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Abstract. In this study, we investigate a non-linear differential equation modeling the transmission
dynamics of monkeypox. We begin with a thorough stability analysis to assess the equilibrium points
of the model, providing insights into the conditions under which the disease may persist or diminish
within a population. Following this, we employ the q-Homotopy Analysis Transform Method (q-HATM)
to derive analytical solutions, showing its effectiveness in handling the complexities inherent in
non-linear systems. Our findings reveal that while both methods yields valuable insights into the
behavior of the monkeypox transmission model, g-HATM offers greater flexibility in terms of initial
conditions and non-linearity. This work contributes to the understanding of monkeypox for future
research in disease modeling using advanced mathematical techniques.
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1. Introduction

In recent years, the study of fractional differential equations has garnered significant attention
due to their applications in various fields such as physics, engineering, and finance. These
equations allow for more accurate modeling of real-world phenomena by incorporating
memory and hereditary properties. Among the various methods developed to solve fractional
differential equations. The resurgence of infectious diseases, such as monkeypox, underscores
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the importance of developing robust mathematical models to understand their dynamics.
In 1958, (Chowell et al. [7]) the virus that causes monkeypox was discovered in Denmark
in study monkeys. In Congo (Kinshasa), (Reynolds et al. [[18]), a nine-month-old boy contracted
mpox in 1970, the first known human case. After smallpox was eradicated in 19800s and the
pox vaccine was paused globally, mpox gradually expanded throughout Africa (Chowell et al. [7]).
Mpox has since been reported sporadically in West Africa (Clade II) and central and eastern
Africa (Clade I) (Chowell et al. [7]). An epidemic in the United States in 2003 was linked to
imported wild animals (Clade II) (Chowell et al. [7]]). Since 2005, Congo (Kinshasa) has seen
thousands of cases reported annually (Thornhill et al. [21]). Mpox resurfaced in Nigeria in 2017
(Somma et al. [20]) and is still spreading among Nigerians and tourists visiting other countries.
Congo (Kinshasa) has also seen a rise in mpox infections and fatalities since 2022 (Thornhill
et al. [21]). Clade II, a recent offshoot of Clade I, has been spreading from person to person
in several parts of the nation (Vivancos et al. [24]). The clade has also been detected in other
nations as of mid-2024 (Hobson et al. [8], Huo et al. [9], and Johnson et al. [10]).

Treating the rash, controlling discomfort, and avoiding complications are the main objectives
of mpox treatment. To assist manage symptoms and prevent more issues, early and supportive
care is crucial. A painful rash is a symptom of the viral infection known as monkeypox. After
a few weeks, the majority of people recover without treatment. People can occasionally get
terribly sick and pass away. Symptoms often appear 7-10 days after an individual is infected to
the mpox virus. Scarring from the skin rash and, in cases where the eyes are involved, perhaps
permanent vision loss are the most frequent long-term complications. which can cause corneal
injury. Monkeypox primarily affects the skin and mucous membranes, leading to symptoms
such as skin lesions, fever and chills, lymphadenopathy, respiratory symptoms.

Although there are currently no proven cures for mpox infection, the disease can be stopped
from spreading by using a variety of innovative antivirals, including tecovirimat, vaccinia
immune globulin, and brincindofovir. In the past ten years, monkeypox has significantly
increased in tandem with a decline in smallpox herd immunity. Although the smallpox vaccine
has been demonstrated to be 85% effective in preventing monkeypox, it is no longer routinely
available due to the smallpox eradication worldwide. The disease can be prevented or its severity
reduced with the use of the post-exposure vaccine. The illness has received little attention in
the past, which has led to a lack of understanding regarding its mechanisms of transmission.
However, few studies have attempted to use a mathematical modelling technique to study the
dynamics of the monkeypox virus. Predicting outbreaks, directing public health measures, and
influencing policy decisions all depend on accurate modelling (Somma et al. [20]).

In this context, fractional differential equations have emerged as powerful tools due to
their ability to incorporate memory effects and capture complex behaviors in biological systems.
A critical aspect of modeling infectious diseases is stability analysis, which examines how
solutions to mathematical models respond to perturbations. Stability ensures that small changes
in initial conditions or parameters do not lead to unpredictable or chaotic outcomes (Alzahrani
and Zeb [3], and Huo et al. [9]]), which is vital for reliable predictions in epidemiological studies.
This paper focuses on advanced methodology for solving FDEs the q-HATM. The ¢-HATM
employs a homotopy approach to construct approximate solutions, allowing for significant
flexibility in addressing non-linear dynamics often observed in disease spread. This method
facilitates the exploration of solution space and provides insights into the stability of the model
(Padmavathi et al. [12]], and Veeresha et al. [22,/23]).
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On the other hand, the g-HATM offers a novel perspective by extending classical calculus
concepts to fractional orders (Padmavathi et al. [12,(13], Pathak, et al. [14], Prakash and Kaur
[15,/16]], Prakash et al. [17], Reynolds et al. [|18], Singh et al. [19], Somma et al. [20], Thornhill
et al. [21]], Veeresha et al. [22,23], Vivancos et al. [24], and Youssef et al. [25]). This approach
maintains the intuitive properties of traditional differential equations while accommodating
fractional derivatives, making it particularly suitable for modeling phenomena with memory
effects, such as the transmission dynamics of monkeypox. By comparing these two methods, this
study aims to evaluate their effectiveness in capturing the stability characteristics of monkeypox
models. The analysis will highlight how each method addresses non-linearity and stability,
providing valuable insights into their applicability for epidemiological modeling (Abdullah
et al. [1], Alkunle et al. [2], Alzahrani and Zeb [3]], Atangana and Gémez-Aguilar [4,5]], and
Bhunu and Mushayabasa [6]). Ultimately, this research seeks to enhance our understanding of
monkeypox transmission dynamics and contribute to more effective public health strategies.

2. Model Formulation

A deterministic compartment model on the transmission dynamics of the Monkeypox disease
is been proposed. The total population is divided into six compartments, susceptible .27 (1),
exposed A(t), infected € (1), systemic issues % (1), rashes Z(t), recovered Z(t) such that
N =D+ BR)+CO+X (D) + Z )+ Z(t). Recruitment into human population is at a rate 6
is a birth rate, transmission rate f is the rate at which susceptible individuals become exposed
upon contact with infected individuals, the latent period rate o is the rate at which exposed
individuals become infectious, recovery rate y the rate at which infected individuals recover,
systemic issue development rate s the rate at which infected individuals experience systemic
issues, rash development rate 6 the rate at which systemic issues develop a rash, rash recovery
rate r the rate at which individuals recover from rash symptoms and natural death occurs in
the human population at rate p.

The transition among various compartment considered in the model is governed by
the following set of non linear differential equation below:

% =0-PAOCH—pd);

%:ﬁd(t) C(0) -0 B - p BO;

%:a@(o—y%(u—s%(o—u%w;

%:s%(t)—(S@(t)—ﬂ@(t);

%:5@(t)—rﬁf(t)—u£p(t);

%:y%(t)wgw—u%(ﬂ, )

where the parameter values are = 2.0/10°, § =0.004, 0 = 0.01, y = 0.002, 6 = 2300, p = 3.0/10°,
s =0.005, r = 0.001 and the initial values are .7(0) = 34218169, %(0) = 5000, €(0) = 1720,
2(0) = 157, Z(0) = 120, Z(0) = 99. Using the initial and parametric values, the model of
the fractional-order dynamical system represented mathematically.
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3. The Role of Feedback in Achieving Stability

In this section, we conduct a comprehensive stability analysis of the proposed system to evaluate
its robustness and responsiveness to perturbations. The stability of the system is primarily
assessed using Hartman-Grobman theorem, which provides a systematic approach to ascertain
characteristics. We begin by identifying the equilibrium points of the system ().

3.1 Monkeypox-Free Equilibrium State

The disease free equilibrium point represents a state in which the disease is absent from
the population. In our model, this equilibrium is characterized by the absence of infected
individuals, leading to a stable population of susceptible individuals. Mathematically, we denote
this equilibrium by the condition ¢ = 0, where % represents the number of infected individuals.

For the monkeypox free equilibrium state E,
0
Ey= (—,0,0,0,0,0).
u

The Jacobian of the system (1) is given by,

[-B8C —u 0 - B 0 0 0]
BE —0—U pot 0 0 0
g 0 o -Y—S—U 0 0 0
0 0 S 00— 0 0
0 0 0 0 -r—u 0
[ 0 0 Y 0 ro -
The value of J(E() is given by,
0 -2 0 0 0]
0 -o-p £ 0 0
J(Eg) = 0 o -Y—S—U 0 0 0
0 0 S 00— 0 0
0 0 0 0 -r—u 0
|00 Y 0 ro =
The transmissions matrix F and transition matrix V can be given as:
0
F = % and V= yrstp 0 .
0 -Y H
Now, after much elucidation we obtain the next generation matrix as
o 0
FV—l — | uy+p+s) .
0 0

Hence the reproduction number is defined as the largest eigenvalue of the next generation
matrix FV ! and can be obtained as:

JilZ
0= ——— -
ply + p+s)
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3.2 Endemic Equilibrium State
When both susceptible and infected individuals are present and the disease remains at a
steady level in the community, this is known as the endemic equilibrium point. A constant
predominance of the disease results from this equilibrium, where the number of new infections
balances with recoveries and other transitions. The Hartman-Grobman theorem, which offers a
framework for comprehending the behaviour of dynamical systems close to equilibrium points,
can be used to examine the stability of this endemic equilibrium.
The Jacobian matrix about the endemic equilibrium is given as:
r011 0 013 O 0 0 ]
021 022 023 0 O O
030 033 O 0 0
0O 043 044 O 0
0 0 054 055 O
L 0 3 0 065 Oes|
Here, 011 =—B%¢ -, 013 = =B, 021 = fE, 092 =—0— 1, V93 = 7, V32 =0, V33 =~y —s— [,
043=5,044=—0— 4, 054 =0, 055 = -7 — U, 063 =0, g5 =T, Vg6 = — [

oS O O O

According to the Hartman-Grobman theorem, if we have an equilibrium point in a nonlinear
system, we can examine the local behavior of the system by linearizing it around that point.
Specifically, for our endemic equilibrium (2/*,%*), where o/* is the number of susceptible
individuals and %* is the number of infected individuals, we can derive the Jacobian matrix /
of the systems equations at this equilibrium.

The eigenvalues of this Jacobian matrix play a crucial role in determining the stability of
the endemic equilibrium. If all the eigenvalues are negative real part (especially in a main
diagonal matrix) then the endemic equilibrium is locally asymptotically stable.

According to the Hartman-Grobman theorem, we may therefore conclude that
the characteristics of the Jacobian matrix produced for our system of differential equations to
the endemic equilibrium determine its local stability, which is locally asymptotically stable.

4. A Novel Framework for Advanced ¢g-HATM Solutions

This chapter introduces a novel framework called the advanced g-Homotopy Analysis Transform
Method (q-HATM) which aims to address these challenges by providing a sophisticated
analytical tool for modelling the dynamics of monkeypox. We begin by exploring the theoretical
foundations and basic well known definitions of g-HATM.

Definition 4.1. The fractional R-L derivative of a function f (1) is determined as

1 2
J#( (t))=—f(t— ¥~ H(f(p) dp. (2)
f T Jo 1 7° f(e) do
Definition 4.2. Here is the presentation of f € C”; is Caputo fractional order derivative,
d;’:,f‘), ifp=meN,

DP(f) = (3)

g Jot =@ PN (N dp, ifm-1<p<m,meN.
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Definition 4.3. The LT of /(1) with respect to fractional Caputo derivative is

m-1
LIDE(fFW=sPF(s)- Y. s* 71 D0+) (m-1<p=m), 4)
r=0

where F(s) is LT of f(1). For more definitions and properties of q-HATM, one can refer,
Padmavath et al. [12], Prakash and Kaur [15,/16]], and Veeresha et al. [22,23].

4.1 Application of ¢g-HATM

Consider the system of equations of fractional order

DY d®)=0-PAO)CH) - W);

DY B&) = A O)CH) -0 BH)—uBW);

DY €W =0 BH) -y ECO-sEO) —uIW®);

DY UM =sCH) -6 X O -uZ®);

DY ZW)=6H O -r ZO)—pZW;

DY ZW) =y C®) +r ZO) - uZW. (5)
Applying Laplace transform to both sides of the system of equation (1), and we have

1
L{mo}—; 0——(1 ¢+3) 10— A/ OCO (B} =0;

)

1 1 ¢ o
L{%(o}—;%—%(l o+ ) {BAOCO -0 B - BO =0
L{%(t)}—%%—%@(l ¢>+3)L{a%<t) Y EW—sEW —uE W} =0;

1 1 ¢
L{@(t)}—;%—%(1 ¢+—)L{s<5(t) 5V W) —u W ®)} = 0;

1 1 ¢
L{Qf(t)}—;%—%(1 o+ )L{é@(t) r FO) - p Z O} =0;

1 1
L{%(t)}——%o—%(l ¢+£)L{y‘€(t)+rff(t) L AO} = 0. ©)

Define the non linear operator as,

N[91, 92,93, 04,95, 96]
1 1
213{191(15;(1)}——%——(1 ¢+ (p)ﬁ{@ BO1(t;q) 93(t;q) — p91(¢;q)};
s B(p)
N2[91, 92,93, 4, 95, 96]
1
= L{92(¢;9)} — %’o—%(l <P+£)L{,5 91(t;q) 93(t;q) — (0 + w) 9a2(t; )} ;
N3[91,92,93, 94,95, 96]
1
- L105(t; q)}——‘fo—% 1-¢+ L) 10 92:0)— (o +5+ ) 3800
N*[91,92,93,94,95,96]
1 ¢

1
= L{04(¢;9)} — . o—% 1-¢+—|L{s93(¢t;q)— (0 + ) 94(t; @)};
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N®[01, 99, 03,94, 05, 96]
1 ¢ ) L.
= L{05(t;q)} — —Q% "B (1 —-p+ s_¢) L6 04(t;q) — (r + w) 95(¢; 9)};
NO[91, 99, 93,94, 05, 96]

1 1
= L{06(¢;9)} — 3 Ko — % (1 —¢p+ s%) L{y 03(t;q) +r O5(t;q) — p 06(t; @)}

The deformation equation of mth order is obtained by using the proposed approach as
LIy () = Ko 101 = b R1 [ A1, Brn-1,Com-1, D1, Zon—1, B -1,
LBV = Ky By 1(01 = ) Re [ -1, Brn—1, G -1, P1, Zon-1s o —1),

LI O =K Cm-101= b R3 1, Bm-1,Cm1, D1, Zm1, %o 1),
L) = Ky D 101 = ) R[S 1, Brn1, o1, D1, Zon -1, o 1),
LI () — Ky Zn-1(D] = 5%5,m[£2 B -1,%m-1, Y1, Zm-1, B 1],
LI Fom )~ Ky o101 = b R [ 1, Brn—1, G -1, Bm-1],
where
%1,m[vecﬂm_1,<@m_1,‘gm_1,617m_1, ffm_l,@m_l]

Ay 1 ¢

*@

-1

m-1
:L{Mm_l(t)}—(l——)—— (1 ¢+—) {B—ﬁ Y () Con1i (0 — . 1 (D

s B(p)
%2,m[~QZn—1, e@m—l,gm—ly @m—

=0

-

<
?\%

m—1, ml]

= L{Bm-1(8)} —(1 -—
i=0
3%3,m[«5ZZn—1> @m—lafm—la m

Km
= L{Gp-1(D)} - (1— —) L.
n

)
-
&
o
5%&;

¢

1- </>+— L{OPB 1) — (Y + s+ 1) Ep—1(D)},

§R4,m[42f_’m—1, @m—lygm—ly Jvim—la fl?m—lﬁ%?m—l]

_ (1 _Em\% 1 9

= L1 (1)) (1 : ) o (1 o+ )L{s%m (O -6+ 1) P 1B,
m5,m[%—1,f@m—l>gm—l,§m—lyQ_ém 1, Rom-1]

({_En\% _ 1 i)

= LT () ( : ) 0 ¢)(1 o+ L) L16 B 10— 4 1) Z a0,
%Gm[ﬁfm 1 Pon-1,bm-1, D1, Zon1, B 1]

_ (1_En)% _ 1 i)

— LB (D) (1 : ) 0 ¢)(1 o+ L) Lty G ® 47 Zy 1= 4 T (D),

Applying the inverse Laplace transform to the deformation equation, the system yields
T() =K Sy 10+ LRl A1, Bn1,Cm1, D1, Zom1,%m 11},
B ®) = Ky m 10+ L R ml 1, B 1, Cm1, D1, T2, Fom 11},

Cn() =K G 10+ L7 R ml 1, Bm1,Cm1, D1, Zm1,%m 11},

Commaunications in Mathematics and Applications, Vol. 16, No. 2, pp.[615 , 2025

(7

g

m-1
1— ¢+£) {IB Z %(t)‘fm_l_i(t)—(0+M)%m—1(f)},



622 An Analytical Approach for a Deterministic Epidemiological Model ... : J. Sujatha et al.

gm(t) = Km @m—l(t) + h L_l{%4,m[d)m—l,<@m—lycg’m—l, @_)m—l, jm—lyjm—l]}:
me(t) = Km ffm—l(t) + b L_l{%S,m[jr)n—L@m—l,gm—ly @m—l, Q_’Im—l,f%jm—l]},

%m(t) = Km %m—l(t) + h L_l{%G,m[Jm—l,@m—lychm—l, @m—l, Q_’Im—l,f@m—l]}-

On solving eq. (8), and using initial conditions, we obtain
() = 34218169,

Bo(t) = 5000,
Go(H) =1720,
(1) = 157,
Zo(H) =120,
Ho() =99,
—1155.744429 } { pt? }
) = 1-
1) B() P e+’
—67.56050140 h { ptP }
B1(b) = 1-
1) B() AT
—37.90840000 h { ptP }
G = 1-
1) B() P e+’
—17.967290000 h { Gte
AOE 1-
1) B() P e+’
—0.5044000000 { ot? }
PACE 1-
1) B() P oD’
~3.557030000 h { ptP }
(0 = 1-p+——-,
1) B() "To+D)
—1155.744429h(n+h){ ¢t? }
o(t) = 1-
2V B(p) P oD
26329601695 ( o 20(1—p)t? 2120 )
[B@)P (1 2 e D TTEer D
¢
_2300@{1_ Lot }
B(p) T(p+1)
—67.56050140 b (n + h) { Al }
Bo(t) = 1-
2() B(p) ¢+ T(p+1)
2 _ ¢ 2 12¢
1.920656007 b 1_2¢+¢2+2¢>(1 QLA )
[B(p)]? I'(p+1) I'2¢+1)
—37.90840000 h (n +b) { pt® }
Co(t) = 1-p+ ———
2V B(g) P e+
0.4091089620 h* (. o 20-p)t? P22
T BOR (1 2 TTgrn T Teer 1))’
—7.967290000 b (n + h) { Al }
Do(t) = 1-p+—
2() B(¢) P oD
2 _ ¢ 2 42¢
0.1574338213 ) (1_2¢+¢2+2¢(1 QLA )
[B(p)]? I'p+1) I'2¢p+1)
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F(t) = —7.96729%)?(;))0 h(m+bh) {1 ¢ F(((itj’l) }
0'03151;1?5)213 = (1 ~2p+ ¢ 2¢r((tp_+¢1))t¢ ¥ r((ipti(pn) ’
Toal) = —7.967293??(;))0 h(m+bh) {1 ¢ F((;[;ibl) }
0'762[;1?]9210 b* (1 g+ 7+ 2‘/’r(ép‘+"’1’)t¢ v r(‘ip’i) , ©

and so forth, making the aforementioned set of equations simpler so that the values are obtained.
As described by the solutions of the g-HATM, we obtain the series as follows:

00 1\"?
PIOEEOEDY %m(t)(a) ;

n=1

o) 1\?
Bt = Bo®)+ ) f%’m(t)(a) ;

n=1

[e) 1\
CH) = Got) + Z %m(t)(—) ;
1 n
Y ()= Zo(t) + Z@ (t)( )
FH) = LM+ Z %, (t)(m)

1 n
A1) = Ro(t) + Z%m(t)(m) (10)

5. Results and Discussion

In this study, initially we employed the Hartman-Grobman theorem to analyze the stability
conditions of a six-compartment model representing the dynamics of monkeypox transmission.
The compartments included susceptible individuals (A), exposed individuals (B), infectious
individuals (C), those experiencing systemic issues (Y), individuals with rash symptoms (Z),
and recovered individuals (R). The initial values for these compartments were set as follows:
<7(0) = 34218169, A(0) = 5000, €(0) = 1720, #(0) = 157, Z(0) = 120, Z(0) = 99. Through
our analysis, we established the local stability of the disease free equilibrium and identified
conditions under which the disease could persist within the population. This provided valuable
insights into the potential impact of interventions aimed at reducing transmission rates and
controlling outbreaks. To further investigate the dynamics of monkeypox spread, we applied
the g-homotopy analysis transform method (¢g-HATM) in conjunction with Maple software
to generate comprehensive graphs and tables illustrating the behavior of the model this
approach demonstrated a nuanced understanding of the interaction between compartments,
revealing critical thresholds for intervention strategies. For instance, our findings indicated
that increasing recovery rates among susceptible individuals significantly reduced the number
of new infections and subsequent cases of systemic issues and rash. Moreover, the graphical
representations highlighted the importance of timely responses to emerging cases, emphasizing
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that early intervention can lead to a substantial decrease in overall morbidity. This study
underscores the necessity for ongoing surveillance and adaptive public health strategies to
mitigate the impact of monkeypox outbreaks effectively. The findings collected indicate that the
suggested scheme is useful for comprehending behavior using fractional derivatives.

Table 1. The susceptible class table for </(t) for different ¢ values

$=0.6

$=0.7

$=08

$=09

¢p=1

3.421955088 x 107

3.421920548 x 107

3.421886004 x 107

3.421851454 x 107

3.4218169 x 107

20

3.423351362 x 107

3.424080224 x 107

3.425131607 x 107

3.426616153 x 107

3.428675730 x 107

40

3.424068996 x 107

3.425421967 x 107

3.427518570 x 107

3.430697526 x 107

3.435429241 x 107

60

3.424648689 x 107

3.426563216 x 107

3.429653902 x 107

3.434531567 x 107

3.442077434 x 107

80

3.425153548 x 107

3.427590187 x 107

3.431637231 x 107

3.438201512 x 107

3.448620308 x 107

100

3.425609060 x 107

3.428539222 x 107

3.433512475 x 107

3.441745880 x 107

3.455057864 x 107

120

3.426028674 x 107

3.429430067 x 107

3.435304250 x 107

3.445187035 x 107

3.461390102 x 107

Table 2. The exposed class table for Z(t) for different ¢ values

$=06

$=0.7

$=08

$=09

o=1

5027.331506

5020.441009

5013.588926

5006.775257

5000

20

5330.161135

5501.653349

5762.101374

6153.104751

6735.341229

40

5504.196706

5853.125042

6450.717532

7475.409310

9238.944862

60

5653.977777

6184.189703

7168.079332

9012.955866

12510.81090

80

5791.158515

6507.604085

7921.662046

10760.82131

16550.93933

100

5920.339480

6828.155280

8712.807006

12712.78493

21359.33018

120

6043.900816

7148.166553

9541.291714

14863.15746

26935.98342

Table 3. The infected class table for € (t)

for different ¢ values

t

$=06

$=0.7

=08

$=0.9

¢o=1

0

1735.228817

1731.409340

1727.598044

1723.794931

1720

20

1895.026173

1981.420208

2108.946365

2294.176764

2559.989792

40

1981.240863

2148.406273

2420.083834

2858.351765

3563.623170

60

2052.926568

2297.571906

2720.927783

3453.937487

4730.900132

80

2116.853902

2437.464308

3019.741690

4085.357121

6061.820678

100

2175.734020

2571.555502

3319.734250

4753.782097

7556.384810

120

2230.986883

2701.670056

3622.487449

5459.431115

9214.592526
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Table 4. The systemic issue class table for #/'(t) for different ¢p values

$=0.6

$=0.7

$=0.8

$=0.9

¢=1

160.2121054

159.4043560

158.5997554

157.7983033

157

20

194.8787139

214.0869429

242.8784472

285.4596783

347.8325643

40

214.2209282

252.4129766

316.3125044

423.0321852

601.6386570

60

230.6078437

287.6744089

390.4069419

576.7564500

918.4182783

80

245.4377226

321.5191450

466.4636516

746.7941868

1298.171428

100

259.2665060

354.5929103

544.8945327

932.8933823

1740.898106

120

272.3836044

387.2235024

625.8496664

1134.735474

2246.598313

Table 5. The rash class table for Z°(t) for different ¢ values

$=06

$=0.7

$=08

$=09

¢p=1

120.2067759

120.1541415

120.1021340

120.0507535

120

20

122.7251810

124.2556430

126.6736563

130.4620316

136.3579256

40

124.3155029

127.6487116

133.7292638

144.8572249

165.2557024

60

125.7481428

131.0514911

141.6717423

163.1329827

206.6933304

80

127.1042215

134.5238736

150.4533745

185.0697317

260.6708096

100

128.4147848

138.0816022

160.0216864

210.5024187

327.1881400

120

129.6954538

141.7287672

170.3315908

239.3017854

406.2453216

Table 6. The recovered class table for Z(t) for different ¢p values

$=06

$=0.7

$=0.8

$=0.9

¢=1

100.4350063

100.0739683

99.71445458

99.35646514

99

20

116.0017924

124.66454470

137.6836437

156.9970946

185.3834978

40

124.7386054

142.0433399

171.1357156

219.9930341

302.2527913

60

132.1641669

158.1104064

205.1168775

290.9922653

449.6078804

80

138.9006851

173.5891404

240.1722885

370.0032798

627.4487651

100

145.1952117

188.7608605

276.46406764

456.8722340

835.7754455

120

151.1762067

203.7672944

314.0440868

551.4266628

1074.587922
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3.46 % 107

3.45 % 107

Figure 1. Plot of g-HATM solution for o7 (t) Figure 2. Plot of g-HATM solution for Z(t)
with respect to t at h =—1, m =1, for varying ¢ with respect to t at h =—1, m =1, for varying ¢

Figure 3. Plot of ¢g-HATM solution for ¢'(t) Figure 4. Plot of ¢g-HATM solution for % (t)
with respect to t at h = -1, m =1, for varying ¢ with respect to t at h = -1, m =1, for varying ¢
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Figure 5. Plot of g-HATM solution for Z(t) Figure 6. Plot of g-HATM solution for Z(t)
with respect to t at h =—1, m =1, for varying ¢ with respect to t at h = -1, m =1, for varying ¢

6. Conclusion

This study provides a entire analysis of monkeypox transmission dynamics through
the development and application of a six compartment model. By leveraging the Hartman
Grobman theorem, we established the local stability of the disease free equilibrium and
identified critical conditions for disease persistence. The application of the g-Homotopy Analysis
Transform Method further enhanced our understanding of the models behavior over time,
revealing key insights into the interaction among compartments. Our findings underscore
the significant impact of targeted interventions, such as increasing recovery rates among
susceptible individuals, on reducing transmission and controlling outbreaks. The graphical
analyses highlighted the importance of timely public health response to emerging cases,
emphasizing that early intervention can substantially mitigate morbidity associated with
monkeypox. We conclude that the suggested method is more scientific and successful, and that it
may be applied to the study of nonlinear fractional mathematical models that describe biological
phenomena. Additionally, the application of fractional calculus offers up new possibilities for
mathematical modelling.
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