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1. Introduction

The most interesting generalization of the concept of classical convergence of sequences was
coined by Zygmund [32] and stated as statistical convergence in 1930. Steinhaus [30] and
Fast [|8]] also presented the notion of statistical convergence simultaneously in the same year
1951. A sequence x = {x;} converges to L statistically, if the natural density of the set K is
zero, where K ={k <n:|x; —[| = €} to each ¢ > 0. The natural density (symptomatic as §(K)) of
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the set K, which is a subset of N, is defined as: 6(K) = ,}Lm %I{k <n:k <n}|, where the bars on

the vertical denotes the order of enclosed set. If {x;} is a sub-sequence of the sequence x = {x}
of R and A = {k; :i € N}, then we denote it by {x4}. In the event, 6(A) =0, {x4} is claimed as
a sub-sequence of natural density zero or a thin sub-sequence of the sequence x. However, if
{xa} does not occupy natural density zero or fails to have natural density then it is claimed
as non-thin sub-sequence of x. The notion was introduced to deal with the theory of series
summation and has been studied by various researchers in different spaces such as intuitionistic
fuzzy normed spaces (Mohiuddine and Lohani [15]), random 2-normed spaces (Mursaleen [17]),
probabilistic normed spaces (Karakus and Demairci [10]). It has also been studied for different
sequences such as ordinary sequences (Salat [27]]), double sequences (Mursaleen and Edely [18]),
triple sequences (Sahiner et al. [26]) and multiple sequences (Moéricz [16]) (also see, Chawla et
al. [3], and Reena et al. [24]).

Zadeh [31] introduced the theory of fuzzy sets in 1965 for the first time. Later, it was studied
and identified to be applicable in several branches of science by many researchers. The study
of fuzzy sets is applicable in computer programming (Giles [9]]), operation research (Prade
[[22]]), decision-making (Lootsma [13]), statistics (Nguyen and [19]), engineering (Ross [25]).
Atanassov [1]] founded the proposition of intutionistic fuzzy sets. The perception of intutionistic
fuzzy metric space was proposed by Park [20]] in 2004. Saadadti and Park [28] the ordinary
normed linear space established Intuitionistic Fuzzy Normed Linear Space (IFNS). IFNS plays
important role in mathematical modeling in day to day life situations.

The perception of rough convergence which is an abstraction of usual convergence
of sequences, was inaugurated by Phu [21] for normed linear spaces with the perceptions of
rough limits, degree of roughness, rough continuity of linear operators and rough Cauchy
sequences. The perception of rough convergence was broadened to rough statistical convergence
by Aytar [2]] and studied the characteristics of convexity, closeness of the set of rough statistical
limit points and rough statistical cluster points of a sequence.

Following this line, Maity [14] extended the concept of rough statistical convergence to
rough statistical convergence of order a (a € (0,1]) in normed linear spaces. Recently, Demir and
Gumdiis [5] defined the rough convergence for difference sequences in finite normed linear spaces.
More generalizations and applications using the rough convergence, statistical convergence and
generalized convergence in different aspects can be studied and explored.

In 1981, Kizmaz [12] introduced the difference sequence spaces X(A) for X =1[,,¢,co, where
X (A) is a Banach Space. Further, Et and Colak [[6] generalized the notion of difference sequences.
In the present paper, we are introducing the notion rough A™-statistical convergence of order «
for the generalized difference sequences in the Intuitionistic Fuzzy Normed Space (IFNS).

Definition 1.1 ([29]). A binary operation * :[0,1] x [0,1] — [0, 1] is continuous #-norm if it has
the following axioms:

(1) * is associative, commutative and continuous,
(i) p*x1=p,forall pe[0,1],
(i) pxg<rxsif p<r and g <s, for each p,q,r,s€[0,1].

Definition 1.2 ([29]). A binary operation - : [0,1] x [0,1] is continuous #-conorm if it has
the following axioms:
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(1) - is associative, commutative and continuous,
(ii)) p-0=p, forall p €[0,1],
(iii) p-g<r*sif p<r and q <s, for each p,q,r,s€[0,1].
Definition 1.3 ([28]). Consider X be a vector space, x be continuous ¢-norm, - be continuous

t-conorm, 1, be the fuzzy sets and a five tuple (X,n,y, *,-) is intuitionistic fuzzy norm space
IFNS on X x (0,00) if for every x,y € X and s,t >0,

1) nlx,t)+w(y,t) <1,
(i) n(x,t)>0,
(i) n(x,)=1 < x=0,
@iv) nlex,t)=n (x, ﬁ), for ¢ #0,
) nlx,t) % y(y,s)<nx+y,t+s),
(vi) n(x,-):(0,00) —[0,1] is continuous,
(vii) }ixgn(x,t) =1 and %i_r}x&n(x,t) =0,
(viii) y(x,t)<1,
(ix) y(x,t)=0 < x=0,
(x) ylex,t)=vyw (x, ﬁ), for ¢ #0,
(xi) w(x,t)-p(y,s) =y(x+y,t+s),
(xii) y(x,-):(0,00) —[0,1] is continuous,
(xiii) }ilgi//(x, t)=0 and gil%w(x, t)=1.
Then (1, ) is said to be intuitionistic fuzzy norm.
Definition 1.4 ([28]). Consider (X,n,y,*, ) be an IFNS. A sequence x = {x3} in X is convergent

to L € X with respect to the intuitionistic fuzzy norm (1, y) if for every e >0 and ¢ >0, 3 kg eN
such that

nxr —L,t)>1-€¢ and w(x; —L,t)<e, forall k=ky.
Symptomatic as (n,y)-limx = L.
Definition 1.5 ([28]]). Consider (X,n,w, x,-) be an IFNS. A sequence x = {x3} in X is Cauchy

sequence with respect to the intuitionistic fuzzy norm (n,v) if for every e >0 and ¢ >0, 3 kg eN
such that

n(xy —xs,8) >1—¢ and y(xp —xs,t)<e, forall r,s=ky.
Definition 1.6 ([11]). Consider (X,n,w, x,-) be an IFNS. A sequence x = {x3} in X is statistical

convergent to L € X with respect to the intuitionistic fuzzy norm (n,vy) if for every ¢ >0 and
t>0,3d koeN such that

0({k<n:n(x,—-L,t)<1-€ or y(xp—L,t)=€e})=0
or

o({k=n:n(x,—-L,t)>1-€¢ and w(x; —L,t)<e})=1.
Symptomatic as St(n,w)-limx = L.
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Definition 1.7 ([23]). Consider (X,n,w, x,-) be an IFNS and «a € (0,1]. A sequence x = {x3} in X
is statistical convergent of order a to L € X with respect to the intuitionistic fuzzy norm (n,y) if
for every € >0 and ¢ >0, 3 kg € N such that

1
lim —a({k <sn:nxp—L,t)<l—-cory(x,—L,t)=¢€})=0
n

n—o0
or

1
lim —({k<n:nxr—-L,t)>1-corylxr—L,t)<e}) =0.

n—oon

Definition 1.8 ([6]). Consider m be a non-negative integer, then the generalized difference
operator A™x, is determined as

AMxp = Am_lxk - Am_lxk+1,
where A%, = x;, for all 2 e N.

Definition 1.9 ([[7]). Consider m be a fixed positive integer. A sequence x = {x;} is named as
A™-statistically convergent to ¢ if to each € > 0, we have

1
6({k <n:|A"xp—¢| 26}) =lim —[{k<n:|A"xp—¢& =€} =0.
n—oon
It is symptomatic as St-lim A™x;, =¢.

Definition 1.10 ([4])). Consider m as a fixed positive integer and a € (0,1] be given. A sequence
x = {x3} is named as A™-statistically convergent of order a to ¢ if to each € > 0, we have

1
Sk =n:|A"xp—¢l=€})=1lim —|{k<n:|A"x, ¢ =¢€}| =0.
n—oo p%
It is symptomatic as St*-lim A™xj =¢.
Definition 1.11 ([2]). Consider X be a normed linear space and r be some non-negative number.

Then x = {x;} be a sequence in X is named as rough statistically convergent to ¢ € X if to each
€>0 and, we have

OU{k=sn:|lxp—¢&l=r+e})=0.

It is symptomatic as r-St-limx;, = ¢€.

2. Main Results

In this part, we initiate with the definition of rough A -statistical convergence in IJFFNSS, moving
with the progression of the perception, we elaborate the results for generalized difference
sequences:

Definition 2.1. Consider (X,n,w, *,-) be an IFNS and r be a non-negative real number. Then
a sequence x = {xz} in X is named as rough convergent to ¢ € X with respect to intutionistic
fuzzy norm (n,v) as for every € >0 and A €(0,1) there exists 29 € N in such a manner that

n(A"xp —&r+e)<1—-A and w(A™x, —&;r+e)> A, forall k= k.

Symptomatic as 7 y)-limy_.oo(A™x;) = ¢.

Definition 2.2. Consider (X,n,y, %,-) be an IFNS and r be a non-negative real number. Then
a sequence x = {xz} in X is named as rough-statistically convergent to { € X with respect to
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intutionistic fuzzy norm (n,y) as for every € >0 and 1 €(0,1) in such a manner that
Sk <n:n(A™xp—-&r+e)<1—-Aor w(A"x, —&r+e)=A)=0

or
r}LIgo %I{k <n:n(A"xp-&r+e)<1-Aor w(A™xp —&;r+€)= A} =0.

Symptomatic as r-St( y)-limg_.oo(A™xz) = .

Remark 2.1. In the event if r =0, (where r is named as roughness degree) then the perception
of rough statistical convergence equates with the perception of statistical convergence in an
IFNS(X,n,y,*,-).

Definition 2.3. Consider (X,n,w, x,-) be an IFNS, r be a non-negative real number and «a € (0,1].
Then a sequence x = {xz} in X is named as rough-statistically convergent of order a to { € X
with respect to intutionistic fuzzy norm (n,v) as for every € > 0 and A € (0,1) in such a manner
that

Sa{k <n :n(A"xp —&r+e)<1—Aor w(A"xp —&r+€e)=A)=0
or

1
lim —[{k<n (A" xp —Er+e)<1—-Aor w(A™xp —&;r+€) = A} =0.

n—oo n

Symptomatic as r-St%

)" 11Ink—><>0(Amxk )=¢.

Remark 2.2. The limit of rough statistical convergence in IFNS is not unique.

Example 2.1. Let (R,|-|) be a real normed space, where |-| is the usual norm for the set
of real numbers. Let a xb = ab and a-b = min{l,a + b}, also, n(A™xp,t) = m and
w(A™xp,t) = %, for x € X and ¢ > 0. Then, (X,n,v,*,-) is an IFNS. Define a sequence
x ={xz} as
k .
A, = 41, 1fk¢n?,
0, otherwise.

Take a =1, then, we have
. o, ifr<i,
Stg]’w)-hmgmxk = {

[1-r,r—1], otherwise
and S tg] w)-lim’Amxk = ¢, for all £ = 0. Thus, this sequence is not convergent as it is unbounded.
Also, this sequence is not rough convergent in IFNS(X,n,w, x,-), for any r.

Definition 2.4. Consider (X,n,y, *,-) be an IFNS and r be a non-negative real number. Then a
sequence x = {xz} in X is named as rough A™-statistically bounded as for the intutionistic fuzzy
norm (n,y) to each € >0, A € (0,1), there exists a real number M > 0 in such a manner,

6k <n:n(A™xp;M)<1-Aor w(A™xp; M)=A}) = 0.

Definition 2.5. Consider (X,n,y, %,-) be an IFNS, r be a non-negative real number and «a € (0, 1]
be given. Then a sequence x = {x;} in X is named as rough A™-statistically bounded of order
a as for the intutionistic fuzzy norm (n,y) to each € >0, 1 €(0, 1), there exists a real number
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M >0 in such a manner,

ok <n:n(A"xp;M)<1- A or w(A"x; M) = A}) =0.

Definition 2.6. Consider (X,n,y, *,-) be a IFNS, r be a non-negative real number and a € (0,1]
be given. Then a sequence x = {xz} in X and C € X is named as rough A™-statistical cluster
point of order a as for the intutionistic fuzzy norm (n,v) if, to each ¢ >0, A €(0,1) in such a
manner,

6ok =n:n(A"x, —Ci;r+e)<1—Aand w(A™x, —C;r+e)>A})>0
or

Sa{lk<n:n(A"xp —Cir+e)<1—-Aand y(A™x, —C;r+e)> A} #0,

where C is known as r-S tf‘ )-Am-cluster point of order a of a sequence x = {xz}.

LetI'g,« (A™x) denotes the set of all rough A™-statistical cluster points of order a of a sequence
(

W)
% = (g} in IFNS(X, 7,1, %, -).

With the perspective of the above definitions, we obtain the progression and results of
the perception:

Theorem 2.1. Consider x = {x3} be a sequence in IFNS(X,n,y,*,-). Then x = {xp} is A™-
statistically bounded of order a iff 3 a non-negative real number r > 0 in such a manner,
St&,y,)'hmgmxk # .

Proof. Necessary Part: Consider a sequence x = {x;} be A" -statistically bounded of order a in
IFNS(X,n,w,*,-). By the definition of A™-statistically bounded, to each ¢ >0, 1 €(0,1) and
some r >0, 3 M > 0 in such a manner,

Sk <n:n(A"xp; M)<1—A or w(A™xp,; M) = A}) =0.

Let K={k <n:n(A"xp;M)<1—-A or y(A™xp;M)= A} =0. For k € K¢, we have n(A™xp; M) >
1-2A and w(A™xp; M) < A.
Also,

n(A™xp;r + M) = min{n(0;r),n(A™x; M)}
=min{l,n(A"xp; M)} >1-A
and
WA xp;r + M) < max{y(0;r), w(A™ x;; M)}
=max{0,y(A"xp; M)} < A
thus
Oe St&’w)-limgmxk .
that is, the set S tg], w)-limrAm », contains the origin of X.

a : r
Hence St(n,w)'thﬂxk # .

Sufficient Part: Consider S tg] w)-limgm - # ¢ for some r > 0. Then, exists some ¢ € X in such a
manner, ¢ € Stg] w)-limrAmxk , then, to each ¢ >0 and A €(0,1), we have

Sk <n :n(A"xp —EM)<1-Aor w(A™xp; M) = A}) =0.
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Therefore, almost all A™x;’s are contained in some ball with center ¢.
Thus, x = {xz} is A" -statistically bounded of order a in IFNS(X,n,y, *,-). O

Next, we elaborate the algebraic characterization of rough A™-statistically convergent
sequences of order a in IFNS(X,n, v, %,-).

Theorem 2.2. Consider x = {xp} and y = {yp} be two sequences in IFNS(X,n,w,*,-). Then, for
some non-negative number r and a € (0,1], the following statements holds:

G) If Ste Gy WA = 8o, then Stf -Hmp e, )= 81+ e,
@Gi) If St - limym, =¢ and c€R, then Stf‘n,w)-limgmwk =cq.

) hmAmx =¢&1 and St8

(GR)]

Proof. (i) Consider St“ ) hmAka ¢1 and St( v hmAm =¢&y. For €€(0,1), take 1 €(0,1) in
such a manner, (1-1)*(1-A)>1—¢. For some non- negatlve real number r, define

X1 = {k<nin(Am - 5,r+6)<1—)t orw(Amxk—g;—e)zA},

+€) r+e)

Ky={k=n:n(amy-¢-

Since S t(17 . -lim/,, o0 = = {1, therefore a-density of the set K; =

Also, for S t(“ v -lim, _ &9, we get the a-density of the set KQ =0.
To each € >0, let X = X1 nKos.
Then, 6,(K) is zero, which implies §,(N-X) =1

Let keN-X. Then

<1- /loru/(Amyk—{, 2/1}.

MA™ g + ) = €1+ 62+ € = (A = 135w (A7 g = 63 =5 )
>(1-A)*1-1)
>1-¢€
and
Y™ g )= @+ i+ ) < wr (A = 83w (A7 - 8
<A*xA
<E.

This shows that
Sl <n:n(A"xp —E1+ A"y —Egse+r)<1—Aor w(A™xp —E1+ A" yp —Eg;e+r)= A} =0
Hence Stf‘ w)-limgm(kak) =&+ &g
(ii) Let St( w limgmxk =¢ and c € R. Then, for given € >0 and A > 0, we have
Ky =k eN:n(A"xp —&e+r)<1—Aor w(A"xp —&e+1) = AL
We have

. 1
Jim —2 1K)l =0

Now, two cases arise:
Case (1): If ¢ #£0,
= 6Ky}t =0
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= 5a[g<(n,1//)]c =1
Let k € 64K )¢, then

n(cAmxp, —cé,e+r)=n(c(A"xp, —&),e+r)
€+r
)

+
zn(Amxk—5,€+r)*n(0,6|7|r—e+r)

=n(AMxp—&e+r)k1>1-2

= n (Amxk - 67

and

w(eAmxp —cé,e+r)=p(e(A"xp —&),e+r)

m e+r
<W(A xp— & —— o )

<y(A"x, - €e+r)*w( —€+r)

el
=yp(A"xp—Ee+r)*x0<1-A.
— 6 [fK(nw)]c:1
— nhm —{kEN n(cA™xp —cée+r)=1-A and w(cA™xp, —cée+r)< A} =
Therefore, St(n » -lim/, cxp = cé.
Case (ii): If ¢ =0, then
n(0A™xp,e+r)=n(0,e+r)=1>1-1 and
wOA" xp,e+r)=w(0,e+r)=0< A
=cé. O

a . r
= St(n,y/)'hmAmcxk

Theorem 2.3. Consider 0 < f < a <1 then r-St ( ST St ) where r-Stg ) and r- St(nw)

represent the sets of all rough statistically convergent of order a and B, respectwely.

Proof. Let x ={x;} be a sequence in IFNS(X,n,y,*,-). If 0 < f < a <1 then as for € > 0 and some
r >0 with limit point ¢, we have

nhm —ﬁ{kel\l (A" xp —&r+e)=1- A and w(A™x, —&;r+€) < A}

< lim —{kel\l (A" xp —&r+e)=1-A and w(A™xp —&;r+€) < A

n—oo pa

a
Therefore, r-S t( » < cr-S 1,‘(17 ' O

Example 2.2. Let (R,|-|) be a real normed space, where |- | 1s the usual norm for the set of
real numbers, define n(A™xp,t) = m and y(A™xyp,t) = for x € X and ¢ > 0. Then,
(X,n,w,*,-) is an IFNS. Define a sequence x = {x;} as

AM k, ifk#n?,
Xr =
g 0, otherwise

t+|A’”x |
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a
n,w)

S tg] w)-limgm oy = which is not exact for the non-thin subsequences of rough statistical

convergent sequences of order « in an IFNS(X,n, v, %,-) which is elaborated in the following
result:

gives St -limgmxk = [-r,r] and its subsequence gives A™x' = {1,4,9,...}. Thus,

Theorem 2.4. Consider A™x' = {A™xy} be a non-thin sub-sequence of a sequence A™x = {A™xy}
in IFNS(X,n,y,*,-), a €(0,1] then Sta,w)-limgmxk c St&,w)-limgmx;ﬁ.

Proof. The proof of this theorem is trivial, so we are omitting it. O

Theorem 2.5. For a € (0,1] and r > 0, the set Stf;7 w)-limrAmx}e of the sequence x = {x;} in
IFNS(X,n,w,*,-) is a closed set.

Proof. If S tg] w)-limrAmxk = ¢, result is trivial.
If Stz’;7 w)_limngk # ¢ for some r > 0. Consider y = {y;} be a sequence in St
converges as for the intuitionistic fuzzy norm (n,y) to yo € X.

Then, for each ¢ >0 and A €(0,1) 3 k9 € N in such a manner,

n(Amxk —yo;g) >1- 1 and w(Amxk —yo;g) <A, forallk=k.

a

., .
() lim A, which

a

(n,y)
Ou ({k < n:n(Amxk —yn;r+g) <1-2 orw(Amxk —yn;r+§) 2)[}) =0 (2.1)

Let us select, y, € St -lim/, % with n > k¢ in such a manner,

for jeba({k<n:n(A"xp—yp;r+5)>1-2Aand ¢ (A™xp — y,;7 + §) < A}), we have
m . € _ m, .. €
T](A xk_yn77'+2)>1 AOI'IIJ(A Xp yn’r+2)</1.

Then,

n(A"x;—yo;r+€)= min{n (Amxj—yn,%),n(yn —yo,g)} >1-A
and

W(A™x; —yo;r +€) Smax{n (Amxj—yn,g),w(yn —yo,%)} <A

Now, for je{k <n:n(A™xp —yo;r+€)>1—- 1 and y(A™xp, — yo;r +€) < A}.
We have the following inclusion

{k Sn:n(Amxk —yn;r+§) >1-2and W(Amxk —yn;r+§) <7L}
c{k<n:n(A"xp—yo;r+€)>1—1 and w(A™"xp — yo;r +€) < A}
Hence,

Sa{k =n:n(A™xp —yo;r+€)<1—Aor w(A™xp, —yo;r +€) = A})
(A oy € _ my oy €
Séa({kSn.n(A xp, yn,r+2)sl Aorw(A xp, yn,r+2)2/l}).
Using eq. (2.1), we get
Sk <=n:n(A™xp —yo;r+e)<1—Aor y(A™xp —yo;r+€)=A})=0

=  yo€ St&’w)-limgmxk . O

a

In the next theorem, we introduce the convexity of the set St(n »

. r
'llmAmxk .
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Theorem 2.6. For a € (0,1] and r > 0, the rough statistical limit set of order a S t( ) -lim,, % of
the sequence x ={xp} in IFNS(X,n,y, *,-) for the intuitionistic fuzzy norm (1,¥) is a convex set.

Proof. Let us select ¢{1,E9€ S t“ limgm ey For the convexity of the set S tg% w)-limrAm o e need

to show that [(1 - 8)¢1 + BEal € St limrAmxk, for some B € (0,1). Then, for each ¢ > 0 select

(n,¥)
A€(0,1), we define

m. _r. r+e B m.. . r+e
:Kl—{kSn.n(A Xk 51,2(1_’3))S1 AOI‘W(A Xp 51,2(1—,3) 2/1},
Kz—{k<n ’l//(A Xp — 62, IB )<]_ AOI"(,[/(A Xp — 62,r4l_6€>/1)}

Since &1,¢ € St(n »
0a(K1) =06a(K2)=0.
For every k € X1°nXKs¢, we have

N(A™xp —[(1 = B)é1+ BéaD) = (1 — BYA™ xp —&1) + ﬁ(A’”xk —&2);r+€)
. r+e
> min {n((1 - BXA™x, ~ £1; ), n (B~ 25— )}
n

((A xp — E2); ’”;"")}

-lim/y x> e have

2
=min{n(<A o= ﬁ))

> (1 - /l)a
WA xp —[(1 = B)e1+ BE2]) = w((1 — BYA™ xp, — E1) + B(A xp, — E9);7 +€)
< max {y (1= A"~ 0: ) wr (BA™ 0, - £21, =)}

:max{w(mmxk—fl); rre ),w(m xk—62>r+€)}

2(1-p) 2p
<A.
Thus,
Sa{k <n:n(AMxp, —[(1-P)¢1 + Péal;r+€)<1—Aor w(A™xp —[(1-B)é1+ Béal;r+€)=1—-A}) =0.
Hence, [(1 - )1 + BE2l eSt‘O7 » hmAmx = Stu7 » lim’Amxk is a convex set. O

Theorem 2.7. For a €(0,1] and r >0, a sequence x = {xp} is rough A™-statistically convergent of
order a to & in IFNS(X,n,y, *,-) for the intuitionistic fuzzy norm (n,y) if 3 a sequence y = {yp} in
X which is A™-statistically convergent of order « to ¢ € X as for the intutionistic fuzzy norm (n,y)
and for every A €(0,1) satisfies n(A™xp, — A yp;r)>1—- A and (A" x, — A" yp;r) <AV k <n.
r-St¢

Proof. Consider € > 0 and let A™y, 2 ¢ and n(A™xp, — A™yp;r) > 1 -1 and yA™xp —
A™yp;r)< A, for all £ eN. For given A € (0,1) define

Ap=lim {k<n:nA"y, - Ge)<1-Aor y(A"y - &) = A,

Ag=lim{k<n:n(A"x, —A"yp;r)<1—Aor w(A"xp, — A" yp;r) = A}
n—o0
Clearly, 6,(A1) =0 and §,(A2)=0. For k€ A1° N A2, we have
(A" xp, — &r +€) =2min{n(A™xp, — A™ yp;r),n(A" yp, — ;€ > 1- A
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and

w(AMxp — & +€) <max{y(A™xp — A" yp; 1), w(A y, — &)} < A
Then

(A" xp —&r+e)>1-Aand w(A™xp —&;r+e) <A, forallke A1°NAs°,
— rlll_%lo{k <sn:n(A"xp—&e)<1-Aor y(A"xp —Ee)= A} S A1 UA,.
Then,

Salb<n:n(A"xp—&e)<1—Aor w(A"xp —&;€) = A} < 5o(A1) +54(Ag).
Then, we have

ol <n:n(A"xp —&e)<1—-Aor w(A"x, —&€)= A} =0

r-St®
0.9
Hence, the sequence A" xp, i ¢. O

Theorem 2.8. Consider the set of all r- St(T7 » -A™-cluster points of order a be FSta (Amx) of a

sequence x = {xp} in IFNS(X,n,y, *,-), for a € (0,1] and r be some non-negative real number Then,
for arbitrary C € FSta (Amx) and A €(0,1) in such a manner, n({—C;r)>1-Aand y((-C;r)< A
forall § €Ty St (A’”x)

Proof. For C e FSt?n w)(Amx) then to each ¢ >0 and 1 €(0,1), we have

Safk <n:n(A™xp —C;e)>1—- 21 and w(A™x;, — C;e) < A} = 0. (2.2)
Now, its sufficient to show that if ¢ € X which gives n(¢ —C;e) >1—- A and w(¢ —C;e) < A, then
(f € FSt(an w)(Amx).

Let je{k <n:n(A"x, —C;e) >1- A and y(A™x, — C;e) < A} then n(A™x;—C;e) >1- 1 and
Y(A™x;—C;e) < A.
Now,

n(A"x;—C;r+e)zmin{n(A"x; - C;e),n¢ -C;r)}>1-1
and
(A" xj—C;r+e) zmax{y(A™x; - C;e),p(¢ - C;r)} < A
= n(-Ci;r+e)>1-Aand w({-C;r+e)<A.
Hence
Jjetk<sn:n(A™xp—-C;r+e)>1-2A and y(A™x;, —C;r+¢€) < A}.
Now, the next inclusion holds,
{k<n:n(A"x,—C;e)>1—-2A and w(A™x;, — C;e) < A}
c{k<n:n(A"xp—-C;r+e)>1-2A1and w(A"x, —C;r+e)<A}.
Then
Safk<n:n(A"xp —C;e)>1-A and w(A™xp — C;e) < A}
<Ol <n:n(A™x;,—-C;r+e)>1-Aand w(A"xp, —C;r+e¢)< A}.
By eq. (2.2), we now have
Sk <n:n(A"xp —&;r+€)>1—- A and w(A™xp — &;r+€) < A}) > 0.
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Therefore,
e th(n w)a(Amx). O

Conclusion

We have presented the perception of rough A™-statistical convergence of order a for
the sequences in intuitionistic fuzzy normed spaces in this paper which is more generalized
than the corresponding results of A™-statistical convergence of the sequences in intutionistic
fuzzy normed spaces. We proved some important results for these perceptions and explored
some examples that show that this approach is more broad than the findings of normed spaces.
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