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Abstract. In this study, it is aimed to approximately solve the singularly perturbed Volterra-integro
differential equation by the Adomian decomposition method. The solution procedure is easy and fast.
Firstly, the equation is written in operator form. Then the integral operator is applied to all sides of
the equation. The series solution is obtained by applying some operations to the given equation and
then converting it into a recurrence relation. Error values show that the solution results obtained for
the two applied examples are very close to each other. The proposed method gives successful results
with 21 and 23 iterations.
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1. Introduction
In this paper, it is considered the following singularly perturbed Volterra-integro-differential
equation and its initial conditions:

εy′′(t)+a(t)y′(t)+
∫ t

0
H(t, s)y(s)ds = h(t), 0< t < ℓ, (1.1)

y(0)= A, (1.2)
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y′(0)= B
ε

, (1.3)

where 0< ε≪ 1 is a very small perturbation parameter; A and B are constants; h(t), a(t)> 0
and H(t, s) are assumed to be sufficiently smooth functions.

Integro-differential equations have many mathematical formulas in the natural sciences.
These equations whose integral upper bound is accepted as variable are called Volterra integro-
differential equations. Volterra integro-differential equations are seen in many application
areas of science and engineering. For example, physics, chemistry, biology, fluid dynamics,
atomic physics, diffusion, population and epidemic dynamics, glucose tolerance etc. (Burton [8],
Jerri [20], Kauthen [21], Kythe and Puri [22], Lodge et al. [23], Ramos [31], and Salama
and Bakr [35]). In most cases, most of these problems are solved by approximate methods,
since it is difficult to obtain exact solutions by analytical methods. For this reason, there are
different approaches preferred to solve Volterra integro-differential equations in the literature:
Piecewise-quasilinearization method (Ramos [32]), exponential technique and implicit Runge-
Kutta method (Ramos [31]), coupled method (Tao and Zhang [36]), finite difference method
(Cimen [14], Mbroh et al. [28], Şevgin [34], and Yapman and Amiraliyev [37]) and differential
transform method (Celik and Tabatabaei [11]), numerical integration method (Arslan [6]).
Existence and uniqueness studies of the solutions of Volterra integro-differential equations
are also included in the literature, see, Cakir and Arslan [8], Jerri [20], Kythe and Puri [22],
Nefedov et al. [29], and Roos et al. [33]. When a positive ε parameter is multiplied by the highest
order derivative, the equation is called a singularly perturbed equation. Singularly perturbed
equations and its problems are involved in many fields such as neurobiology, mathematical
biology, fluids and population dynamics, heat transport problems, nanofluids, viscoelasticity,
simultaneous control systems etc. (Doolan et al. [15], Farrell et al. [17], and O’Malley [30]).
The ε perturbation parameter creates unstability in the solution of the problem. For this reason,
numerical methods are used to avoid unstable solutions. One of the most convenient and widely
used methods is the finite difference method (Arslan [5], Cakir et al. [9], Mbroh et al. [28],
Şevgin [34], and Yapman and Amiraliyev [37]). In this study, it is aimed to approximately solve
singularly perturbed Volterra integro-differential equation with the Adomian decomposition
method, which is at least as reliable as these methods. The solution procedure in the Adomian
decomposition method is easy and fast. The series solution is obtained by applying some
operations to the given equation and then converting it into a recurrence relation.

The motivation of this article is to present an accurate and reliable approach to the
approximate solution of the Volterra integro-differential problem. Because our problem is
a singularly perturbed with a very small parameter (Amiraliyev and Amirali [4], Doolan et
al. [15], Farrell et al. [17], [30], and O’Malley [33]). This parameter creates the boundary
layers in the problem. So, the behavior of the solution changes abruptly and rapidly. This state
produces unlimited derivatives in solving singularly perturbed problems. In addition, the fact
that the problem contains integral terms makes it more difficult to reach an analytical solution.
Many classical analytical and numerical methods that have been and are being applied so far
cannot solve this problem. For this reason, the Adomian decomposition method, which gives
stable solutions for the ε parameter is used in the study.
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This study will proceed as follows: In Section 2, how the Adomian decomposition method
works will be given. Then, an application will be made on the sample problem of the proposed
method. The approximate results obtained will be compared with the actual results and
presented with tables and graphs in the same section.

2. Adomian Decomposition Method and Its Application
In the 1980s, George Adomian developed the Adomian decomposition method, named after
him, for the solution of nonlinear functional equations (Yapman and Amiraliyev [37]). The
Adomian decomposition method gives analytical solution results in terms of infinite power
series obtained very simply by an important formula applied to a wide class of linear and
nonlinear equations (Adomian et al. [1–3]). The difficulty, however, is in proving the convergence
of the series of functions. The studies of the Adomian decomposition method continued with
many other authors, see, Cakir and Arslan [10], Malaikah [24], Maturi [25,26], and Maturi and
Malaikah [27]. Also, Cherruault and Adomian [13], and Cherruault [12] studied to convergence
rate of the Adomian decomposition method. El-Kalla [16] offered a different view regarding
the error analysis of the ADM. The Adomian Decomposition method is defined as follows
(Adomian and Rach [3], Adomian [1,2], and O’Malley [30]):

F y(t)= h(t),

Ly+R y+N y= h(t),

Ly= h(t)−R y−N y,

where L is invertible (L−1) and differential operator. For example, if L is a third-order operator,
then L−1 is a three-fold integration. If the differential equation is n-order

L(·)= dn(·)
dtn

and

L−1(·)=
∫ t

0
· · ·

∫ t

0
(·)dt · · ·dt, (n-times).

R is the reminder term and linear operator. N y is nonlinear term, it is defined as

N y=
∞∑

n=0
An, (2.1)

where An are Adomian polynomials of y0, y1, y2, . . . , yn. They are calculated the following
formula:

An = 1
n!

dn

dγn

[∑
γ j yj

]
γ=0

, j = 0,1,2,3, . . . .

If it is applied the L−1 operator, which is the inverse of the L, to equation (1.1), it has:

L−1 y= L−1h−L−1R y.

It is obtained series solution of given the differential equation.

y= y(0)+L−1h−L−1R y−L−1N y, (2.2)
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According to definition of Adomian decomposition method, eq. (2.2) solution is represented as
infinite sum of series.

y=
∞∑

n=0
yn = y0 + y1 + y2 + . . . . (2.3)

If the equations (2.1) and (2.3) are written in equation (2.2), the following expression is easily
obtained:

∞∑
n=0

yn = y(0)+L−1h−L−1R
∞∑

n=0
yn −L−1

∞∑
n=0

An,

Each term of infinite sum of series (2.3) is given by the following recurrence relation:

y0 = y(0)+L−1h,

yn+1 =−L−1R yn −L−1N yn, n = 0,1,2, . . . ,

where y1 is obtained by using y0.

Let us examine the following example to demonstrate the correctness of the theory:

εy′′(t)+2y′(t)+
∫ t

0
y(s)ds = t

2
− ε

4
(1− e

−t
ε ), 0< t < 1, (2.4)

y(0)= 0, (2.5)

y′(0)= 1
ε

, (2.6)

Ly= t
2
− ε

4
(1− e

−t
ε )+2y′(t)+

∫ t

0
y(s)ds, (2.7)

where

L(·)= d2(·)
dt2 .

Thus,

L−1(·)=
∫ t

0

∫ t

0
(·)dt dt.

By applying L−1 on the both sides of equation (2.4) and using (2.5)-(2.6), it is obtained as

y= t
ε
− 1
ε

[∫ t

0

∫ t

0

(
t
2
− ε

4
(1− e

−t
ε )

)
dt dt−

∫ t

0

∫ t

0
2y′(t)dt dt−

∫ t

0

∫ t

0

(∫ t

0
y(s)ds

)
dt dt

]
.

Thus, the following expression is found:

y0 = t
ε
− 1
ε

[∫ t

0

∫ t

0

(
t
2
− ε

4
(1− e

−t
ε )

]
dt dt

]
,

y1 = 1
ε

[
−

∫ t

0

∫ t

0
2y′0(t)dt dt−

∫ t

0

∫ t

0

(∫ t

0
y0(s)ds

)]
,

y2 = 1
ε

[
−

∫ t

0

∫ t

0
2y′1(t)dt dt−

∫ t

0

∫ t

0

(∫ t

0
y1(s)ds

)]
,

yn+1 = 1
ε

[
−

∫ t

0

∫ t

0
2y′n(t)dt dt−

∫ t

0

∫ t

0

(∫ t

0
yn(s)ds

)]
.

Consequently, the first few components are as follows for n = 0,1,2, . . . and ε= 0.9:

y0 =−0.6249987500+1.125000875t−0.1250000000t2 + . . . ,
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y1 =−0.07031234375+0.1406248285t−1.140626969t2 + . . . ,

y2 =−0.07910136914+0.7910136914t−0.1582030547t2 + . . . .

Hence, the solution in a series form is given by

yapp(t)= 3.203064231 ·exp(−2.000002000 · t)+7.406135872 · t−4.023000367 ·10−15 · t22

+3.498264688 ·10−16 · t23 +1.764974059 ·10−24 · t29 − . . . .

According to Table 1, the exact and the approximate solution values were found for ε= 0.9 and
t = 0, . . . ,1 using the Adomian decomposition method. Error values showed that these values
were very close to each other. It was seen that the proposed method gave successful results with
23 iterations.

Table 1. The computed Exact solutions, Approximate solutions and Errors for ε= 0.9

Exact solution ADM solution NIM error ADM error

t = 0.0 0.0000000000 0.000000000 0.00000000000 0.000000000

t = 0.1 0.0906347054 0.090634705 0.63918408e-2 0.000000004

t = 0.2 0.1648401110 0.164840112 0.106908703e-1 0.000000001

t = 0.3 0.2255943466 0.225594347 0.131706503e-1 0.000000004

t = 0.4 0.2753356976 0.275335698 0.141025156e-1 0.000000004

t = 0.5 0.3160604634 0.316060466 0.137438382e-1 0.000000026

t = 0.6 0.3494030748 0.349403076 0.123311100e-1 0.000000012

t = 0.7 0.3767016906 0.376701692 0.100764130e-1 0.000000014

t = 0.8 0.3990519025 0.399051906 0.71662090e-2 0.000000035

t = 0.9 0.4173507046 0.417350707 0.37616717e-2 0.000000024

t = 1.0 0.4323324937 0.432332494 0.00000000000 0.000000007

Figure 1. The comparison of Exact solutions and Approximate solutions for ε= 0.9
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If it is taken ε= 0.2, the approximate solution is as follows:

y0 =−0.002500000000−5.025000000t−0.1250000000t2 + . . . ,

y1 =−0.002512500000+0.02512500000t−25.12562500t2 + . . . ,

y2 =−0.002525062500+0.02525062500t−0.1262531250t2 + . . . .

Hence, the solution in a series form is given by

yapp(t)= 5.442432534 · t−8.073458743 ·10−22 · t34 −260.1198297 · t16

+153.0116646 · t17 − . . . .

According to Table 2, the exact and approximate solution results were obtained for ε= 0.2 and
t = 0, . . . ,0.5 by Adomian decomposition method. The error results were found to be quite small.
It was revealed that the method used in the study showed successful results with 21 iterations.

Table 2. The computed Exact solutions, Approximate solutions and Errors for ε= 0.2

Exact solution ADM solution NIM error ADM error

t = 0.0 0.0000000000 0.0000000000 0.000000000 0.000000000

t = 0.1 0.3160602794 0.3160602794 17.90945516 0.000000000

t = 0.2 0.4323323584 0.4323323585 19.65123356 0.000000003

t = 0.3 0.4751064658 0.4751064925 16.12887487 0.000000002

t = 0.4 0.4908421806 0.4908466215 7.854359720 0.000000444

t = 0.5 0.4966310265 0.4968676835 4.947451849 0.000236657

Figure 2. The comparison of Exact solutions and Approximate solutions for ε= 0.2

Conclusion
The boundary value problem of singularly perturbed Volterra integro-differential equation is
solved by Adomian decomposition method. Since there are boundary layers at t = 0 and t = 1
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points of the problem, the solution has changed abruptly and rapidly in the neighborhoods of
these points, and therefore the solution curve leans towards the axes. It is seen that the errors
are minimum for different values of ε = 2−1, 2−5, 2−10 and t = 0,0.1,0.2, . . . ,1 on the tables.
Approximate, exact solution and error values are compared in Figures 1 and 2. According to
these results, the method is stable, reliable and useful. In order to contribute to the literature, it
can be said that the Adomian decomposition method can be applied to the fuzzy and fractional
types of integral equations.
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