

p!
= (1− t)mXm

( x
1− t

;a,α
)
, (3.1)

where t = y−a.

Case 2. Putting b′ = 0, c′ = 1 in equation (2.8),

eC f (x, y)= ey−a
(
1− xy−a

α

)
f

(
x

1− xy−a

α

, y

)
,

expC
{
y−maXm(x;a,α)

}= exp(y−a)
(
1− xy−a

α

)−a
f

(
x

1− xy−a

α

, y

)
,
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∞∑
p=0

Xm+p(x;a,α)zp

p!
= exp(z)

(
1− xz

α

)−a
Xm

(
x

1− xz
α

;a,α
)
,

exp(z)
(
1− xz

α

)−a
Xm

(
x

1− xz
α

;a,α
)
=

∞∑
p=0

Xm+p(x;a,α)zp

p!
, (3.2)

where z = y−a.

Case 3. From equation (2.9) for b′c′ ̸= 0, putting b′ = w and c′ = 1, we get

eC ewB f (x, y)= ey−a
(
1− xy−a

α

)−a
f

 xy−a

(y−a −w)
(
1− xy−a

α

) , (y−a −w)
−1
a

 ,

exp(C)exp(wB) f (x, y)= ey−a
(
1− xy−a

α

)−a
f

 xy−a

(y−a −w)
(
1− xy−a

α

) , (y−a −w)
−1
a

 ,

exp(C)exp(wB){y−maXm(x;a,α)}= ey−a
(
1− xy−a

α

)−a
((y−a −w)

−1
a )−ma

· Xm

 xy−a

(y−a −w)
(
1− xy−a

α

) ;a,α

 ,

exp(C)exp(wB){y−maXm(x;a,α)}= ey−a
(
1− xy−a

α

)−a
(y−a −w)m

· Xm

 xy−a

(y−a −w)
(
1− xy−a

α

) ;a,α

 ,

∞∑
q=0

∞∑
p=0

(−m)pwp(y−a)m+q−p Xm+q−p(x;a,α)
p! q!

= ey−a
(
1− xy−a

α

)−a
(y−a −w)m

· Xm

 xy−a

(y−a −w)
(
1− xy−a

α

) ;a,α

 .

Putting y−a = z in the above equation,
∞∑

q=0

∞∑
p=0

(−m)pwpzm+q−p Xm+q−p(x;a,α)
p! q!

= ez
(
1− x z

α

)−a
(z−w)mXm

(
xz

(z−w)
(
1− xz

α

) ;a,α

)
or we can write,

ez
(
1− xz

α

)−a
(z−w)mXm

(
xz

(z−w)
(
1− xz

α

) ;a,α

)
=

∞∑
q=0

∞∑
p=0

(−m)pwpzm+q−p Xm+q−p(x;a,α)
p! q!

.

(3.3)
Equations (3.1), (3.2) and (3.3) are new generating relations for the new class of semi-orthogonal
polynomials Xm(x;a,α).

4. Conclusion
Three new generating relations are obtained for the new class of semi-orthogonal polynomials
Xm(x;a,α) by using the Weisner’s method. This method is a very powerful technique to
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obtain generating relations from the differential recurrence relations of the ascending and
the descending type of the semi-orthogonal polynomial Xm(x;a,α).
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