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Abstract. In this study, we investigate a non-linear differential equation modeling the transmission
dynamics of monkeypox. We begin with a thorough stability analysis to assess the equilibrium points
of the model, providing insights into the conditions under which the disease may persist or diminish
within a population. Following this, we employ the q-Homotopy Analysis Transform Method (q-HATM)
to derive analytical solutions, showing its effectiveness in handling the complexities inherent in
non-linear systems. Our findings reveal that while both methods yields valuable insights into the
behavior of the monkeypox transmission model, q-HATM offers greater flexibility in terms of initial
conditions and non-linearity. This work contributes to the understanding of monkeypox for future
research in disease modeling using advanced mathematical techniques.
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1. Introduction
In recent years, the study of fractional differential equations has garnered significant attention
due to their applications in various fields such as physics, engineering, and finance. These
equations allow for more accurate modeling of real-world phenomena by incorporating
memory and hereditary properties. Among the various methods developed to solve fractional
differential equations. The resurgence of infectious diseases, such as monkeypox, underscores
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the importance of developing robust mathematical models to understand their dynamics.
In 1958, (Chowell et al. [7]) the virus that causes monkeypox was discovered in Denmark
in study monkeys. In Congo (Kinshasa), (Reynolds et al. [18]), a nine-month-old boy contracted
mpox in 1970, the first known human case. After smallpox was eradicated in 19800s and the
pox vaccine was paused globally, mpox gradually expanded throughout Africa (Chowell et al. [7]).
Mpox has since been reported sporadically in West Africa (Clade II) and central and eastern
Africa (Clade I) (Chowell et al. [7]). An epidemic in the United States in 2003 was linked to
imported wild animals (Clade II) (Chowell et al. [7]). Since 2005, Congo (Kinshasa) has seen
thousands of cases reported annually (Thornhill et al. [21]). Mpox resurfaced in Nigeria in 2017
(Somma et al. [20]) and is still spreading among Nigerians and tourists visiting other countries.
Congo (Kinshasa) has also seen a rise in mpox infections and fatalities since 2022 (Thornhill
et al. [21]). Clade II, a recent offshoot of Clade I, has been spreading from person to person
in several parts of the nation (Vivancos et al. [24]). The clade has also been detected in other
nations as of mid-2024 (Hobson et al. [8], Huo et al. [9], and Johnson et al. [10]).

Treating the rash, controlling discomfort, and avoiding complications are the main objectives
of mpox treatment. To assist manage symptoms and prevent more issues, early and supportive
care is crucial. A painful rash is a symptom of the viral infection known as monkeypox. After
a few weeks, the majority of people recover without treatment. People can occasionally get
terribly sick and pass away. Symptoms often appear 7-10 days after an individual is infected to
the mpox virus. Scarring from the skin rash and, in cases where the eyes are involved, perhaps
permanent vision loss are the most frequent long-term complications. which can cause corneal
injury. Monkeypox primarily affects the skin and mucous membranes, leading to symptoms
such as skin lesions, fever and chills, lymphadenopathy, respiratory symptoms.

Although there are currently no proven cures for mpox infection, the disease can be stopped
from spreading by using a variety of innovative antivirals, including tecovirimat, vaccinia
immune globulin, and brincindofovir. In the past ten years, monkeypox has significantly
increased in tandem with a decline in smallpox herd immunity. Although the smallpox vaccine
has been demonstrated to be 85% effective in preventing monkeypox, it is no longer routinely
available due to the smallpox eradication worldwide. The disease can be prevented or its severity
reduced with the use of the post-exposure vaccine. The illness has received little attention in
the past, which has led to a lack of understanding regarding its mechanisms of transmission.
However, few studies have attempted to use a mathematical modelling technique to study the
dynamics of the monkeypox virus. Predicting outbreaks, directing public health measures, and
influencing policy decisions all depend on accurate modelling (Somma et al. [20]).

In this context, fractional differential equations have emerged as powerful tools due to
their ability to incorporate memory effects and capture complex behaviors in biological systems.
A critical aspect of modeling infectious diseases is stability analysis, which examines how
solutions to mathematical models respond to perturbations. Stability ensures that small changes
in initial conditions or parameters do not lead to unpredictable or chaotic outcomes (Alzahrani
and Zeb [3], and Huo et al. [9]), which is vital for reliable predictions in epidemiological studies.
This paper focuses on advanced methodology for solving FDEs the q-HATM. The q-HATM
employs a homotopy approach to construct approximate solutions, allowing for significant
flexibility in addressing non-linear dynamics often observed in disease spread. This method
facilitates the exploration of solution space and provides insights into the stability of the model
(Padmavathi et al. [12], and Veeresha et al. [22,23]).
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On the other hand, the q-HATM offers a novel perspective by extending classical calculus
concepts to fractional orders (Padmavathi et al. [12,13], Pathak, et al. [14], Prakash and Kaur
[15,16], Prakash et al. [17], Reynolds et al. [18], Singh et al. [19], Somma et al. [20], Thornhill
et al. [21], Veeresha et al. [22,23], Vivancos et al. [24], and Youssef et al. [25]). This approach
maintains the intuitive properties of traditional differential equations while accommodating
fractional derivatives, making it particularly suitable for modeling phenomena with memory
effects, such as the transmission dynamics of monkeypox. By comparing these two methods, this
study aims to evaluate their effectiveness in capturing the stability characteristics of monkeypox
models. The analysis will highlight how each method addresses non-linearity and stability,
providing valuable insights into their applicability for epidemiological modeling (Abdullah
et al. [1], Alkunle et al. [2], Alzahrani and Zeb [3], Atangana and Gómez-Aguilar [4, 5], and
Bhunu and Mushayabasa [6]). Ultimately, this research seeks to enhance our understanding of
monkeypox transmission dynamics and contribute to more effective public health strategies.

2. Model Formulation
A deterministic compartment model on the transmission dynamics of the Monkeypox disease
is been proposed. The total population is divided into six compartments, susceptible A (t),
exposed B(t), infected C (t), systemic issues Y (t), rashes Z (t), recovered R(t) such that
N (t)=A (t)+B(t)+C (t)+Y (t)+Z (t)+R(t). Recruitment into human population is at a rate θ
is a birth rate, transmission rate β is the rate at which susceptible individuals become exposed
upon contact with infected individuals, the latent period rate σ is the rate at which exposed
individuals become infectious, recovery rate γ the rate at which infected individuals recover,
systemic issue development rate s the rate at which infected individuals experience systemic
issues, rash development rate δ the rate at which systemic issues develop a rash, rash recovery
rate r the rate at which individuals recover from rash symptoms and natural death occurs in
the human population at rate µ.

The transition among various compartment considered in the model is governed by
the following set of non linear differential equation below:

dA

dt
= θ−βA (t) C (t)−µA (t) ;

dB

dt
=βA (t) C (t)−σB(t)−µB(t) ;

dC

dt
=σB(t)−γC (t)− s C (t)−µC (t) ;

dY

dt
= s C (t)−δY (t)−µY (t) ;

dZ

dt
= δY (t)− r Z (t)−µZ (t) ;

dR

dt
= γC (t)+ r Z (t)−µR(t), (1)

where the parameter values are β= 2.0/109, δ= 0.004, σ= 0.01, γ= 0.002, θ = 2300, µ= 3.0/105,
s = 0.005, r = 0.001 and the initial values are A (0) = 34218169, B(0) = 5000, C (0) = 1720,
Y (0) = 157, Z (0) = 120, R(0) = 99. Using the initial and parametric values, the model of
the fractional-order dynamical system represented mathematically.
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3. The Role of Feedback in Achieving Stability
In this section, we conduct a comprehensive stability analysis of the proposed system to evaluate
its robustness and responsiveness to perturbations. The stability of the system is primarily
assessed using Hartman-Grobman theorem, which provides a systematic approach to ascertain
characteristics. We begin by identifying the equilibrium points of the system (1).

3.1 Monkeypox-Free Equilibrium State
The disease free equilibrium point represents a state in which the disease is absent from
the population. In our model, this equilibrium is characterized by the absence of infected
individuals, leading to a stable population of susceptible individuals. Mathematically, we denote
this equilibrium by the condition C = 0, where C represents the number of infected individuals.
For the monkeypox free equilibrium state E0,

E0 =
(
θ

µ
,0,0,0,0,0

)
.

The Jacobian of the system (1) is given by,

J =



−βC −µ 0 − βA 0 0 0
βC −σ−µ βA 0 0 0
0 σ −γ− s−µ 0 0 0
0 0 s −δ−µ 0 0
0 0 0 δ −r−µ 0
0 0 γ 0 r −µ


.

The value of J(E0) is given by,

J(E0)=



−µ 0 − βθ

µ
0 0 0

0 −σ−µ βθ

µ
0 0 0

0 σ −γ− s−µ 0 0 0
0 0 s −δ−µ 0 0
0 0 0 δ −r−µ 0
0 0 γ 0 r −µ


.

The transmissions matrix F and transition matrix V can be given as:

F =
[
βθ

µ
0

0 0

]
and V =

[
γ+ s+µ 0

−γ µ

]
.

Now, after much elucidation we obtain the next generation matrix as

FV−1 =
[

βθ

µ(γ+µ+s) 0

0 0

]
.

Hence the reproduction number is defined as the largest eigenvalue of the next generation
matrix FV−1 and can be obtained as:

R0 = βθ

µ(γ+µ+ s)
.
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3.2 Endemic Equilibrium State
When both susceptible and infected individuals are present and the disease remains at a
steady level in the community, this is known as the endemic equilibrium point. A constant
predominance of the disease results from this equilibrium, where the number of new infections
balances with recoveries and other transitions. The Hartman-Grobman theorem, which offers a
framework for comprehending the behaviour of dynamical systems close to equilibrium points,
can be used to examine the stability of this endemic equilibrium.

The Jacobian matrix about the endemic equilibrium is given as:

J =



d11 0 d13 0 0 0
d21 d22 d23 0 0 0
0 d32 d33 0 0 0
0 0 d43 d44 0 0
0 0 0 d54 d55 0
0 0 d63 0 d65 d66


.

Here, d11 =−βC −µ, d13 = −βA , d21 = βC , d22 =−σ−µ, d23 = βA , d32 = σ, d33 =−γ− s−µ,
d43 = s, d44 =−δ−µ, d54 = δ, d55 =−r−µ, d63 = δ, d65 = r, d66 =−µ.

According to the Hartman-Grobman theorem, if we have an equilibrium point in a nonlinear
system, we can examine the local behavior of the system by linearizing it around that point.
Specifically, for our endemic equilibrium (A ∗,C ∗), where A ∗ is the number of susceptible
individuals and C ∗ is the number of infected individuals, we can derive the Jacobian matrix J
of the systems equations at this equilibrium.

The eigenvalues of this Jacobian matrix play a crucial role in determining the stability of
the endemic equilibrium. If all the eigenvalues are negative real part (especially in a main
diagonal matrix) then the endemic equilibrium is locally asymptotically stable.

According to the Hartman-Grobman theorem, we may therefore conclude that
the characteristics of the Jacobian matrix produced for our system of differential equations to
the endemic equilibrium determine its local stability, which is locally asymptotically stable.

4. A Novel Framework for Advanced q-HATM Solutions
This chapter introduces a novel framework called the advanced q-Homotopy Analysis Transform
Method (q-HATM) which aims to address these challenges by providing a sophisticated
analytical tool for modelling the dynamics of monkeypox. We begin by exploring the theoretical
foundations and basic well known definitions of q-HATM.

Definition 4.1. The fractional R-L derivative of a function f (ι) is determined as

J℘( f (ι))= 1
Γ(℘)

∫ ι

0
(ι−ϱ)℘−1( f (ϱ)) dϱ . (2)

Definition 4.2. Here is the presentation of f ∈ Cn
−1 is Caputo fractional order derivative,

D℘
ι ( f (ι))=


dm f (ι)

dιm , if ℘= m ∈N,
1

Γ(m−℘)
∫ ι

0(ι−ϱ)m−℘−1( f m(ϱ)) dϱ, if m−1<℘< m, m ∈N.
(3)

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 615–629, 2025



620 An Analytical Approach for a Deterministic Epidemiological Model . . . : J. Sujatha et al.

Definition 4.3. The LT of f (ι) with respect to fractional Caputo derivative is

L[D℘
ι ( f (ι))]= s℘F(s)−

m−1∑
r=0

s℘−r−1 f (r)(0+) (m−1<℘≤ m), (4)

where F(s) is LT of f (ι). For more definitions and properties of q-HATM, one can refer,
Padmavath et al. [12], Prakash and Kaur [15,16], and Veeresha et al. [22,23].

4.1 Application of q-HATM
Consider the system of equations of fractional order

Dφ
t A (t)= θ−βA (t) C (t)−µA (t) ;

Dφ
t B(t)=βA (t) C (t)−σB(t)−µB(t) ;

Dφ
t C (t)=σB(t)−γC (t)− s C (t)−µI (t) ;

Dφ
t Y (t)= s C (t)−δY (t)−µY (t) ;

Dφ
t Z (t)= δY (t)− r Z (t)−µZ (t) ;

Dφ
t R(t)= γC (t)+ r Z (t)−µR(t). (5)

Applying Laplace transform to both sides of the system of equation (1), and we have

L {A (t)}− 1
s
A0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L

{
θ−βA (t) C (t)−µA (t)

}= 0;

L {B(t)}− 1
s
B0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L

{
βA (t) C (t)−σB(t)−µB(t)

}= 0;

L {C (t)}− 1
s
C0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L

{
σB(t)−γC (t)− s C (t)−µC (t)

}= 0;

L {Y (t)}− 1
s
Y0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L

{
s C (t)−δY (t)−µY (t)

}= 0;

L {Z (t)}− 1
s
Z0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L

{
δY (t)− r Z (t)−µZ (t)

}= 0;

L {R(t)}− 1
s
R0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L

{
γC (t)+ r Z (t)−µR(t)

}= 0. (6)

Define the non linear operator as,

N1[ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6]

=L{ϑ1(t; q)}− 1
s
A0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L{θ−βϑ1(t; q)ϑ3(t; q)−µϑ1(t; q)} ;

N2[ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6]

=L{ϑ2(t; q)}− 1
s
B0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L{βϑ1(t; q)ϑ3(t; q)− (σ+µ)ϑ2(t; q)} ;

N3[ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6]

=L{ϑ3(t; q)}− 1
s
C0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L{σϑ2(ι; q)− (γ+ s+µ)ϑ3(t; q)} ;

N4[ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6]

=L{ϑ4(t; q)}− 1
s
Y0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L{s ϑ3(t; q)− (δ+µ)ϑ4(t; q)} ;
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N5[ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6]

=L{ϑ5(t; q)}− 1
s
Z0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L{δ ϑ4(t; q)− (r+µ)ϑ5(t; q)} ;

N6[ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6]

=L{ϑ6(t; q)}− 1
s
R0 − 1

B(φ)

(
1−φ+ φ

sφ

)
L{γ ϑ3(t; q)+ r ϑ5(t; q)−µϑ6(t; q)}. (7)

The deformation equation of mth order is obtained by using the proposed approach as

L[Am(t)−KmAm−1(t)]= hℜ1,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1],

L[Bm(t)−KmBm−1(t)]= hℜ2,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1],

L[Cm(t)−KmCm−1(t)]= hℜ3,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1],

L[Ym(t)−KmYm−1(t)]= hℜ4,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1],

L[Zm(t)−KmZm−1(t)]= hℜ5,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1],

L[Rm(t)−KmRm−1(t)]= hℜ6,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1],

where

ℜ1,m[vecAm−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]

=L{Am−1(t)}−
(
1− Km

n

)
A0

s
− 1
B(φ)

(
1−φ+ φ

sφ

)
L

{
θ−β

m−1∑
i=0

Ai(t) Cm−1−i(t)−µAm−1(t)

}
,

ℜ2,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]

=L{Bm−1(t)}−
(
1− Km

n

)
B0

s
− 1
B(φ)

(
1−φ+ φ

sφ

)
L

{
β

m−1∑
i=0

Ai(t) Cm−1−i(t)− (σ+µ) Bm−1(t)

}
,

ℜ3,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]

=L{Cm−1(t)}−
(
1− Km

n

)
C0

s
− 1
B(φ)

(
1−φ+ φ

sφ

)
L{σBm−1(t)− (γ+ s+µ) Cm−1(t)},

ℜ4,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]

=L{Ym−1(t)}−
(
1− Km

n

)
Y0

s
− 1
B(φ)

(
1−φ+ φ

sφ

)
L{s Cm−1(t)− (δ+µ) Ym−1(t)},

ℜ5,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]

=L{Zm−1(t)}−
(
1− Km

n

)
Y0

s
− 1
B(φ)

(
1−φ+ φ

sφ

)
L{δYm−1(t)− (r+µ) Zm−1(t)},

ℜ6,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]

=L{Rr−1(t)}−
(
1− Km

n

)
Y0

s
− 1
B(φ)

(
1−φ+ φ

sφ

)
L{γCm−1(t)+ r Zm−1(t)−µRm−1(t)}.

Applying the inverse Laplace transform to the deformation equation, the system yields

Am(t)= Km Am−1(t)+hL−1{ℜ1,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]},

Bm(t)= Km m−1(t)+hL−1{ℜ2,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]},

Cm(t)= Km Cm−1(t)+hL−1{ℜ3,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]},
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Ym(t)= Km Ym−1(t)+hL−1{ℜ4,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]},

Zm(t)= Km Zm−1(t)+hL−1{ℜ5,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]},

Rm(t)= Km Rm−1(t)+hL−1{ℜ6,m[A⃗m−1,B⃗m−1,C⃗m−1,Y⃗m−1,Z⃗m−1,R⃗m−1]}. (8)

On solving eq. (8), and using initial conditions, we obtain

A0(t)= 34218169 ,
B0(t)= 5000 ,
C0(t)= 1720 ,
Y0(t)= 157 ,
Z0(t)= 120 ,
R0(t)= 99 ,

A1(t)= −1155.744429 h
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

B1(t)= −67.56050140 h
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

C1(t)= −37.90840000 h
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

Y1(t)= −7.967290000 h
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

Z1(t)= −0.5044000000 h
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

R1(t)= −3.557030000 h
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

A2(t)= −1155.744429 h (n+h)
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
− 2.632960169 h2

[B(φ)]2

(
1−2φ+φ2 + 2φ (1−φ) tφ

Γ(φ+1)
+ φ2 t2φ

Γ(2φ+1)

)
− 2300 h

B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
,

B2(t)= −67.56050140 h (n+h)
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
+ 1.920656007 h2

[B(φ)]2

(
1−2φ+φ2 + 2φ (1−φ) tφ

Γ(φ+1)
+ φ2 t2φ

Γ(2φ+1)

)
,

C2(t)= −37.90840000 h (n+h)
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
+ 0.4091089620 h2

[B(φ)]2

(
1−2φ+φ2 + 2φ (1−φ) tφ

Γ(φ+1)
+ φ2 t2φ

Γ(2φ+1)

)
,

Y2(t)= −7.967290000 h (n+h)
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
+ 0.1574338213 h2

[B(φ)]2

(
1−2φ+φ2 + 2φ (1−φ) tφ

Γ(φ+1)
+ φ2 t2φ

Γ(2φ+1)

)
,
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Z2(t)= −7.967290000 h (n+h)
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
+ 0.03134962800 h2

[B(φ)]2

(
1−2φ+φ2 + 2φ (1−φ) tφ

Γ(φ+1)
+ φ2 t2φ

Γ(2φ+1)

)
,

R2(t)= −7.967290000 h (n+h)
B(φ)

{
1−φ+ φ tφ

Γ(φ+1)

}
+ 0.7621448910 h2

[B(φ)]2

(
1−2φ+φ2 + 2φ (1−φ) tφ

Γ(φ+1)
+ φ2 t2φ

Γ(2φ+1)

)
, (9)

and so forth, making the aforementioned set of equations simpler so that the values are obtained.
As described by the solutions of the q-HATM, we obtain the series as follows:

A (t)=A0(t)+
∞∑

n=1
Am(t)

(
1
m

)n
;

B(t)=B0(t)+
∞∑

n=1
Bm(t)

(
1
m

)n
;

C (t)=C0(t)+
∞∑

n=1
Cm(t)

(
1
m

)n
;

Y (t)=Y0(t)+
∞∑

n=1
Ym(t)

(
1
m

)n
;

Z (t)=Z0(t)+
∞∑

n=1
Zm(t)

(
1
m

)n
;

R(t)=R0(t)+
∞∑

n=1
Rm(t)

(
1
m

)n
. (10)

5. Results and Discussion
In this study, initially we employed the Hartman-Grobman theorem to analyze the stability
conditions of a six-compartment model representing the dynamics of monkeypox transmission.
The compartments included susceptible individuals (A), exposed individuals (B), infectious
individuals (C), those experiencing systemic issues (Y ), individuals with rash symptoms (Z),
and recovered individuals (R). The initial values for these compartments were set as follows:
A (0) = 34218169, B(0) = 5000, C (0) = 1720, Y (0) = 157, Z (0) = 120, R(0) = 99. Through
our analysis, we established the local stability of the disease free equilibrium and identified
conditions under which the disease could persist within the population. This provided valuable
insights into the potential impact of interventions aimed at reducing transmission rates and
controlling outbreaks. To further investigate the dynamics of monkeypox spread, we applied
the q-homotopy analysis transform method (q-HATM) in conjunction with Maple software
to generate comprehensive graphs and tables illustrating the behavior of the model this
approach demonstrated a nuanced understanding of the interaction between compartments,
revealing critical thresholds for intervention strategies. For instance, our findings indicated
that increasing recovery rates among susceptible individuals significantly reduced the number
of new infections and subsequent cases of systemic issues and rash. Moreover, the graphical
representations highlighted the importance of timely responses to emerging cases, emphasizing
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that early intervention can lead to a substantial decrease in overall morbidity. This study
underscores the necessity for ongoing surveillance and adaptive public health strategies to
mitigate the impact of monkeypox outbreaks effectively. The findings collected indicate that the
suggested scheme is useful for comprehending behavior using fractional derivatives.

Table 1. The susceptible class table for A (t) for different φ values

t φ= 0.6 φ= 0.7 φ= 0.8 φ= 0.9 φ= 1

0 3.421955088×107 3.421920548×107 3.421886004×107 3.421851454×107 3.4218169×107

20 3.423351362×107 3.424080224×107 3.425131607×107 3.426616153×107 3.428675730×107

40 3.424068996×107 3.425421967×107 3.427518570×107 3.430697526×107 3.435429241×107

60 3.424648689×107 3.426563216×107 3.429653902×107 3.434531567×107 3.442077434×107

80 3.425153548×107 3.427590187×107 3.431637231×107 3.438201512×107 3.448620308×107

100 3.425609060×107 3.428539222×107 3.433512475×107 3.441745880×107 3.455057864×107

120 3.426028674×107 3.429430067×107 3.435304250×107 3.445187035×107 3.461390102×107

Table 2. The exposed class table for B(t) for different φ values

t φ= 0.6 φ= 0.7 φ= 0.8 φ= 0.9 φ= 1

0 5027.331506 5020.441009 5013.588926 5006.775257 5000

20 5330.161135 5501.653349 5762.101374 6153.104751 6735.341229

40 5504.196706 5853.125042 6450.717532 7475.409310 9238.944862

60 5653.977777 6184.189703 7168.079332 9012.955866 12510.81090

80 5791.158515 6507.604085 7921.662046 10760.82131 16550.93933

100 5920.339480 6828.155280 8712.807006 12712.78493 21359.33018

120 6043.900816 7148.166553 9541.291714 14863.15746 26935.98342

Table 3. The infected class table for C (t) for different φ values

t φ= 0.6 φ= 0.7 φ= 0.8 φ= 0.9 φ= 1

0 1735.228817 1731.409340 1727.598044 1723.794931 1720

20 1895.026173 1981.420208 2108.946365 2294.176764 2559.989792

40 1981.240863 2148.406273 2420.083834 2858.351765 3563.623170

60 2052.926568 2297.571906 2720.927783 3453.937487 4730.900132

80 2116.853902 2437.464308 3019.741690 4085.357121 6061.820678

100 2175.734020 2571.555502 3319.734250 4753.782097 7556.384810

120 2230.986883 2701.670056 3622.487449 5459.431115 9214.592526
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Table 4. The systemic issue class table for Y (t) for different φ values

t φ= 0.6 φ= 0.7 φ= 0.8 φ= 0.9 φ= 1

0 160.2121054 159.4043560 158.5997554 157.7983033 157

20 194.8787139 214.0869429 242.8784472 285.4596783 347.8325643

40 214.2209282 252.4129766 316.3125044 423.0321852 601.6386570

60 230.6078437 287.6744089 390.4069419 576.7564500 918.4182783

80 245.4377226 321.5191450 466.4636516 746.7941868 1298.171428

100 259.2665060 354.5929103 544.8945327 932.8933823 1740.898106

120 272.3836044 387.2235024 625.8496664 1134.735474 2246.598313

Table 5. The rash class table for Z (t) for different φ values

t φ= 0.6 φ= 0.7 φ= 0.8 φ= 0.9 φ= 1

0 120.2067759 120.1541415 120.1021340 120.0507535 120

20 122.7251810 124.2556430 126.6736563 130.4620316 136.3579256

40 124.3155029 127.6487116 133.7292638 144.8572249 165.2557024

60 125.7481428 131.0514911 141.6717423 163.1329827 206.6933304

80 127.1042215 134.5238736 150.4533745 185.0697317 260.6708096

100 128.4147848 138.0816022 160.0216864 210.5024187 327.1881400

120 129.6954538 141.7287672 170.3315908 239.3017854 406.2453216

Table 6. The recovered class table for R(t) for different φ values

t φ= 0.6 φ= 0.7 φ= 0.8 φ= 0.9 φ= 1

0 100.4350063 100.0739683 99.71445458 99.35646514 99

20 116.0017924 124.66454470 137.6836437 156.9970946 185.3834978

40 124.7386054 142.0433399 171.1357156 219.9930341 302.2527913

60 132.1641669 158.1104064 205.1168775 290.9922653 449.6078804

80 138.9006851 173.5891404 240.1722885 370.0032798 627.4487651

100 145.1952117 188.7608605 276.46406764 456.8722340 835.7754455

120 151.1762067 203.7672944 314.0440868 551.4266628 1074.587922
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Figure 1. Plot of q-HATM solution for A (t)
with respect to t at h=−1, m= 1, for varying φ

Figure 2. Plot of q-HATM solution for B(t)
with respect to t at h=−1, m= 1, for varying φ

Figure 3. Plot of q-HATM solution for C (t)
with respect to t at h=−1, m= 1, for varying φ

Figure 4. Plot of q-HATM solution for Y (t)
with respect to t at h=−1, m= 1, for varying φ
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Figure 5. Plot of q-HATM solution for Z (t)
with respect to t at h=−1, m= 1, for varying φ

Figure 6. Plot of q-HATM solution for R(t)
with respect to t at h=−1, m= 1, for varying φ

6. Conclusion
This study provides a entire analysis of monkeypox transmission dynamics through
the development and application of a six compartment model. By leveraging the Hartman
Grobman theorem, we established the local stability of the disease free equilibrium and
identified critical conditions for disease persistence. The application of the q-Homotopy Analysis
Transform Method further enhanced our understanding of the models behavior over time,
revealing key insights into the interaction among compartments. Our findings underscore
the significant impact of targeted interventions, such as increasing recovery rates among
susceptible individuals, on reducing transmission and controlling outbreaks. The graphical
analyses highlighted the importance of timely public health response to emerging cases,
emphasizing that early intervention can substantially mitigate morbidity associated with
monkeypox. We conclude that the suggested method is more scientific and successful, and that it
may be applied to the study of nonlinear fractional mathematical models that describe biological
phenomena. Additionally, the application of fractional calculus offers up new possibilities for
mathematical modelling.
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