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Abstract. Using the concept of a PM space with fuzzy, it gives idea of a FPMS in this paper. A point’s
self-distance in partial metric space does not always equal to zero. Ordinary metric is a subset of
partial metric. Additionally, also define continuous t-norms. Partial fuzzy contraction mapping is
defined here. It also demonstrates that, in certain circumstances, the complete partial metric space
has a common fixed point through use of contraction mapping. Relevant examples are used as provide
results.
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1. Introduction
In 1965, Zadeh developed fuzzy set theory [22]. Fuzzy metric concepts have been presented in a
variety of ways by numerous writers. George and Veeramani [9] defines concept of FMS and
extended Probabilistic MS (see also, Vasuki and Veeramani [19]), and the fuzzy partial metric
space concept was expanded upon from Amer [3]. Following that, under certain circumstances,
Vasuki and Veeramani [14] and Gregori et al. [18] proved a few fixed-point theorems on FMS.
Numerous varieties of generalized metric spaces have been introduced in literature by altering
the metric condition by Mustafa and Sims [16].

The idea of PMS, which Matthews [15] introduced as an extension of metric space where any
point self-distance is not equal to zero, is one of the metric spaces’ generalizations. Computer
science applications serve as the inspiration for this idea. Bukatin et al. [7] demonstrated how
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metric space’s nonzero self-distance mathematics is established. They also discussed a few
potential applications for partial metric spaces. By taking into account the continuous t-norm,
Yue and Gu [21] defined the concept of fuzzy partial metric space. Additionally, they extended
the concept of fixed-point theorems which was explained Gregori and Sapena [11]. Following,
Sedghi’s acquisition [18] of the FPM space through the generalization of the non-Archimedean
fuzzy metric structure, they were able to derive certain fixed-point outcomes within these
spaces.

FPMS is a concept that Gregori et al. [12] approached by combining PMS and FMS with
continuous t-norm. From a fuzzy partial metric, Aygun et al. [5] constructs an FMS. This fuzzy
metric’s topology, Cauchy sequences, and completeness are examined, along with how they
relate to the same ideas that underpin the FMS. For generalized contractive type mappings
on partial metric space, Altun et al. [2] provides a few fixed-point theorems. Under certain
limitations, Güner and Aygün [8] found several helpful inequalities in fuzzy partial metric
spaces. The outcome of Grabiec’s [10] common fixed-point establishment is a fuzzy metric space.
They establish a common fixed-point theorem for property in fuzzy metric space in this study.

On fuzzy metric spaces, Beg et al. [6] obtained a fixed point of mapping that satisfied an
implicit connection. By following the evolution of fuzzy metric space, Amer [4] defined the
product space on fuzzy partial metric space. Gregori et al. [13] investigated a few characteristics
of a fuzzy metric space class. Fixed point generalizations to PMS can be derived from the
equivalent metric spaces results, as demonstrated by Haghi et al. [14]. O’Neill [17] establishes
the inherent duality of partial metrics and suggests that considering a partial metric space as a
bitopological space is a natural perspective. In contrast to earlier definitions of fuzzy metric
spaces, Xia and Guo’s [20] revised fuzzy metric spaces use fuzzy scalars rather than fuzzy
numbers or real numbers. They establish the links between FMS and PMS in this work, using
FPMS in the sense of Sedghi et al. [18]. Next, they demonstrate that, in certain scenarios,
every fuzzy partial metric yields a fuzzy metric. Using this idea, also demonstrate that, in
some cases (Aldemir et al. [1]), these mappings have a unique fixed point. Furthermore, it gives
demonstrate how the results of fuzzy metric space can be used to build some of the fixed-point
generalizations in FPMS.

2. Preliminaries
Definition 2.1 ([15]). A PMS on X is a pair (X ,P) such that X is a nonempty set and
P : X × X → R+ is a mapping satisfy following conditions ∀ p, q, r ∈ X such that

(i) P(p, p)≤ P(p, q),
(ii) P(p, p)= P(q, q)= P(p, q) if and only if P = q,

(iii) P(p, q)= P(q, p),
(iv) P(p, r)≤ P(p, q)+P(q, r)−P(q, q).

Note that PMS, a point’s self-distance does not always equal zero. Partial metric P is an ordinary
metric on X , if P(p, p)= 0 ∀ P ∈ X . Therefore, a PM is an extension of an ordinary metric.

Example 2.1. Let P : R−×R− → R+ be a mapping such that, P(p, q) = −min(p, q), for every
p, q ∈ R−. Then, (R−,P) is a PMS in which the self-distance of each point P ∈ R− does not equal
to zero.
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Definition 2.2 ([9]). A binary operation ⊙ on [0,1] is called a continuous t-norm if it is satisfied
following conditions: ∀ p, q, r, s ∈ [0,1]

(i) p⊙ q = q⊙ p and p⊙ (q⊙ r)= (p⊙ q)⊙ r,

(ii) ⊙ is continuous on [0,1]× [0,1],

(iii) p⊙1= p,

(iv) if p ≤ q and r ≤ s, then p⊙ r ≤ q⊙ s.

Definition 2.3 ([9]). Let X be a nonempty set, ⊙ be a continuous t-norm and F : X×X×[0,∞)→
[0,1] be a mapping. Let F be Fuzzy set, and the listed conditions are satisfied ∀ p, q, r ∈ X
and u,v ≥ 0, then the triplet (X ,F,⊙) is said to be a fuzzy metric space. If it satisfies following
properties for

(i) F(p, q,u)≥ 0,

(ii) F(p, q,u)= 1 if and only if p = q,

(iii) F(p, q,u)= F(q, p,u),

(iv) F(p, q,u+v)≥ F(p, q,u)⊙F(p, q,v),

(v) F(p, q,⊙) is continuous on [0,∞).

If (X ,F,⊙) is a fuzzy metric space, then F is a fuzzy metric on X .

Example 2.2. Let (X ,d) be a metric space and define p⊙ q =min(p, q) and

F(p, q,u)= u
u+d(p, q)

.

Then (X ,F,⊙) is a fuzzy metric space and F as the standard metric space about d.

Definition 2.4 ([6]). Let X be a nonempty set, ⊙ be a continuous t-norm and Fp : X×X×[0,∞)→
[0,1] be a mapping. Let P be partial metric space. If the listed conditions are satisfied
∀ p, q, r ∈ X and u,v ≥ 0, then the triplet (X ,Fp,⊙) is said to be a fuzzy partial metric space:

(i) Fp(p, q,0)= 0,

(ii) Fp(p, q,u)= Fp(q, p,u),

(iii) Fp(p, r,u+v)≥ Fp(p, q,u)⊙Fp(q, r,v),

(iv) Fp(p, q,u)≤ 1, u ≥ 0 and Fp(p, q,u)= 1 if and only if P(p, q)= 0,

(v) Fp(p, q,⊙) : [0,∞)→ [0,1] is continuous, where Fp(p, q,u)= u
u+p(p,q) .

If (X ,Fp,⊙) is an FPMS, then Fp is an FPM on X .

Example 2.3. Let (L,d1) and (M,d2) be two PMS with (L × M,d) be their product with
p(l,m)=max{d1(l1,m1),d2(l2,m2)}, for each l = d1(l1,m1) and m = d2(l2,m2) in L×M.

Denote x∆y=min(x, y), ∀ x, y ∈ [0,1]. Let Fp(l,m,u)= u
u+ p(l,m)

.

Let Fp be fuzzy set on L×M× [0,∞). Then, the triple (L×M,Fp,∆) is a FPMS.

Proof. (i) Fp(l,m,0)= 0
0+ p(l,m)

= 0,

(ii) Fp(l,m,u)= u
u+ p(l,m)

= u
u+max{d1(l1,m1),d2(l2,m2)}

= u
u+max{d2(l2,m2),d1(l1,m1)}
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= u
u+ p(l,m)

= Fp(m, l,u).

(iii) Fp(l,m,u)∆Fp(m,n,v)= u
u+ p(l,m)

∆
v

v+ p(m,n)

= u
u+max{d1(l1,m1),d2(l2,m2)}

∆
v

u+max{d1(m1,n1),d2(m2,n2)}

=min
{

u
u+max{d1(l1,m1),d2(l2,m2)}

v
u+max{d1(m1,n1),d2(m2,n2)}

}
≤ u+v

u+v+max{d1(l1,n1),d2(l2,n2)}

= u+v
u+v+ p(l,n)

≤ Fp(l,n,u+v)

(iv) Fp(l,m,u)= 1 if and only if p(l,m)= 0, 0≤ Fp(l,m,u)= u
u+ p(l,m)

≤ 1.

(v) Fp(l,m,∆) : [0,∞)→ [0,1] is continuous, where Fp(l,m,u)= u
u+ p(l,m)

.

Thus, the triple (L×M,Fp,∆) is a fuzzy partial metric space.

Definition 2.5. Let (M,P) be a partial metric space and (yn) be a sequence in M,

(i) (yn) is converged to y ∈ M if P(yn, y)= P(y, y).

(ii) (yn) is Cauchy sequence if P(yn, ym) exist.

(iii) (M,P) is complete, if there is a point y ∈ M such that P(yn, ym)= P(yn, y)= P(y, y).

Definition 2.6. Let (M,F,⊙) be a fuzzy metric space and (yn) be a sequence in M,

(i) (yn) is converged to y ∈ M if F(yn, y,u)= 1, ∀ u > 0.

(ii) (yn) is Cauchy sequence if F(yn, ym,u)= 1, ∀ u > 0.

(iii) (M,F,⊙) is complete, if every Cauchy sequence (yn) converges to a point y ∈ M such that
F(yn, ym,u)= F(y, y,u).

Definition 2.7. Let (M,Fp,⊙) be a fuzzy partial metric space and (yn) be a sequence in M,

(i) (yn) is converged to y ∈ M if Fp(yn, y,u)= Fp(y, y,u), ∀ u > 0.

(ii) (yn) is Cauchy sequence if Fp(yn, ym,u) exists, ∀ u > 0.

(iii) (M,Fp,⊙) is complete, if every Cauchy sequence (yn) converges to a point y ∈ M such that
Fp(yn, ym,u)= Fp(y, y,u).

Theorem 2.1. Let {yn}, n ∈ N be a sequence in Y . Then, {yn}, n ∈ N converges to y ∈ Y if and
only if Fp(yn, y,u)= Fp(y, y,u), ∀ u > 0.

Proof. Part I: Since {yn}, n ∈ N converges to y ∈Y . Then, for each neighborhood U of y, there
exists n0 ∈ N such that yn ∈U , for each n ≥ n0.
Let u > 0 and let ε ∈ (0,1). Since (Y ,Fp,⊙) is a fuzzy partial metric space.
Then there exists n0 ∈ N such that

yn ∈ BF (y,ε,u), for each n ≥ n0
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i.e., (y, y,u)→ Fp(yn, y,u)> 1−ε, for each n ≥ n0.
Since p⊙ r ≤ q ⇔ p → q ≥ r, ∀ p, q, r ∈ [0,1].
Thus, u > 0 for each n ≥ n0. Fp(y, y,u)≥ Fp(yn, y,u), for each n ∈ N .
Therefore, it gives that Fp(y, y,u)≥ Fp(yn, y,u)≥ (1−ε)⊙Fp(y, y,u), for each n ≥ n0.
Therefore, Fp(yn, y,u)= Fp(y, y,u), ∀ u > 0. Since u is arbitrary.
Suppose Fp(yn, y,u)= Fp(y, y,u), ∀ u > 0. Therefore,

Fp(y, y,u)≥ Fp(yn, y,u), for each n ∈ N, ∀ u > 0.

Part II: Let u > 0 and ϵ ∈ (0,1), there exists n0 ∈ N such that Fp(y, y,u) ≥ Fp(yn, y,u), u > 0,
∀ n ≥ n0.
Then, Fp(y, y,u) → Fp(yn, y,u) > 1− ε. Let u > 0 and let s ∈ (0,u) and ϵ ∈ (0,1), there exists
n0 ∈ N such that Fp(y, y, s)→ Fp(yn, y, s)> 1−ε, ∀ n ≥ n0.
Thus, ∀ s1 ∈ (s,u), that Fp(y, y,u)→ Fp(yn, y,u)> 1−ε, ∀ n ≥ n0, since the function Fp(y, y,⊙)→
Fp(y, z,⊙) is increasing.
Therefore, sup{Fp(y, y, s)→ Fp(yn, y, s) : s ∈ (0,u)}> 1−ϵ}, for each n ≥ n0, which is equivalent to
yn ∈ BF (y,ε,u), ∀ n ≥ n0.
Let U be a neighborhood of y. Then, there exists r ∈ (0,1) and u > 0 such that BF (y, r,u)⊆U .
There exists n0 ∈ N such that yn ∈ BF (y,ε,u), ∀ n ≥ n0. Hence, {yn}, n ∈ N converges to y.

Example 2.4. Let (Y ,Fp,⊙) be a fuzzy partial metric space. Define Y = (0,∞) and P(a,b) =
max(a,b), a,b ∈ Y . Consider the sequence {yn} = {0,1,0,1, . . . ,0,1}, n ∈ N , FP(yn,1,u) =

u
u+p(yn,1) = u

u+1 = Fp(1,1,u), u > 0 if and only if {yn}, n ∈ N converges to 1 ∈Y .

Theorem 2.2. Let (Y ,P) be a PMS and (Y ,Fp,⊙) be a standard FPMS about P .

(i) (yn) converges to y ∈Y in (Y ,Fp,⊙) if and only if (yn) converges to y ∈Y in (Y ,P).

(ii) (yn) is a Cauchy sequence in (Y ,Fp,⊙) if and only if (yn) is a Cauchy sequence in (Y ,P).

(iii) (Y ,Fp,⊙) is complete if and only if (Y ,P) is complete.

Definition 2.8. Let (Y ,P) be a complete PMS and f be a self-mapping on Y . The mapping f is
said to be partial contractive mapping on Y , if there exists a k ∈ [0,1) such that

P( f (y1), f (y2))≤ kP(y1, y2), for all y1, y2 ∈Y .

Theorem 2.3. Let (Y ,P) be a complete Partial Metric Space and f be a partial contractive
mapping on Y . Then, there exists a unique point y ∈Y such that f (y)= y and P(y, y)= 0.

Theorem 2.4. Let (Y ,F,⊙) be a fuzzy metric space. If f is a self-mapping on Y satisfying

F( f (a), f (b),u)> F(a,b,u), for all a,b ∈Y , a ̸= b and u > 0,

and there is a point a0 ∈Y whose sequence of iterates ( f n(a0)) contains a convergent subsequence
( f ni(a0)), then f has a common fixed point in Y .

Non-Archimedean Property. If an FMS (Y ,F,⊙) provide the following condition ∀ p, q, r ∈Y
and u,v > 0, then (Y ,F,⊙) is said to be a non-Archimedean in FMS F(p, q,max{u,v}) ≥
F(p, q,u)⊙M(q, r,v).
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Note 2.1. Each non-Archimedean property in FMS is a FPMS, but the converse may not be
true.

Example 2.5. Let (Y ,P) be a partial metric space and x⊙ y = xy, ∀ x, y ∈ [0,1]. Consider the
mapping Fp : Y ×Y × (0,∞)→ [0,1] defined by F(p, q,u)= u

u+P(p,q) .

Then (Y ,Fp,⊙) is a FPMS which is called the standard FPMS. Note that (Y ,Fp,⊙) is not an
FMS.

Remark 2.1. In an FMS (Y ,F,⊙), F(a,b,⊙) : (0,∞)→ [0,1] is increasing function ∀ a,b ∈Y , but
in a FPMS (Y ,Fp,⊙), Fp(a,b,⊙) : (0,∞)→ [0,1] may not be increasing function ∀ a,b ∈Y .

In the following example, It is show that there are FPMS, but FMS may not be increasing
function.

Example 2.6. Let Y = R and x ⊙ y = min{x, y}, ∀ x, y ∈ [0,1]. Consider the mapping Fp :
Y ×Y × (0,∞)→ [0,1] defined by

Fb(a,b,u)=
{

e−u, a = b,
1
2 e−u, a ̸= b.

Definition 2.9. Let (Y ,Fp,⊙) be a FPMS and ψ ∈Ψ. A self-mapping f on Y is called fuzzy
partial contraction if there exists a k ∈ [0,1) such that Fp( f (y), f (z),ku)≥ Fp(y, z,u), ∀ y, z ∈U
and u > 0.

3. Main Result
Theorem 3.1. Let (Y ,Fp,⊙) be a complete FPMS such that lim

u→∞F(a,b,u) = 1, ∀ a,b ∈ Y . If a
self-mapping f on Y is a fuzzy partial contraction mapping, then f has a common fixed point in
Y . Therefore, lim

n→∞Fp(an,a,u)= 1. Therefore, f (a)= a. Hence, a is a fixed point of f .

Proof. Let a0 ∈Y and an = f n(a0), ∀ n ∈ N . Since lim
u→∞F(a,b,u)= 1, ∀ a,b ∈Y .

Then

Fp(an+1,an,u)= Fp( f (an), f (an−1),u)

≥ Fp

(
an,an−1,

u
k

)
= Fp

(
f (an−1), f (an−2),

u
k

)
≥ Fp

(
an−1,an−2,

u
k2

)
...

≥ Fp

(
a1,a0,

u
k2

)
→ 1, n → ∞

Fp(an+1,an,u)= 1, ∀ u > 0.

Let n,m ∈ N and assume that n < m,

Fp(an,am,u)≥ Fp(an,am,u)⊙Fp(an+1,an+1,u)
≥ Fp(an+1,an+1,u)⊙Fp(am,an+1,u)
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≥ Fp(an,an+1,u)⊙Fp(am,an+1,u)⊙Fp(an+2,an+2,u)
≥ Fp(an,an+1,u)⊙Fp(an+1,an+2,u)⊙Fp(an+2,am,u)
...
≥ Fp(an,an+1,u)⊙Fp(an+1,an+2,u)⊙·· ·⊙Fp(am−1,am,u).

Thus, obtain

FP (an,am,u)= 1, for all u > 0.

Hence, (an) is a Cauchy sequence in (Y ,Fp,⊙).
Then,

Fp( f (a),a,u)≥ Fp( f (a),a,u)⊙Fp(an,an,u)

≥ Fp( f (a),an,u)⊙Fp(an,an−1,u)

≥ F( f (a), f (an−1),u)⊙Fp(a,a,u)

≥ Fp(a,an−1,u)⊙Fp(a,a,u).

Since (Y ,Fp,⊙) is a complete FPMS, there exists a point a ∈Y such that (an) converges to a,

lim
n→∞Fp(an,a,u)= Fp(a,a,u)= FP (an,am,u)= 1, u > 0.

Therefore, ( f (a), f (b),u)= 1. Thus, f (a)= a. Hence, a is a fixed point of function f .
Suppose a ̸= b. Then,

Fp(a,b,u)< Fp( f (a), f (b),u)= Fp(a,b,u)

which is a contradiction. Hence, a = b. Thus, f has a common fixed point a in Y .

Corollary 3.1. Let (Y ,Fp,⊙) be a standard FPMS, where P is complete partial metric on Y . If f
is self-mapping on Y which is a fuzzy partial contraction mapping, then f has a common fixed
point in Y .

Proof. Since (Y ,Fp,⊙) is a standard fuzzy partial metric space, where P is complete partial
metric on Y . Therefore, (Y ,Fp,⊙) is a complete FPMS, where Fp(a,b,u)= u

u+p(a,b) , ∀ a,b ∈Y ,
u > 0. Also, lim

u→∞F(a,b,u)= 1. Therefore, all conditions of Theorem 3.1 are satisfied. By using
Theorem 3.1, f has a common fixed point in Y .

Example 3.1. Define Y = R+, x⊙y= xy, ∀ x, y ∈ [0,1] and the mapping Fp : Y×Y×(0,∞)→ [0,1]
be defined by Fp(a,b,u)= u

u+max(a,b) ,

f (a)=
{

2x+ 1
2 , x ∈ [

0, 1
4

]
,

1
2 , x ∈ [1

4 ,1
]
.

It has a common fixed point which is x = 1
2 .

By using Example 3.1, it gives new proposition.

Proposition 3.1. Let (Y ,Fp,⊙) be a complete FPMS such that lim
u→∞F(a,b,u) exist, ∀ a,b ∈Y . If

a self-mapping f on Y is a fuzzy partial contraction mapping, then f has a common fixed point
in Y .
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Example 3.2. Define Y = R−, x⊙y= xy, ∀ x, y ∈ [0,1] and the mapping Fp : Y×Y×(0,∞)→ [0,1]
defined by Fp(a,b,u)= u

u−min(a,b) .

It is a complete FPMS and lim
u→∞FP (a,b,u)= 1, ∀ a,b ∈Y is hold.

Let f be a self-mapping defined on Y given by f (a)= a+1. But the mapping f does not satisfy
the contraction condition of Theorem. Thus, it has no fixed point.

Example 3.3. Define Y = [1,∞), x ⊙ y = xy, for every x, y ∈ [0,1] and the mapping Fp :
Y ×Y × (0,∞)→ [0,1]. Defined by Fp(a,b,u)= u

u+max(a,b) .

It is complete FPMS and lim
u→∞F(a,b,u)= 1, ∀ a,b ∈Y is hold.

Let f be a self-mapping defined on Y given by f (a)= a+ 1
a . But mapping f does not satisfy the

contraction condition of Theorem. Thus, f has no fixed point.

4. Conclusion
This study investigates various results in Fuzzy Partial Metric Spaces (FPMS), with particular
emphasis on their implications in the context of fuzzy set theory. To support the theoretical
findings, a representative example is presented, drawing upon established results and
methodologies from prior research in the domain of FPMS and fuzzy set theory.
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